Let-7 miRNA-binding site polymorphism in the KRAS 3'UTR; colorectal cancer screening population prevalence and influence on clinical outcome in patients with metastatic colorectal cancer treated with 5-fluorouracil and oxaliplatin +/- cetuximab

Janne B Kjersem, Tone Ikdahl, Tormod Guren, Eva Skovlund, Halfdan Sorbye, Julian Hamfjord, Per Pfeiffer, Bengt Glimelius, Christian Kersten, Hiroko Solvang, Kjell M Tveit, Elin H Kure, Janne B Kjersem, Tone Ikdahl, Tormod Guren, Eva Skovlund, Halfdan Sorbye, Julian Hamfjord, Per Pfeiffer, Bengt Glimelius, Christian Kersten, Hiroko Solvang, Kjell M Tveit, Elin H Kure

Abstract

Background: Recent studies have reported associations between a variant allele in a let-7 microRNA complementary site (LCS6) within the 3'untranslated region (3'UTR) of KRAS (rs61764370) and clinical outcome in metastatic colorectal cancer (mCRC) patients receiving cetuximab. The variant allele has also been associated with increased cancer risk. We aimed to reveal the incidence of the variant allele in a colorectal cancer screening population and to investigate the clinical relevance of the variant allele in mCRC patients treated with 1st line Nordic FLOX (bolus 5-fluorouracil/folinic acid and oxaliplatin) +/- cetuximab.

Methods: The feasibility of the variant allele as a risk factor for CRC was investigated by comparing the LCS6 gene frequencies in 197 CRC patients, 1060 individuals with colorectal polyps, and 358 healthy controls. The relationship between clinical outcome and LCS6 genotype was analyzed in 180 mCRC patients receiving Nordic FLOX and 355 patients receiving Nordic FLOX + cetuximab in the NORDIC-VII trial (NCT00145314).

Results: LCS6 frequencies did not vary between CRC patients (23%), individuals with polyps (20%), and healthy controls (20%) (P = 0.50). No statistically significant differences were demonstrated in the NORDIC-VII cohort even if numerically increased progression-free survival (PFS) and overall survival (OS) were found in patients with the LCS6 variant allele (8.5 (95% CI: 7.3-9.7 months) versus 7.8 months (95% CI: 7.4-8.3 months), P = 0.16 and 23.5 (95% CI: 21.6-25.4 months) versus 19.5 months (95% CI: 17.8-21.2 months), P = 0.31, respectively). Addition of cetuximab seemed to improve response rate more in variant carriers than in wild-type carriers (from 35% to 57% versus 44% to 47%), however the difference was not statistically significant (interaction P = 0.16).

Conclusions: The LCS6 variant allele does not seem to be a risk factor for development of colorectal polyps or CRC. No statistically significant effect of the LCS6 variant allele on response rate, PFS or OS was found in mCRC patients treated with 1st line Nordic FLOX +/- cetuximab.

Figures

Figure 1
Figure 1
Kaplan-Meier progression-free survival by LCS6 wild-type (N = 451) and LCS6 variant (N = 84), log rank P = 0.16.
Figure 2
Figure 2
Kaplan-Meier overall survival by LCS6 wild-type (N= 451) and LCS6 variant (N= 84), log rankP= 0.31.
Figure 3
Figure 3
Confirmed response by LCS6 genotype and treatment.

References

    1. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B. et al.Colorectal cancer. Lancet. 2010;375:1030–1047. doi: 10.1016/S0140-6736(10)60353-4.
    1. Amado RG, Wolf M, Peeters M, Van CE, Siena S, Freeman DJ. et al.Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–1634. doi: 10.1200/JCO.2007.14.7116.
    1. Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC. et al.K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359:1757–1765. doi: 10.1056/NEJMoa0804385.
    1. Van CE, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S. et al.Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29:2011–2019. doi: 10.1200/JCO.2010.33.5091.
    1. Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y. et al.Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28:4706–4713. doi: 10.1200/JCO.2009.27.6055.
    1. Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F. et al.Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2009;27:663–671. doi: 10.1200/JCO.2008.20.8397.
    1. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M. et al.Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol. 2010;28:4697–4705. doi: 10.1200/JCO.2009.27.4860.
    1. Bokemeyer C, Bondarenko I, Hartmann JT, de Braud F, Schuch G, Zubel A. et al.Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol. 2011;22:1535–1546. doi: 10.1093/annonc/mdq632.
    1. De RW, Claes B, Bernasconi D, De SJ, Biesmans B, Fountzilas G. et al.Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–762. doi: 10.1016/S1470-2045(10)70130-3.
    1. Tveit KM, Guren T, Glimelius B, Pfeiffer P, Sorbye H, Pyrhonen S. et al.Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol. 2012;30:1755–1762. doi: 10.1200/JCO.2011.38.0915.
    1. Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH. et al.Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet. 2011;377:2103–2114. doi: 10.1016/S0140-6736(11)60613-2.
    1. Grothey A, Lenz HJ. Explaining the unexplainable: EGFR antibodies in colorectal cancer. J Clin Oncol. 2012;30:1735–1737. doi: 10.1200/JCO.2011.40.4194.
    1. Mekenkamp LJ, Tol J, Dijkstra JR, de Krijger I, Vink-Borger E, Teerenstra S. et al.Beyond KRAS mutation status: influence of KRAS copy number status and microRNAs on clinical outcome to cetuximab in metastatic colorectal cancer patients. BMC Cancer. 2012;12:292. doi: 10.1186/1471-2407-12-292.
    1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5.
    1. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–269. doi: 10.1038/nrc1840.
    1. Pichler M, Winter E, Stotz M, Eberhard K, Samonigg H, Lax S. et al.Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer. 2012;106:1826–1832. doi: 10.1038/bjc.2012.175.
    1. Ragusa M, Majorana A, Statello L, Maugeri M, Salito L, Barbagallo D. et al.Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther. 2010;9:3396–3409. doi: 10.1158/1535-7163.MCT-10-0137.
    1. Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–891.
    1. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y. et al.Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28:1385–1392. doi: 10.1038/onc.2008.474.
    1. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME. The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer. 2010;17:F19–F36. doi: 10.1677/ERC-09-0184.
    1. King CE, Wang L, Winograd R, Madison BB, Mongroo PS, Johnstone CN. et al.LIN28B fosters colon cancer migration, invasion and transformation through let-7-dependent and -independent mechanisms. Oncogene. 2011;30:4185–4193. doi: 10.1038/onc.2011.131.
    1. Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006;29:903–906. doi: 10.1248/bpb.29.903.
    1. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A. et al.RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–647. doi: 10.1016/j.cell.2005.01.014.
    1. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I. et al.A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68:8535–8540. doi: 10.1158/0008-5472.CAN-08-2129.
    1. Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A. et al.A 3'-untranslated region KRAS variant and triple-negative breast cancer: a case–control and genetic analysis. Lancet Oncol. 2011;12:377–386. doi: 10.1016/S1470-2045(11)70044-4.
    1. Ratner E, Lu L, Boeke M, Barnett R, Nallur S, Chin LJ. et al.A KRAS-variant in ovarian cancer acts as a genetic marker of cancer risk. Cancer Res. 2010;70:6509–6515. doi: 10.1158/0008-5472.CAN-10-0689.
    1. Pilarski R, Patel DA, Weitzel J, McVeigh T, Dorairaj JJ, Heneghan HM. et al.The KRAS-variant is associated with risk of developing double primary breast and ovarian cancer. PLoS One. 2012;7:e37891. doi: 10.1371/journal.pone.0037891.
    1. Pharoah PD, Palmieri RT, Ramus SJ, Gayther SA, Andrulis IL, Anton-Culver H. et al.The role of KRAS rs61764370 in invasive epithelial ovarian cancer: implications for clinical testing. Clin Cancer Res. 2011;17:3742–3750. doi: 10.1158/1078-0432.CCR-10-3405.
    1. Ratner ES, Keane FK, Lindner R, Tassi RA, Paranjape T, Glasgow M. et al.A KRAS variant is a biomarker of poor outcome, platinum chemotherapy resistance and a potential target for therapy in ovarian cancer. Oncogene. 2011;31:4559–4566.
    1. Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD. et al.A let-7 microRNA-binding site polymorphism in the KRAS 3' UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009;30:1003–1007. doi: 10.1093/carcin/bgp099.
    1. Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ. et al.A let-7 microRNA SNP in the KRAS 3'UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17:7723–7731. doi: 10.1158/1078-0432.CCR-11-0990.
    1. Ryan BM, Robles AI, Harris CC. KRAS-LCS6 genotype as a prognostic marker in early-stage CRC–letter. Clin Cancer Res. 2012;18:3487–3488. doi: 10.1158/1078-0432.CCR-12-0250.
    1. Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D. et al.Genetic modulation of the Let-7 microRNA binding to KRAS 3'-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J. 2010;10:458–464. doi: 10.1038/tpj.2010.9.
    1. Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M. et al.A let-7 microRNA-binding site polymorphism in 3'-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol. 2011;22:104–109. doi: 10.1093/annonc/mdq315.
    1. Winder T, Zhang W, El-Khoueiry A, Yang D, Pohl A, Lurje G. et al.Association of a germ-line variant in the K-ras 3' untranslated region with response and progression-free survival in patients with mCRC treated with single-agent cetuximab (IMCL-0144) or in combination with cetuximab (EPIC) independent of K-ras mutation status. ASCO Meeting Abstracts. 2009;27:4061.
    1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L. et al.New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of canada. J Natl Cancer Inst. 2000;92:205–216. doi: 10.1093/jnci/92.3.205.
    1. Skjelbred CF, Saebo M, Hjartaker A, Grotmol T, Hansteen IL, Tveit KM. et al.Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas. BMC Cancer. 2007;7:228. doi: 10.1186/1471-2407-7-228.
    1. Rodriguez S, Gaunt TR, Day IN. Hardy-weinberg equilibrium testing of biological ascertainment for mendelian randomization studies. Am J Epidemiol. 2009;169:505–514.
    1. Hollestelle A, Pelletier C, Hooning M, Crepin E, Schutte M, Look M. et al.Prevalence of the variant allele rs61764370 T>G in the 3'UTR of KRAS among Dutch BRCA1, BRCA2 and non-BRCA1/BRCA2 breast cancer families. Breast Cancer Res Treat. 2011;128:79–84. doi: 10.1007/s10549-010-1080-z.
    1. Cerne JZ, Stegel V, Gersak K, Novakovic S. KRAS rs61764370 is associated with HER2-overexpressed and poorly-differentiated breast cancer in hormone replacement therapy users: a case control study. BMC Cancer. 2012;12:105. doi: 10.1186/1471-2407-12-105.
    1. Ruzzo A, Canestrari E, Galluccio N, Santini D, Vincenzi B, Tonini G. et al.Role of KRAS let-7 LCS6 SNP in metastatic colorectal cancer patients. Ann Oncol. 2011;22:234–235.
    1. Zhang W, Labonte MJ, Lenz HJ. KRAS let-7 LCS6 SNP predicts cetuximab efficacy in KRASwt metastatic colorectal cancer patients: Does treatment combination partner matter? Ann Oncol. 2011;22:484–485. doi: 10.1093/annonc/mdq704.

Source: PubMed

3
구독하다