Combinational Therapy of Cardiac Atrial Appendage Stem Cells and Pyridoxamine: The Road to Cardiac Repair?

Lize Evens, Hanne Beliën, Sarah D'Haese, Sibren Haesen, Maxim Verboven, Jean-Luc Rummens, Annelies Bronckaers, Marc Hendrikx, Dorien Deluyker, Virginie Bito, Lize Evens, Hanne Beliën, Sarah D'Haese, Sibren Haesen, Maxim Verboven, Jean-Luc Rummens, Annelies Bronckaers, Marc Hendrikx, Dorien Deluyker, Virginie Bito

Abstract

Myocardial infarction (MI) occurs when the coronary blood supply is interrupted. As a consequence, cardiomyocytes are irreversibly damaged and lost. Unfortunately, current therapies for MI are unable to prevent progression towards heart failure. As the renewal rate of cardiomyocytes is minimal, the optimal treatment should achieve effective cardiac regeneration, possibly with stem cells transplantation. In that context, our research group identified the cardiac atrial appendage stem cells (CASCs) as a new cellular therapy. However, CASCs are transplanted into a hostile environment, with elevated levels of advanced glycation end products (AGEs), which may affect their regenerative potential. In this study, we hypothesize that pyridoxamine (PM), a vitamin B6 derivative, could further enhance the regenerative capacities of CASCs transplanted after MI by reducing AGEs' formation. Methods and Results: MI was induced in rats by ligation of the left anterior descending artery. Animals were assigned to either no therapy (MI), CASCs transplantation (MI + CASCs), or CASCs transplantation supplemented with PM treatment (MI + CASCs + PM). Four weeks post-surgery, global cardiac function and infarct size were improved upon CASCs transplantation. Interstitial collagen deposition, evaluated on cryosections, was decreased in the MI animals transplanted with CASCs. Contractile properties of resident left ventricular cardiomyocytes were assessed by unloaded cell shortening. CASCs transplantation prevented cardiomyocyte shortening deterioration. Even if PM significantly reduced cardiac levels of AGEs, cardiac outcome was not further improved. Conclusion: Limiting AGEs' formation with PM during an ischemic injury in vivo did not further enhance the improved cardiac phenotype obtained with CASCs transplantation. Whether AGEs play an important deleterious role in the setting of stem cell therapy after MI warrants further examination.

Keywords: CASCs; advanced glycation end products; aldehyde dehydrogenase; cardiomyocytes; glycated proteins; myocardial infarction; remodeling; stem cells; transplantation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
AGEs’ content in heart tissue is significantly decreased by PM. (A) Representative examples of transverse heart sections 4 weeks after surgery. The AGEs’ content (brown) was immunohistologically determined with DAB staining. Scale bar = 100 µm. (B) Quantification of AGEs’ content in hearts from SHAM (n = 4), MI (n = 11), MI + CASCs (n = 10), and MI + CASCs + PM (n = 5). Data are expressed as mean ± SEM. ** denotes p < 0.01 vs. MI and ## denotes p < 0.01 vs. SHAM.
Figure 2
Figure 2
Assessment of infarct size. (A) Representative examples of hearts from SHAM, MI, MI + CASCs, and MI + CASCs + PM. Fibrotic tissue, as a surrogate for infarct size, is stained red, while viable tissue is stained green. Scale bar = 2000 µm. (B) Quantification of infarct size in transversal sections 4 weeks post-surgery. MI (n = 11), MI + CASCs (n = 10), and MI + CASCs + PM (n = 5). Data are expressed as mean ± SEM.
Figure 3
Figure 3
Interstitial collagen deposition in the LV. (A) Representative examples of collagen deposition (red) in the LV. Scale bar = 200 µm. (B) Quantification of collagen content in LV transversal sections 4 weeks after surgery of SHAM (n = 4), MI (n = 11), MI + CASCs (n = 10), and MI + CASCs + PM (n = 5). Data are expressed as mean ± SEM. * denotes p < 0.05 vs. MI, # denotes p < 0.05 vs. SHAM.
Figure 4
Figure 4
Resident cardiomyocyte shortening during field stimulation at 4 Hz. Quantification of (A) unloaded cell shortening normalized to diastolic cell length (L/L0), (B) time to peak of contraction (TTP), and (C) time to half-maximal relaxation (RT50) of resident cardiomyocytes from SHAM (ncells = 80; nanimals = 7), MI (ncells = 60; nanimals = 5), MI + CASCs (ncells = 41; nanimals = 4), and MI + CASCs + PM (ncells = 31; nanimals = 3). Data are expressed as mean ± SEM. * denotes p < 0.05; ** denotes p < 0.01 vs. MI, # denotes p < 0.05 vs. SHAM, and ## denotes p < 0.01 vs. SHAM.
Figure 5
Figure 5
Gene expression of inflammatory cytokines. Quantification of gene expression of (A) IFN-γ and (B) IL-6 in LV tissue from SHAM (n = 4), MI (n = 7), MI + CASCs (n = 7), and MI + CASCs + PM (n = 3). Data are expressed as mean ± SEM.

References

    1. The Top 10 Causes of Death. [(accessed on 1 June 2021)]; Available online: .
    1. Xin M., Olson E.N., Bassel-Duby R. Mending broken hearts: Cardiac development as a basis for adult heart regeneration and repair. Nat. Rev. Mol. Cell Biol. 2013;14:529–541. doi: 10.1038/nrm3619.
    1. Rosamond W., Flegal K., Furie K., Go A., Greenlund K., Haase N., Hailpern S.M., Ho M., Howard V., Kissela B., et al. Heart disease and stroke statistics—2008 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25–e146. doi: 10.1161/CIRCULATIONAHA.107.187998.
    1. Packer M., Bristow M.R., Cohn J.N., Colucci W.S., Fowler M.B., Gilbert E.M., Shusterman N.H. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N. Engl. J. Med. 1996;334:1349–1355. doi: 10.1056/NEJM199605233342101.
    1. Soonpaa M.H., Rubart M., Field L.J. Challenges measuring cardiomyocyte renewal. Biochim. Biophys. Acta. 2013;1833:799–803. doi: 10.1016/j.bbamcr.2012.10.029.
    1. Cambria E., Pasqualini F.S., Wolint P., Gunter J., Steiger J., Bopp A., Hoerstrup S.P., Emmert M.Y. Translational cardiac stem cell therapy: Advancing from first-generation to next-generation cell types. NPJ Regen. Med. 2017;2:17. doi: 10.1038/s41536-017-0024-1.
    1. Zhu K., Wu Q., Ni C., Zhang P., Zhong Z., Wu Y., Wang Y., Xu Y., Kong M., Cheng H., et al. Lack of Remuscularization Following Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitor Cells in Infarcted Nonhuman Primates. Circ. Res. 2018;122:958–969. doi: 10.1161/CIRCRESAHA.117.311578.
    1. Ayyat K.S., Argawi A., Mende M., Steinhoff G., Borger M.A., Deebis A.M., McCurry K.R., Garbade J. Combined Coronary Artery Bypass Surgery With Bone Marrow Stem Cell Transplantation: Are We There Yet? Ann. Thorac. Surg. 2019;108:1913–1921. doi: 10.1016/j.athoracsur.2019.05.094.
    1. Wolfien M., Klatt D., Salybekov A.A., Ii M., Komatsu-Horii M., Gaebel R., Philippou-Massier J., Schrinner E., Akimaru H., Akimaru E., et al. Hematopoietic stem-cell senescence and myocardial repair—Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3. EBioMedicine. 2020;57:102862. doi: 10.1016/j.ebiom.2020.102862.
    1. Hendrikx M., Hensen K., Clijsters C., Jongen H., Koninckx R., Bijnens E., Ingels M., Jacobs A., Geukens R., Dendale P., et al. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: Results from a randomized controlled clinical trial. Circulation. 2006;114:I101–I107. doi: 10.1161/CIRCULATIONAHA.105.000505.
    1. Jeevanantham V., Butler M., Saad A., Abdel-Latif A., Zuba-Surma E.K., Dawn B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: A systematic review and meta-analysis. Circulation. 2012;126:551–568. doi: 10.1161/CIRCULATIONAHA.111.086074.
    1. Bearzi C., Rota M., Hosoda T., Tillmanns J., Nascimbene A., De Angelis A., Yasuzawa-Amano S., Trofimova I., Siggins R.W., Lecapitaine N., et al. Human cardiac stem cells. Proc. Natl. Acad. Sci. USA. 2007;104:14068–14073. doi: 10.1073/pnas.0706760104.
    1. Genead R., Danielsson C., Andersson A.B., Corbascio M., Franco-Cereceda A., Sylven C., Grinnemo K.H. Islet-1 cells are cardiac progenitors present during the entire lifespan: From the embryonic stage to adulthood. Stem Cells Dev. 2010;19:1601–1615. doi: 10.1089/scd.2009.0483.
    1. Smith R.R., Barile L., Cho H.C., Leppo M.K., Hare J.M., Messina E., Giacomello A., Abraham M.R., Marban E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908. doi: 10.1161/CIRCULATIONAHA.106.655209.
    1. Bolli R., Chugh A.R., D’Amario D., Loughran J.H., Stoddard M.F., Ikram S., Beache G.M., Wagner S.G., Leri A., Hosoda T., et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): Initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–1857. doi: 10.1016/S0140-6736(11)61590-0.
    1. Makkar R.R., Smith R.R., Cheng K., Malliaras K., Thomson L.E., Berman D., Czer L.S., Marban L., Mendizabal A., Johnston P.V., et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial. Lancet. 2012;379:895–904. doi: 10.1016/S0140-6736(12)60195-0.
    1. van Berlo J.H., Kanisicak O., Maillet M., Vagnozzi R.J., Karch J., Lin S.C., Middleton R.C., Marban E., Molkentin J.D. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509:337–341. doi: 10.1038/nature13309.
    1. Koninckx R., Daniels A., Windmolders S., Mees U., Macianskiene R., Mubagwa K., Steels P., Jamaer L., Dubois J., Robic B., et al. The cardiac atrial appendage stem cell: A new and promising candidate for myocardial repair. Cardiovasc. Res. 2013;97:413–423. doi: 10.1093/cvr/cvs427.
    1. Fanton Y., Robic B., Rummens J.L., Daniels A., Windmolders S., Willems L., Jamaer L., Dubois J., Bijnens E., Heuts N., et al. Cardiac atrial appendage stem cells engraft and differentiate into cardiomyocytes in vivo: A new tool for cardiac repair after MI. Int. J. Cardiol. 2015;201:10–19. doi: 10.1016/j.ijcard.2015.07.066.
    1. Kralev S., Zimmerer E., Brueckmann M., Lang S., Kalsch T., Rippert A., Lin J., Borggrefe M., Hammes H.P., Suselbeck T. Elevation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in patients presenting with acute myocardial infarction. Clin. Chem. Lab. Med. 2009;47:446–451. doi: 10.1515/CCLM.2009.100.
    1. Singh R., Barden A., Mori T., Beilin L. Advanced glycation end-products: A review. Diabetologia. 2001;44:129–146. doi: 10.1007/s001250051591.
    1. Hartog J.W., Voors A.A., Bakker S.J., Smit A.J., van Veldhuisen D.J. Advanced glycation end-products (AGEs) and heart failure: Pathophysiology and clinical implications. Eur. J. Heart Fail. 2007;9:1146–1155. doi: 10.1016/j.ejheart.2007.09.009.
    1. Ramasamy R., Yan S.F., Schmidt A.M. Stopping the primal RAGE reaction in myocardial infarction: Capturing adaptive responses to heal the heart? Circulation. 2008;117:3165–3167. doi: 10.1161/CIRCULATIONAHA.108.784397.
    1. Liu Y., Qu Y., Wang R., Ma Y., Xia C., Gao C., Liu J., Lian K., Xu A., Lu X., et al. The alternative crosstalk between RAGE and nitrative thioredoxin inactivation during diabetic myocardial ischemia-reperfusion injury. Am. J. Physiol. Endocrinol. Metab. 2012;303:E841–E852. doi: 10.1152/ajpendo.00075.2012.
    1. Fishman S.L., Sonmez H., Basman C., Singh V., Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: A review. Mol. Med. 2018;24:59. doi: 10.1186/s10020-018-0060-3.
    1. Yang J., Zhang F., Shi H., Gao Y., Dong Z., Ma L., Sun X., Li X., Chang S., Wang Z., et al. Neutrophil-derived advanced glycation end products-Nepsilon-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury. FASEB J. 2019;33:14410–14422. doi: 10.1096/fj.201900115RR.
    1. Son M., Kang W.C., Oh S., Bayarsaikhan D., Ahn H., Lee J., Park H., Lee S., Choi J., Lee H.S., et al. Advanced glycation end-product (AGE)-albumin from activated macrophage is critical in human mesenchymal stem cells survival and post-ischemic reperfusion injury. Sci. Rep. 2017;7:11593. doi: 10.1038/s41598-017-11773-1.
    1. Evens L., Belien H., Deluyker D., Bronckaers A., Gervois P., Hendrikx M., Bito V. The Impact of Advanced Glycation End-Products (AGEs) on Proliferation and Apoptosis of Primary Stem Cells: A Systematic Review. Stem Cells Int. 2020;2020:8886612. doi: 10.1155/2020/8886612.
    1. Evens L., Heeren E., Rummens J.L., Bronckaers A., Hendrikx M., Deluyker D., Bito V. Advanced Glycation End Products Impair Cardiac Atrial Appendage Stem Cells Properties. J. Clin. Med. 2021;10:2964. doi: 10.3390/jcm10132964.
    1. Ramis R., Ortega-Castro J., Caballero C., Casasnovas R., Cerrillo A., Vilanova B., Adrover M., Frau J. How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity. Antioxidants. 2019;8:344. doi: 10.3390/antiox8090344.
    1. Voziyan P.A., Hudson B.G. Pyridoxamine as a multifunctional pharmaceutical: Targeting pathogenic glycation and oxidative damage. Cell. Mol. Life Sci. 2005;62:1671–1681. doi: 10.1007/s00018-005-5082-7.
    1. Paul L., Ueland P.M., Selhub J. Mechanistic perspective on the relationship between pyridoxal 5’-phosphate and inflammation. Nutr. Rev. 2013;71:239–244. doi: 10.1111/nure.12014.
    1. Lemcke H., Voronina N., Steinhoff G., David R. Recent Progress in Stem Cell Modification for Cardiac Regeneration. Stem Cells Int. 2018;2018:1909346. doi: 10.1155/2018/1909346.
    1. Qiu H., Li W.P., Shen X.H., Guo X.Y., Hua B., Li H.W. Dynamic fluctuations of advanced glycation end products and its C-terminal truncated receptor level in patients with acute ST-segment elevation myocardial infarction and undergoing diabetes or not: A retrospective study. Medicine. 2018;97:e11278. doi: 10.1097/MD.0000000000011278.
    1. Greven W.L., Smit J.M., Rommes J.H., Spronk P.E. Accumulation of advanced glycation end (AGEs) products in intensive care patients: An observational, prospective study. BMC Clin. Pathol. 2010;10:4. doi: 10.1186/1472-6890-10-4.
    1. Celec P., Hodosy J., Jani P., Janega P., Kudela M., Kalousova M., Holzerova J., Parrak V., Halcak L., Zima T., et al. Advanced glycation end products in myocardial reperfusion injury. Heart Vessel. 2012;27:208–215. doi: 10.1007/s00380-011-0147-z.
    1. Dwyer J.P., Greco B.A., Umanath K., Packham D., Fox J.W., Peterson R., Broome B.R., Greene L.E., Sika M., Lewis J.B. Pyridoxamine dihydrochloride in diabetic nephropathy (PIONEER-CSG-17): Lessons learned from a pilot study. Nephron. 2015;129:22–28. doi: 10.1159/000369310.
    1. Voziyan P.A., Hudson B.G. Pyridoxamine: The many virtues of a maillard reaction inhibitor. Ann. N. Y. Acad. Sci. 2005;1043:807–816. doi: 10.1196/annals.1333.093.
    1. Williams M.E. Clinical studies of advanced glycation end product inhibitors and diabetic kidney disease. Curr. Diabetes Rep. 2004;4:441–446. doi: 10.1007/s11892-004-0054-0.
    1. Deluyker D., Ferferieva V., Driesen R.B., Verboven M., Lambrichts I., Bito V. Pyridoxamine improves survival and limits cardiac dysfunction after MI. Sci. Rep. 2017;7:16010. doi: 10.1038/s41598-017-16255-y.
    1. Borg D.J., Forbes J.M. Targeting advanced glycation with pharmaceutical agents: Where are we now? Glycoconj. J. 2016;33:653–670. doi: 10.1007/s10719-016-9691-1.
    1. Vagnozzi R.J., Maillet M., Sargent M.A., Khalil H., Johansen A.K.Z., Schwanekamp J.A., York A.J., Huang V., Nahrendorf M., Sadayappan S., et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577:405–409. doi: 10.1038/s41586-019-1802-2.
    1. Oh S., Son M., Choi J., Lee S., Byun K. sRAGE prolonged stem cell survival and suppressed RAGE-related inflammatory cell and T lymphocyte accumulations in an Alzheimer’s disease model. Biochem. Biophys. Res. Commun. 2018;495:807–813. doi: 10.1016/j.bbrc.2017.11.035.
    1. Park M.J., Lee S.H., Moon S.J., Lee J.A., Lee E.J., Kim E.K., Park J.S., Lee J., Min J.K., Kim S.J., et al. Overexpression of soluble RAGE in mesenchymal stem cells enhances their immunoregulatory potential for cellular therapy in autoimmune arthritis. Sci. Rep. 2016;6:35933. doi: 10.1038/srep35933.
    1. Lee J., Bayarsaikhan D., Arivazhagan R., Park H., Lim B., Gwak P., Jeong G.B., Lee J., Byun K., Lee B. CRISPR/Cas9 Edited sRAGE-MSCs Protect Neuronal Death in Parkinsons Disease Model. Int. J. Stem Cells. 2019;12:114–124. doi: 10.15283/ijsc18110.
    1. Lang C.I., Wolfien M., Langenbach A., Muller P., Wolkenhauer O., Yavari A., Ince H., Steinhoff G., Krause B.J., David R., et al. Cardiac Cell Therapies for the Treatment of Acute Myocardial Infarction: A Meta-Analysis from Mouse Studies. Cell. Physiol. Biochem. 2017;42:254–268. doi: 10.1159/000477324.
    1. Biernacka A., Dobaczewski M., Frangogiannis N.G. TGF-beta signaling in fibrosis. Growth Factors. 2011;29:196–202. doi: 10.3109/08977194.2011.595714.
    1. Frangogiannis N.G. The role of transforming growth factor (TGF)-beta in the infarcted myocardium. J. Thorac. Dis. 2017;9:S52–S63. doi: 10.21037/jtd.2016.11.19.
    1. Voloshenyuk T.G., Landesman E.S., Khoutorova E., Hart A.D., Gardner J.D. Induction of cardiac fibroblast lysyl oxidase by TGF-beta1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine. 2011;55:90–97. doi: 10.1016/j.cyto.2011.03.024.
    1. Jin L., Zhang J., Deng Z., Liu J., Han W., Chen G., Si Y., Ye P. Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2. Stem Cell Res. Ther. 2020;11:122. doi: 10.1186/s13287-020-01633-7.
    1. Richardson W.J., Clarke S.A., Quinn T.A., Holmes J.W. Physiological Implications of Myocardial Scar Structure. Compr. Physiol. 2015;5:1877–1909. doi: 10.1002/cphy.c140067.
    1. Kanda P., Davis D.R. Cellular mechanisms underlying cardiac engraftment of stem cells. Expert Opin. Biol. Ther. 2017;17:1127–1143. doi: 10.1080/14712598.2017.1346080.
    1. Baraniak P.R., McDevitt T.C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 2010;5:121–143. doi: 10.2217/rme.09.74.
    1. Wu S.Z., Li Y.L., Huang W., Cai W.F., Liang J., Paul C., Jiang L., Wu Z.C., Xu M., Zhu P., et al. Paracrine effect of CXCR4-overexpressing mesenchymal stem cells on ischemic heart injury. Cell Biochem. Funct. 2017;35:113–123. doi: 10.1002/cbf.3254.
    1. Dulak J., Szade K., Szade A., Nowak W., Jozkowicz A. Adult stem cells: Hopes and hypes of regenerative medicine. Acta Biochim. Pol. 2015;62:329–337. doi: 10.18388/abp.2015_1023.
    1. Zacchigna S., Paldino A., Falcao-Pires I., Daskalopoulos E.P., Dal Ferro M., Vodret S., Lesizza P., Cannata A., Miranda-Silva D., Lourenco A.P., et al. Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: A position paper of the ESC Working Group on Myocardial Function. Cardiovasc. Res. 2021;117:43–59. doi: 10.1093/cvr/cvaa110.
    1. Haesen S., Col U., Schurgers W., Evens L., Verboven M., Driesen R.B., Bronckaers A., Lambrichts I., Deluyker D., Bito V. Glycolaldehyde-modified proteins cause adverse functional and structural aortic remodeling leading to cardiac pressure overload. Sci. Rep. 2020;10:12220. doi: 10.1038/s41598-020-68974-4.
    1. Deluyker D., Evens L., Belien H., Bito V. Acute exposure to glycated proteins reduces cardiomyocyte contractile capacity. Exp. Physiol. 2019;104:997–1003. doi: 10.1113/EP087127.
    1. Deluyker D., Evens L., Haesen S., Driesen R.B., Kuster D., Verboven M., Belien H., van der Velden J., Lambrichts I., Bito V. Glycolaldehyde-Derived High-Molecular-Weight Advanced Glycation End-Products Induce Cardiac Dysfunction through Structural and Functional Remodeling of Cardiomyocytes. Cell. Physiol. Biochem. 2020;54:809–824. doi: 10.33594/000000271.
    1. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019.
    1. Deluyker D., Ferferieva V., Noben J.P., Swennen Q., Bronckaers A., Lambrichts I., Rigo J.M., Bito V. Cross-linking versus RAGE: How do high molecular weight advanced glycation products induce cardiac dysfunction? Int. J. Cardiol. 2016;210:100–108. doi: 10.1016/j.ijcard.2016.02.095.
    1. Derveaux S., Vandesompele J., Hellemans J. How to do successful gene expression analysis using real-time PCR. Methods. 2010;50:227–230. doi: 10.1016/j.ymeth.2009.11.001.
    1. Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797.

Source: PubMed

3
订阅