Reduced Right Ventricular Function Predicts Long-Term Cardiac Re-Hospitalization after Cardiac Surgery

Leela K Lella, Virna L Sales, Yulia Goldsmith, Jacqueline Chan, Marina Iskandir, Iosif Gulkarov, Anthony Tortolani, Sorin J Brener, Terrence J Sacchi, John F Heitner, Leela K Lella, Virna L Sales, Yulia Goldsmith, Jacqueline Chan, Marina Iskandir, Iosif Gulkarov, Anthony Tortolani, Sorin J Brener, Terrence J Sacchi, John F Heitner

Abstract

Background: The significance of right ventricular ejection fraction (RVEF), independent of left ventricular ejection fraction (LVEF), following isolated coronary artery bypass grafting (CABG) and valve procedures remains unknown. The aim of this study is to examine the significance of abnormal RVEF by cardiac magnetic resonance (CMR), independent of LVEF in predicting outcomes of patients undergoing isolated CABG and valve surgery.

Methods: From 2007 to 2009, 109 consecutive patients (mean age, 66 years; 38% female) were referred for pre-operative CMR. Abnormal RVEF and LVEF were considered <35% and <45%, respectively. Elective primary procedures include CABG (56%) and valve (44%). Thirty-day outcomes were perioperative complications, length of stay, cardiac re-hospitalizations and early mortaility; long-term (> 30 days) outcomes included, cardiac re-hospitalization, worsening congestive heart failure and mortality. Mean clinical follow up was 14 months.

Findings: Forty-eight patients had reduced RVEF (mean 25%) and 61 patients had normal RVEF (mean 50%) (p<0.001). Fifty-four patients had reduced LVEF (mean 30%) and 55 patients had normal LVEF (mean 59%) (p<0.001). Patients with reduced RVEF had a higher incidence of long-term cardiac re-hospitalization vs. patients with normal RVEF (31% vs.13%, p<0.05). Abnormal RVEF was a predictor for long-term cardiac re-hospitalization (HR 3.01 [CI 1.5-7.9], p<0.03). Reduced LVEF did not influence long-term cardiac re-hospitalization.

Conclusion: Abnormal RVEF is a stronger predictor for long-term cardiac re-hospitalization than abnormal LVEF in patients undergoing isolated CABG and valve procedures.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Preoperative CMR.
Fig 1. Preoperative CMR.
Short axis cine views traced right ventricle (A), left ventricle (B) and right ventricle from base to the apex (C) for ejection fraction measurements. Marked region of interest is demonstrated in green.
Fig 2. Kaplan-meier survival curve comparing patients…
Fig 2. Kaplan-meier survival curve comparing patients with RVEF
The top curve corresponds to patients with RVEF

References

    1. de Groote P, Millaire A, Foucher-Hossein C, Nugue O, Marchandise X, Ducloux G, et al. (1998) Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol 32: 948–954.
    1. Maslow AD, Regan MM, Panzica P, Heindel S, Mashikian J, Comunale ME.(2002) Precardiopulmonary bypass right ventricular function is associated with poor outcome after coronary artery bypass grafting in patients with severe left ventricular systolic dysfunction. Anesth Analg 95: 1507–1518, table of contents.
    1. Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof E, Fleischmann KE, et al. (2007) ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines on Perioperative Cardiovascular Evaluation for Noncardiac Surgery): developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. Circulation 116: e418–499.
    1. Task Force for Preoperative Cardiac Risk A, Perioperative Cardiac Management in Non-cardiac S, European Society of C, Poldermans D, Bax JJ, Boersma E, De Hert S, Eeckhout E, Fowkes G, et al. (2009) Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur Heart J 30: 2769–2812. 10.1093/eurheartj/ehp337
    1. Dupuis JY, Wang F, Nathan H, Lam M, Grimes S, Bourke M. (2001) The cardiac anesthesia risk evaluation score: a clinically useful predictor of mortality and morbidity after cardiac surgery. Anesthesiology 94: 194–204.
    1. Kjaergaard J, Petersen CL, Kjaer A, Schaadt BK, Oh JK, Hassager C.(2006) Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI. Eur J Echocardiogr 7: 430–438.
    1. Greil GF, Beerbaum P, Razavi R, Miller O (2008) Imaging the right ventricle: non-invasive imaging. Heart 94: 803–808. 10.1136/hrt.2005.079111
    1. STS adult cardiac data specifications, version 2.61. Available: . Accessed 2013 Feb 11.
    1. Social Security Death Index [Web Site]. Available: .
    1. McCarthy PM, Bhudia SK, Rajeswaran J, Hoercher KJ, Lytle BW, Cosgrove DM, et al. (2004) Tricuspid valve repair: durability and risk factors for failure. J Thorac Cardiovasc Surg 127: 674–685.
    1. Passamani E, Davis KB, Gillespie MJ, Killip T (1985) A randomized trial of coronary artery bypass surgery. Survival of patients with a low ejection fraction. N Engl J Med 312: 1665–1671.
    1. Sibbald WJ, Driedger AA (1983) Right ventricular function in acute disease states: pathophysiologic considerations. Crit Care Med 11: 339–345.
    1. Raper R, Sibbald WJ (1987) Right ventricular function in the surgical patient. World J Surg 11: 154–160.
    1. Stein KL, Breisblatt W, Wolfe C, Gasior T, Hardesty R (1990) Depression and recovery of right ventricular function after cardiopulmonary bypass. Crit Care Med 18: 1197–1200.
    1. Denault AY, Deschamps A, Couture P (2010) Intraoperative hemodynamic instability during and after separation from cardiopulmonary bypass. Semin Cardiothorac Vasc Anesth 14: 165–182. 10.1177/1089253210376673
    1. Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, et al. (1999) Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med 341: 625–634.
    1. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, et al. (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28: 1250–1257.
    1. Adhyapak SM (2010) Effect of right ventricular function and pulmonary pressures on heart failure prognosis. Prev Cardiol 13: 72–77. 10.1111/j.1751-7141.2009.00053.x
    1. Reichert CL, Visser CA, van den Brink RB, Koolen JJ, van Wezel HB, Moulijn AC, et al. (1992) Prognostic value of biventricular function in hypotensive patients after cardiac surgery as assessed by transesophageal echocardiography. J Cardiothorac Vasc Anesth 6: 429–432.
    1. Siddiqui MM, Jalal A, Sherwani M, Ahmad MZ (2012) Right ventricular dysfunction after coronary artery bypass grafting is a reality of unknown cause and significance. Heart Surg Forum 15: E185–188. 10.1532/HSF98.20111142
    1. Zhao X, Mashikian JS, Panzica P, Lerner A, Park KW, Comunale ME (2003) Comparison of thermodilution bolus cardiac output and Doppler cardiac output in the early post-cardiopulmonary bypass period. J Cardiothorac Vasc Anesth 17: 193–198.
    1. McCarthy PM, Sales VL (2010) Evolving indications for tricuspid valve surgery. Curr Treat Options Cardiovasc Med 12: 587–597. 10.1007/s11936-010-0098-1
    1. Messika-Zeitoun D, Thomson H, Bellamy M, Scott C, Tribouilloy C, Dearani J, et al. (2004) Medical and surgical outcome of tricuspid regurgitation caused by flail leaflets. J Thorac Cardiovasc Surg 128: 296–302.
    1. Davidson MJ (2008) Can the off-pump coronary artery bypass debate shed light on postoperative right heart dysfunction? Circulation 117: 2181–2183. 10.1161/CIRCULATIONAHA.108.767723
    1. Joshi SB, Roswell RO, Salah AK, Zeman PR, Corso PJ, Lindsay J, et al. (2010) Right ventricular function after coronary artery bypass graft surgery—a magnetic resonance imaging study. Cardiovasc Revasc Med 11: 98–100. 10.1016/j.carrev.2009.04.002
    1. Pegg TJ, Selvanayagam JB, Karamitsos TD, Arnold RJ, Francis JM, Neubauer S, et al. (2008) Effects of off-pump versus on-pump coronary artery bypass grafting on early and late right ventricular function. Circulation 117: 2202–2210. 10.1161/CIRCULATIONAHA.107.735621
    1. Bove T, Vandekerckhove K, Devos D, Panzer J, De Groote K, De Wilde H, et al. (2014) Functional analysis of the anatomical right ventricular components: should assessment of right ventricular function after repair of tetralogy of Fallot be refined? Eur J Cardiothorac Surg 45: e6–12. 10.1093/ejcts/ezt505
    1. Cuspidi C, Sala C, Rescaldani M, Tadic M, Grassi G (2014) Effects of bariatric surgery on right ventricular structure and function. J Cardiovasc Med (Hagerstown).
    1. Hillis GS, Zehr KJ, Williams AW, Schaff HV, Orzulak TA, Daly RC, et al. (2006) Outcome of patients with low ejection fraction undergoing coronary artery bypass grafting: renal function and mortality after 3.8 years. Circulation 114: I414–419.
    1. Filsoufi F, Rahmanian PB, Castillo JG, Chikwe J, Kini AS, Adams DH (2007) Results and predictors of early and late outcome of coronary artery bypass grafting in patients with severely depressed left ventricular function. Ann Thorac Surg 84: 808–816.
    1. Nardi P, Pellegrino A, Scafuri A, Colella D, Bassano C, Polisca P, et al. (2009) Long-term outcome of coronary artery bypass grafting in patients with left ventricular dysfunction. Ann Thorac Surg 87: 1401–1407. 10.1016/j.athoracsur.2009.02.062
    1. Yoo JS, Kim JB, Jung SH, Choo SJ, Chung CH, Lee JW (2013) Coronary artery bypass grafting in patients with left ventricular dysfunction: predictors of long-term survival and impact of surgical strategies. Int J Cardiol 168: 5316–5322. 10.1016/j.ijcard.2013.08.009
    1. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. (2011) Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 364: 1617–1625. 10.1056/NEJMoa1100358
    1. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, et al. (2011) Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med 364: 1607–1616. 10.1056/NEJMoa1100356

Source: PubMed

3
订阅