"Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study"

Marta Entrenas Castillo, Luis Manuel Entrenas Costa, José Manuel Vaquero Barrios, Juan Francisco Alcalá Díaz, José López Miranda, Roger Bouillon, José Manuel Quesada Gomez, Marta Entrenas Castillo, Luis Manuel Entrenas Costa, José Manuel Vaquero Barrios, Juan Francisco Alcalá Díaz, José López Miranda, Roger Bouillon, José Manuel Quesada Gomez

Abstract

Objective: The vitamin D endocrine system may have a variety of actions on cells and tissues involved in COVID-19 progression especially by decreasing the Acute Respiratory Distress Syndrome. Calcifediol can rapidly increase serum 25OHD concentration. We therefore evaluated the effect of calcifediol treatment, on Intensive Care Unit Admission and Mortality rate among Spanish patients hospitalized for COVID-19.

Design: Parallel pilot randomized open label, double-masked clinical trial.

Setting: University hospital setting (Reina Sofia University Hospital, Córdoba Spain.) PARTICIPANTS: 76 consecutive patients hospitalized with COVID-19 infection, clinical picture of acute respiratory infection, confirmed by a radiographic pattern of viral pneumonia and by a positive SARS-CoV-2 PCR with CURB65 severity scale (recommending hospital admission in case of total score > 1).

Procedures: All hospitalized patients received as best available therapy the same standard care, (per hospital protocol), of a combination of hydroxychloroquine (400 mg every 12 h on the first day, and 200 mg every 12 h for the following 5 days), azithromycin (500 mg orally for 5 days. Eligible patients were allocated at a 2 calcifediol:1 no calcifediol ratio through electronic randomization on the day of admission to take oral calcifediol (0.532 mg), or not. Patients in the calcifediol treatment group continued with oral calcifediol (0.266 mg) on day 3 and 7, and then weekly until discharge or ICU admission. Outcomes of effectiveness included rate of ICU admission and deaths.

Results: Of 50 patients treated with calcifediol, one required admission to the ICU (2%), while of 26 untreated patients, 13 required admission (50 %) p value X2 Fischer test p < 0.001. Univariate Risk Estimate Odds Ratio for ICU in patients with Calcifediol treatment versus without Calcifediol treatment: 0.02 (95 %CI 0.002-0.17). Multivariate Risk Estimate Odds Ratio for ICU in patients with Calcifediol treatment vs Without Calcifediol treatment ICU (adjusting by Hypertension and T2DM): 0.03 (95 %CI: 0.003-0.25). Of the patients treated with calcifediol, none died, and all were discharged, without complications. The 13 patients not treated with calcifediol, who were not admitted to the ICU, were discharged. Of the 13 patients admitted to the ICU, two died and the remaining 11 were discharged.

Conclusion: Our pilot study demonstrated that administration of a high dose of Calcifediol or 25-hydroxyvitamin D, a main metabolite of vitamin D endocrine system, significantly reduced the need for ICU treatment of patients requiring hospitalization due to proven COVID-19. Calcifediol seems to be able to reduce severity of the disease, but larger trials with groups properly matched will be required to show a definitive answer.

Keywords: 1α, 25(OH)2D or 1α, 25-dihydroxyvitamin D or calcitriol; Acute respiratory distress syndrome (ARDS); COVID-19; Calcifediol or 25-hydroxyvitamin D3; Cathelicidin peptide; Chloroquine; Covidiol; Cuboidal alveolar coating cells type II; Cytokine/Chemokine storm; Defensins; Hydroxychloroquine; Hypercoagulability; Neutrophil activity; Renin-angiotensin system; SARS-CoV-2; TLR co-receptor CD14; Vitamin D; Vitamin D endocrine system; Vitamin D receptor; Vitamin D3 or cholecalciferol.

Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
Patients Flow Diagram.

References

    1. Zhou P., Lou Yang X., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Di Jiang R., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Fan E., Brodie D., Slutsky A.S. Acute respiratory distress syndrome. JAMA. 2018;319:698. doi: 10.1001/jama.2017.21907.
    1. Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E., Fan E., Camporota L., Slutsky A.S. Acute respiratory distress syndrome: the Berlin definition. JAMA - J. Am. Med. Assoc. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669.
    1. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., Zhang Y., Song J., Wang S., Chao Y., Yang Z., Xu J., Zhou X., Chen D., Xiong W., Xu L., Zhou F., Jiang J., Bai C., Zheng J., Song Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020 doi: 10.1001/jamainternmed.2020.0994.
    1. Bellani G., Laffey J.G., Pham T., Fan E., Brochard L., Esteban A., Gattinoni L., Van Haren F.M.P., Larsson A., McAuley D.F., Ranieri M., Rubenfeld G., Thompson B.T., Wrigge H., Slutsky A.S., Pesenti A. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA - J. Am. Med. Assoc. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Bauchner H., Fontanarosa P.B. Randomized clinical trials and COVID-19: managing expectations. JAMA - J. Am. Med. Assoc. 2020 doi: 10.1001/jama.2020.8115.
    1. Li R., Rivers C., Tan Q., Murray M.B., Toner E., Lipsitch M. Estimated demand for US hospital inpatient and intensive care unit beds for patients with COVID-19 based on comparisons with Wuhan and Guangzhou, China. JAMA Netw. Open. 2020;3:e208297. doi: 10.1001/jamanetworkopen.2020.8297.
    1. Quesada-Gomez J.M., Entrenas-Castillo M., Bouillon R. Vitamin D receptor stimulation to reduce acute respiratory distress syndrome (ARDS) in patients with coronavirus SARS-CoV-2 infections: revised Ms SBMB 2020_166. J. Steroid Biochem. Mol. Biol. 2020;202 doi: 10.1016/j.jsbmb.2020.105719.
    1. Shi Y.Y., Liu T.J., Fu J.H., Xu W., Wu L.L., Hou A.N., Xue X.D. Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol. Med. Rep. 2016;13:1186–1194. doi: 10.3892/mmr.2015.4685.
    1. Shi Y.Y., Liu T.J., Fu J.H., Xu W., Wu L.L., Hou A.N., Xue X.D. Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol. Med. Rep. 2016;13:1186–1194. doi: 10.3892/mmr.2015.4685.
    1. Kong J., Zhu X., Shi Y., Liu T., Chen Y., Bhan I., Zhao Q., Thadhani R., Chun Li Y. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol. Endocrinol. 2013;27:2116–2125. doi: 10.1210/me.2013-1146.
    1. Zheng S.X., Yang J.X., Hu X., Li M., Wang Q., Dancer R.C.A., Parekh D., Gao-Smith F., Thickett D.R., Jin S.W. Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF-β induced epithelial to mesenchymal transition. Biochem. Pharmacol. 2020;177 doi: 10.1016/j.bcp.2020.113955.
    1. Martinez-Moreno J.M., Herencia C., De Oca A.M., Muñoz-Castañeda J.R., Rodríguez-Ortiz M.E., Diáz-Tocados J.M., Peralbo-Santaella E., Camargo A., Canalejo A., Rodriguez M., Velasco-Gimena F., Almaden Y. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells. FASEB J. 2016;30:1367–1376. doi: 10.1096/fj.15-272872.
    1. Laird E., Rhodes J., Kenny R.A. Vitamin D. And inflammation: potential implications for severity of Covid-19. Ir. Med. J. 2020;113 (Accessed August 13, 2020)
    1. Ilie P.C., Stefanescu S., Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020;32:1195–1198. doi: 10.1007/s40520-020-01570-8.
    1. D’avolio A., Avataneo V., Manca A., Cusato J., De Nicolò A., Lucchini R., Keller F., Cantù M. 25-hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients. 2020;12 doi: 10.3390/nu12051359.
    1. Panagiotou G., Tee S.A., Ihsan Y., Athar W., Marchitelli G., Kelly D., Boot C.S., Stock N., Macfarlane J., Martineau A.R., Burns G., Quinton R. Low serum 25-hydroxyvitamin D (25[OH]D) levels in patients hospitalised with COVID-19 are associated with greater disease severity. Clin. Endocrinol. (Oxf). 2020 doi: 10.1111/cen.14276.
    1. Mata-Granados J.M., Luque de Castro M.D., Quesada Gomez J.M. Inappropriate serum levels of retinol, α-tocopherol, 25 hydroxyvitamin D3 and 24,25 dihydroxyvitamin D3 levels in healthy Spanish adults: simultaneous assessment by HPLC. Clin. Biochem. 2008;41:676–680. doi: 10.1016/j.clinbiochem.2008.02.003.
    1. Mata-Granados J.M., Vargas-Vasserot J., Ferreiro-Vera C., Luque de Castro M.D., Pavón R.G., Quesada Gómez J.M. Evaluation of vitamin D endocrine system (VDES) status and response to treatment of patients in intensive care units (ICUs) using an on-line SPE-LC-MS/MS method. J. Steroid Biochem. Mol. Biol. 2010;121:452–455. doi: 10.1016/j.jsbmb.2010.03.078.
    1. 2020. Gobierno De España, Ministerio De Sanidad, Consumo Y Bienestar Social - Documentos Técnicos Para Profesionales - Coronavirus. (accessed June 22, 2020)
    1. Tratamientos disponibles sujetos a condiciones especiales de acceso para el manejo de la infección respiratoria por SARS-CoV-2 - Agencia Española de Medicamentos y Productos Sanitarios, (n.d.). (accessed June 22, 2020).
    1. Lim W.S., Van Der Eerden M.M., Laing R., Boersma W.G., Karalus N., Town G.I., Lewis S.A., Macfarlane J.T. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax. 2003;58:377–382. doi: 10.1136/thorax.58.5.377.
    1. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) - PubMed, (n.d.). (accessed June 23, 2020).
    1. Mandell L.A., Wunderink R.G., Anzueto A., Bartlett J.G., Campbell G.D., Dean N.C., Dowell S.F., File T.M., Musher D.M., Niederman M.S., Torres A., Whitney C.G. Infectious diseases society of America/American thoracic society consensus guidelines on the management of community-acquired pneumonia in adults. Clin. Infect. Dis. 2007;44:S27–S72. doi: 10.1086/511159.
    1. Viechtbauer W., Smits L., Kotz D., Budé L., Spigt M., Serroyen J., Crutzen R. A simple formula for the calculation of sample size in pilot studies. J. Clin. Epidemiol. 2015;68:1375–1379. doi: 10.1016/j.jclinepi.2015.04.014.
    1. Russo S., Carlucci L., Cipriani C., Ragno A., Piemonte S., Del Fiacco R., Pepe J., Fassino V., Arima S., Romagnoli E., Minisola S. Metabolic changes following 500 μg monthly administration of calcidiol: a study in normal females. Calcif. Tissue Int. 2011;89:252–257. doi: 10.1007/s00223-011-9513-1.
    1. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases, (n.d.). (accessed June 23, 2020).
    1. Schulz K.F., Altman D.G., Moher D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8 doi: 10.1186/1741-7015-8-18.
    1. Geleris J., Sun Y., Platt J., Zucker J., Baldwin M., Hripcsak G., Labella A., Manson D.K., Kubin C., Barr R.G., Sobieszczyk M.E., Schluger N.W. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N. Engl. J. Med. 2020;382:2411–2418. doi: 10.1056/NEJMoa2012410.
    1. Bouillon R., Marcocci C., Carmeliet G., Bikle D., White J.H., Dawson-Hughes B., Lips P., Munns C.F., Lazaretti-Castro M., Giustina A., Bilezikian J. Skeletal and extraskeletal actions of vitamin d: current evidence and outstanding questions. Endocr. Rev. 2019;40:1109–1151. doi: 10.1210/er.2018-00126.
    1. Hansdottir S., Monick M.M., Hinde S.L., Lovan N., Look D.C., Hunninghake G.W. Respiratory epithelial cells convert inactive vitamin d to its active form: potential effects on host defense. J. Immunol. 2008;181:7090–7099. doi: 10.4049/jimmunol.181.10.7090.
    1. Rafique A., Rejnmark L., Heickendorff L., Møller H.J. 25(OH)D 3 and 1.25(OH) 2 D 3 inhibits TNF-α expression in human monocyte derived macrophages. PLoS One. 2019;14 doi: 10.1371/journal.pone.0215383.
    1. Andrukhov O., Andrukhova O., Hulan U., Tang Y., Bantleon H.P., Rausch-Fan X. Both 25-hydroxyvitamin-D3 and 1,25-dihydroxyvitamin- D3 reduces inflammatory response in human periodontal ligament cells. PLoS One. 2014;9:e90301. doi: 10.1371/journal.pone.0090301.
    1. Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A., Labreuche J., Mathieu D., Pattou F., Jourdain M., Caizzo R., Caplan M., Cousin N., Duburcq T., Durand A., El kalioubie A., Favory R., Garcia B., Girardie P., Goutay J., Houard M., Jaillette E., Kostuj N., Ledoux G., Mathieu D., Moreau A.S., Niles C., Nseir S., Onimus T., Parmentier E., Préau S., Robriquet L., Rouze A., Six S., Verkindt H. High prevalence of obesity in severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020;28:1195–1199. doi: 10.1002/oby.22831.
    1. Martineau A.R., Forouhi N.G. Vitamin D for COVID-19: a case to answer? Lancet Diabetes Endocrinol. 2020 doi: 10.1016/S2213-8587(20)30268-0.
    1. Heaney R.P. Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr. Rev. 2014;72:48–54. doi: 10.1111/nure.12090.
    1. Grant W.B., Boucher B.J., Bhattoa H.P., Lahore H. Why vitamin D clinical trials should be based on 25-hydroxyvitamin D concentrations. J. Steroid Biochem. Mol. Biol. 2018;177:266–269. doi: 10.1016/j.jsbmb.2017.08.009.
    1. Bouillon R., Bikle D. Vitamin D metabolism revised: fall of dogmas. J. Bone Miner. Res. 2019;34:1985–1992. doi: 10.1002/jbmr.3884.
    1. Jolliffe D.A., Stefanidis C., Wang Z., Kermani N.Z., Dimitrov V., White J.H., McDonough J.E., Janssens W., Pfeffer P., Griffiths C.J., Bush A., Guo Y., Christenson S., Adcock I.M., Chung K.F., Thummel K.E., Martineau A.R. Vitamin D metabolism is dysregulated in Asthma and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2020 doi: 10.1164/rccm.201909-1867oc.
    1. Quesada-Gomez J.M., Bouillon R. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos. Int. 2018;29:1697–1711. doi: 10.1007/s00198-018-4520-y.
    1. RECOVERY Collaborative Group, Horby P., Lim W.S., Emberson J.R., Mafham M., Bell J.L., Linsell L., Staplin N., Brightling C., Ustianowski A., Elmahi E., Prudon B., Green C., Felton T., Chadwick D., Rege K., Fegan C., Chappell L.C., Faust S.N., Jaki T., Jeffery K., Montgomery A., Rowan K., Juszczak E., Baillie J.K., Haynes R., Landray M.J. Dexamethasone in hospitalized patients with Covid-19 - preliminary report. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2021436.
    1. Corticosteroids (including dexamethasone). NIH website. Updated July 17, 2020. Accessed August, 2020. .

Source: PubMed

3
订阅