Clinical features, pathophysiology, and therapy of poor graft function post-allogeneic stem cell transplantation

Ashvind Prabahran, Rachel Koldej, Lynette Chee, David Ritchie, Ashvind Prabahran, Rachel Koldej, Lynette Chee, David Ritchie

Abstract

Poor graft function (PGF), defined by the presence of multilineage cytopenias in the presence of 100% donor chimerism, is a serious complication of allogeneic stem cell transplant (alloSCT). Inducers or potentiators of alloimmunity such as cytomegalovirus reactivation and graft-versus-host disease are associated with the development of PGF, however, more clinical studies are required to establish further risk factors and describe outcomes of PGF. The pathophysiology of PGF can be conceptualized as dysfunction related to the number or productivity of the stem cell compartment, defects in bone marrow microenvironment components such as mesenchymal stromal cells and endothelial cells, or immunological suppression of post-alloSCT hematopoiesis. Treatment strategies focused on improving stem cell number and function and microenvironment support of hematopoiesis have been attempted with variable success. There has been limited use of immune manipulation as a therapeutic strategy, but emerging therapies hold promise. This review details the current understanding of the causes of PGF and methods of treatment to provide a framework for clinicians managing this complex problem.

© 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1.
Figure 1.
Approach to engraftment syndromes post-alloSCT. A method of classifying engraftment syndromes post-alloSCT based on level of donor chimerism present.
Figure 2.
Figure 2.
Seed, soil, and climate model of PGF. Proposed pathophysiology of PGF based on the interplay of key components of the bone marrow. Seed (HSCs), soil (microenvironment), and climate (T cells and cytokines). T cells target and suppress microenvironment cells and actively suppress HSC function through inflammatory cytokines and loss of microenvironment trophic signals.

References

    1. Mattsson J, Ringdén O, Storb R. Graft failure after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2008;14(1 suppl 1):165-170.
    1. Olsson R, Remberger M, Schaffer M, et al. . Graft failure in the modern era of allogeneic hematopoietic SCT [published correction appears in Bone Marrow Transplant. 2013;48(4):616]. Bone Marrow Transplant. 2013;48(4):537-543.
    1. Lee KH, Lee JH, Choi SJ, et al. . Failure of trilineage blood cell reconstitution after initial neutrophil engraftment in patients undergoing allogeneic hematopoietic cell transplantation - frequency and outcomes. Bone Marrow Transplant. 2004;33(7):729-734.
    1. Carreras E, Dufour C, Mohty M, Kröger N. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies. Cham, Switzerland: Springer Nature; 2019. Available at: . Accessed 1 May 2021.
    1. Larocca A, Piaggio G, Podestà M, et al. . Boost of CD34+-selected peripheral blood cells without further conditioning in patients with poor graft function following allogeneic stem cell transplantation. Haematologica. 2006;91(7):935-940.
    1. Kong Y, Chang YJ, Wang YZ, et al. . Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(10):1465-1473.
    1. Rondón G, Saliba RM, Khouri I, et al. . Long-term follow-up of patients who experienced graft failure postallogeneic progenitor cell transplantation. Results of a single institution analysis. Biol Blood Marrow Transplant. 2008;14(8):859-866.
    1. Pichler H, Fritsch G, König M, et al. . Peripheral blood late mixed chimerism in leucocyte subpopulations following allogeneic stem cell transplantation for childhood malignancies: does it matter? Br J Haematol. 2016;173(6):905-917.
    1. Prabahran A, Koldej R, Chee L, Wong E, Ritchie D. Evaluation of risk factors for and subsequent mortality from poor graft function (PGF) post allogeneic stem cell transplantation. Leuk Lymphoma. 2021;62(6):1482-1489.
    1. Dominietto A, Lamparelli T, Raiola AM, et al. . Transplant-related mortality and long-term graft function are significantly influenced by cell dose in patients undergoing allogeneic marrow transplantation. Blood. 2002;100(12):3930-3934.
    1. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20(8):833-846.
    1. Dominietto A, Raiola AM, van Lint MT, et al. . Factors influencing haematological recovery after allogeneic haemopoietic stem cell transplants: graft-versus-host disease, donor type, cytomegalovirus infections and cell dose. Br J Haematol. 2001;112(1):219-227.
    1. Nakamae H, Storer B, Sandmaier BM, et al. . Cytopenias after day 28 in allogeneic hematopoietic cell transplantation: impact of recipient/donor factors, transplant conditions and myelotoxic drugs. Haematologica. 2011;96(12):1838-1845.
    1. Zhao Y, Gao F, Shi J, et al. . Incidence, risk factors, and outcomes of primary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25(9):1898-1907.
    1. Ruggeri A. Alternative donors: cord blood for adults. Semin Hematol. 2016;53(2):65-73.
    1. Eapen M, Rocha V, Sanz G, et al. ; National Cord Blood Program of the New York Blood Center . Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol. 2010;11(7):653-660.
    1. Ruggeri A, Labopin M, Sormani MP, et al. ; Netcord . Engraftment kinetics and graft failure after single umbilical cord blood transplantation using a myeloablative conditioning regimen. Haematologica. 2014;99(9):1509-1515.
    1. Alotaibi AS, Prem S, Chen S, et al. . Fresh vs. frozen allogeneic peripheral blood stem cell grafts: A successful timely option [published correction appears in Am J Hematol., published online ahead of print 11 June 2021, doi:10.1002/ajh.26267]. Am J Hematol. 2021;96(2):179-187.
    1. Eapen M, Zhang MJ, Tang XY, et al. . Hematopoietic cell transplantation with cryopreserved grafts for severe aplastic anemia. Biol Blood Marrow Transplant. 2020;26(7):e161-e166.
    1. Purtill D, Antonenas V, Chiappini P, et al. . Variable CD34+ recovery of cryopreserved allogeneic HPC products: transplant implications during the COVID-19 pandemic. Blood Adv. 2020;4(17):4147-4150.
    1. Naka K, Muraguchi T, Hoshii T, Hirao A. Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid Redox Signal. 2008;10(11):1883-1894.
    1. Gerber HP, Malik AK, Solar GP, et al. . VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417(6892):954-958.
    1. Zhao M, Perry JM, Marshall H, et al. . Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321-1326.
    1. Cossío I, Lucas D, Hidalgo A. Neutrophils as regulators of the hematopoietic niche. Blood. 2019;133(20):2140-2148.
    1. Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20(5):303-320.
    1. Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010;2(6):640-653.
    1. Shi MM, Kong Y, Song Y, et al. . Atorvastatin enhances endothelial cell function in posttransplant poor graft function. Blood. 2016;128(25):2988-2999.
    1. Méndez-Ferrer S, Michurina TV, Ferraro F, et al. . Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010; 466(7308):829-834.
    1. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches [published correction appears in Nature. 2014;514(7521):262]. Nature. 2013;495(7440):231-235.
    1. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457-462.
    1. Corselli M, Chin CJ, Parekh C, et al. . Perivascular support of human hematopoietic stem/progenitor cells. Blood. 2013;121(15):2891-2901.
    1. Sacchetti B, Funari A, Michienzi S, et al. . Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324-336.
    1. Song Y, Zhao HY, Lyu ZS, et al. . Dysfunctional bone marrow mesenchymal stem cells in patients with poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2018;24(10):1981-1989.
    1. Seeger FH, Haendeler J, Walter DH, et al. . p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation. 2005;111(9):1184-1191.
    1. Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110(8):3056-3063.
    1. Hirata Y, Furuhashi K, Ishii H, et al. . CD150high bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell. 2018;22(3):445-453.e5.
    1. Zhang Y, Dépond M, He L, et al. . CXCR4/CXCL12 axis counteracts hematopoietic stem cell exhaustion through selective protection against oxidative stress. Sci Rep. 2016;6:37827.
    1. Ghobadi A, Fiala MA, Ramsingh G, et al. . Fresh or cryopreserved CD34+-selected mobilized peripheral blood stem and progenitor cells for the treatment of poor graft function after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2017;23(7):1072-1077.
    1. Klyuchnikov E, El-Cheikh J, Sputtek A, et al. . CD34(+)-selected stem cell boost without further conditioning for poor graft function after allogeneic stem cell transplantation in patients with hematological malignancies. Biol Blood Marrow Transplant. 2014;20(3):382-386.
    1. Mainardi C, Ebinger M, Enkel S, et al. . CD34+ selected stem cell boosts can improve poor graft function after paediatric allogeneic stem cell transplantation. Br J Haematol. 2018;180(1):90-99.
    1. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 2011;29(10):1356-1363.
    1. Alchalby H, Yunus DR, Zabelina T, Ayuk F, Kröger N. Incidence and risk factors of poor graft function after allogeneic stem cell transplantation for myelofibrosis. Bone Marrow Transplant. 2016;51(9):1223-1227.
    1. Shono Y, Ueha S, Wang Y, et al. . Bone marrow graft-versus-host disease: early destruction of hematopoietic niche after MHC-mismatched hematopoietic stem cell transplantation. Blood. 2010;115(26):5401-5411.
    1. Chewning JH, Zhang W, Randolph DA, Swindle CS, Schoeb TR, Weaver CT. Allogeneic Th1 cells home to host bone marrow and spleen and mediate IFNγ-dependent aplasia. Biol Blood Marrow Transplant. 2013;19(6):876-887.
    1. Shono Y, Shiratori S, Kosugi-Kanaya M, et al. . Bone marrow graft-versus-host disease: evaluation of its clinical impact on disrupted hematopoiesis after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(4):495-500.
    1. Wang YT, Kong Y, Song Y, et al. . Increased type 1 immune response in the bone marrow immune microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation [published correction appears in Biol Blood Marrow Transplant. 2016;22(12):2285]. Biol Blood Marrow Transplant. 2016;22(8):1376-1382.
    1. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166-6173.
    1. Zhao HY, Lyu ZS, Duan CW, et al. . An unbalanced monocyte macrophage polarization in the bone marrow microenvironment of patients with poor graft function after allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2018;182(5):679-692.
    1. Ritz C, Meng W, Stanley NL, et al. . Postvaccination graft dysfunction/aplastic anemia relapse with massive clonal expansion of autologous CD8+ lymphocytes [published correction appears in Blood Adv. 2020;4(13):2865]. Blood Adv. 2020;4(7):1378-1382.
    1. Maruyama K, Aotsuka N, Kumano Y, et al. . Immune-mediated hematopoietic failure after allogeneic hematopoietic stem cell transplantation: a common cause of late graft failure in patients with complete donor chimerism. Biol Blood Marrow Transplant. 2018;24(1):43-49.
    1. Chen J, Lipovsky K, Ellison FM, Calado RT, Young NS. Bystander destruction of hematopoietic progenitor and stem cells in a mouse model of infusion-induced bone marrow failure. Blood. 2004;104(6):1671-1678.
    1. Delisle JS, Gaboury L, Bélanger MP, Tassé E, Yagita H, Perreault C. Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts. Blood. 2008;112(5):2111-2119.
    1. de Bruin AM, Demirel Ö, Hooibrink B, Brandts CH, Nolte MA. Interferon-γ impairs proliferation of hematopoietic stem cells in mice. Blood. 2013;121(18):3578-3585.
    1. Yang L, Dybedal I, Bryder D, et al. . IFN-gamma negatively modulates self-renewal of repopulating human hemopoietic stem cells. J Immunol. 2005;174(2):752-757.
    1. Alvarado LJ, Huntsman HD, Cheng H, et al. . Eltrombopag maintains human hematopoietic stem and progenitor cells under inflammatory conditions mediated by IFN-γ. Blood. 2019;133(19):2043-2055.
    1. Smith JN, Kanwar VS, MacNamara KC. Hematopoietic stem cell regulation by type I and II interferons in the pathogenesis of acquired aplastic anemia. Front Immunol. 2016;7:330.
    1. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890-896.
    1. Collins T, Korman AJ, Wake CT, et al. . Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA. 1984;81(15):4917-4921.
    1. Dvorak CC, Higham C, Shimano KA. Transplant-associated thrombotic microangiopathy in pediatric hematopoietic cell transplant recipients: a practical approach to diagnosis and management. Front Pediatr. 2019;7:133.
    1. Romieu-Mourez R, François M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol. 2009;182(12):7963-7973.
    1. Knochelmann HM, Dwyer CJ, Bailey SR, et al. . When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15(5):458-469.
    1. Kong Y, Wang YT, Cao XN, et al. . Aberrant T cell responses in the bone marrow microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation. J Transl Med. 2017;15(1):57.
    1. Shi J, Ge M, Lu S, et al. . Intrinsic impairment of CD4(+)CD25(+) regulatory T cells in acquired aplastic anemia. Blood. 2012;120(8):1624-1632.
    1. Jordan MS, Boesteanu A, Reed AJ, et al. . Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001;2(4):301-306.
    1. Holländer GA, Widmer B, Burakoff SJ. Loss of normal thymic repertoire selection and persistence of autoreactive T cells in graft vs host disease. J Immunol. 1994;152(4):1609-1617.
    1. Jiménez M, Martínez C, Ercilla G, et al. . Clinical factors influencing T-cell receptor excision circle (TRECs) counts following allogeneic stem cell transplantation in adults. Transpl Immunol. 2006;16(1):52-59.
    1. Clave E, Busson M, Douay C, et al. . Acute graft-versus-host disease transiently impairs thymic output in young patients after allogeneic hematopoietic stem cell transplantation. Blood. 2009;113(25):6477-6484.
    1. Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression. Nat Rev Nephrol. 2018;14(2):121-137.
    1. van de Berg PJ, Heutinck KM, Raabe R, et al. . Human cytomegalovirus induces systemic immune activation characterized by a type 1 cytokine signature. J Infect Dis. 2010;202(5):690-699.
    1. Sinzger C, Digel M, Jahn G. Cytomegalovirus cell tropism. Curr Top Microbiol Immunol. 2008;325:63-83.
    1. Tamari R, Ramnath S, Kuk D, et al. . Poor graft function in recipients of T cell depleted (TCD) allogeneic hematopoietic stem cell transplants (HSCT) is mostly related to viral infections and anti-viral therapy [abstract]. Blood. 2012;120(21):3147.
    1. Upadhyayula S, Michaels MG. Ganciclovir, foscarnet, and cidofovir: antiviral drugs not just for cytomegalovirus. J Pediatric Infect Dis Soc. 2013;2(3):286-290.
    1. Koldej RM, Ritchie DS. High multiplex analysis of the immune microenvironment in bone marrow trephine samples using GeoMX™ digital spatial profiling. Immuno-Oncology Technology. 2020;5:1-9.
    1. Olnes MJ, Scheinberg P, Calvo KR, et al. . Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J Med. 2012;367(1):11-19.
    1. Kao YR, Chen J, Narayanagari SR, et al. . Thrombopoietin receptor-independent stimulation of hematopoietic stem cells by eltrombopag. Sci Transl Med. 2018;10(458):eaas9563.
    1. Mahat U, Rotz SJ, Hanna R. Use of thrombopoietin receptor agonists in prolonged thrombocytopenia after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2020;26(3):e65-e73.
    1. Bartsch K, Al-Ali H, Reinhardt A, et al. . Mesenchymal stem cells remain host-derived independent of the source of the stem-cell graft and conditioning regimen used. Transplantation. 2009;87(2):217-221.
    1. Allers C, Sierralta WD, Neubauer S, Rivera F, Minguell JJ, Conget PA. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice. Transplantation. 2004;78(4):503-508.
    1. Kong Y, Wang Y, Zhang YY, et al. . Prophylactic oral NAC reduced poor hematopoietic reconstitution by improving endothelial cells after haploidentical transplantation. Blood Adv. 2019;3(8):1303-1317.
    1. Lounder DT, Bin Q, de Min C, Jordan MB. Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv. 2019;3(1):47-50.
    1. Merli P, Caruana I, De Vito R, et al. . Role of interferon-γ in immune-mediated graft failure after allogeneic hematopoietic stem cell transplantation. Haematologica. 2019;104(11):2314-2323.
    1. Choi J, Cooper ML, Staser K, et al. . Baricitinib-induced blockade of interferon gamma receptor and interleukin-6 receptor for the prevention and treatment of graft-versus-host disease. Leukemia. 2018;32(11):2483-2494.
    1. Brunstein CG, Miller JS, Cao Q, et al. . Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061-1070.
    1. Brunstein CG, Miller JS, McKenna DH, et al. . Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood. 2016;127(8):1044-1051.
    1. Martelli MF, Di Ianni M, Ruggeri L, et al. . HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124(4):638-644.
    1. Xiao Y, Song J, Jiang Z, et al. . Risk-factor analysis of poor graft function after allogeneic hematopoietic stem cell transplantation. Int J Med Sci. 2014;11(6):652-657.
    1. Sun YQ, He GL, Chang YJ, et al. . The incidence, risk factors, and outcomes of primary poor graft function after unmanipulated haploidentical stem cell transplantation. Ann Hematol. 2015;94(10):1699-1705.
    1. Reich-Slotky R, Al-Mulla N, Hafez R, et al. . Poor graft function after T cell-depleted allogeneic hematopoietic stem cell transplant. Leuk Lymphoma. 2020;61(12):2894-2899.
    1. Kong Y, Song Y, Hu Y, et al. . Increased reactive oxygen species and exhaustion of quiescent CD34-positive bone marrow cells may contribute to poor graft function after allotransplants. Oncotarget. 2016;7(21):30892-30906.
    1. Bruns I, Lucas D, Pinho S, et al. . Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315-1320.
    1. Nakamura-Ishizu A, Takubo K, Fujioka M, Suda T. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem Biophys Res Commun. 2014;454(2):353-357.
    1. Olson TS, Caselli A, Otsuru S, et al. . Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood. 2013;121(26):5238-5249.
    1. Kong Y, Wang YT, Hu Y, et al. . The bone marrow microenvironment is similarly impaired in allogeneic hematopoietic stem cell transplantation patients with early and late poor graft function. Bone Marrow Transplant. 2016;51(2):249-255.
    1. Schepers K, Pietras EM, Reynaud D, et al. . Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285-299.
    1. Askaa B, Fischer-Nielsen A, Vindeløv L, Haastrup EK, Sengeløv H. Treatment of poor graft function after allogeneic hematopoietic cell transplantation with a booster of CD34-selected cells infused without conditioning. Bone Marrow Transplant. 2014;49(5):720-721.
    1. Stasia A, Ghiso A, Galaverna F, et al. . CD34 selected cells for the treatment of poor graft function after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(9):1440-1443.
    1. Cuadrado MM, Szydlo RM, Watts M, et al. . Predictors of recovery following allogeneic CD34+-selected cell infusion without conditioning to correct poor graft function. Haematologica. 2020;105(11):2639-2646.
    1. Peffault de Latour R, Chevret S, Ruggeri AL, et al. . Romiplostim in patients undergoing hematopoietic stem cell transplantation: results of a phase 1/2 multicenter trial. Blood. 2020;135(3):227-229.
    1. Meuleman N, Tondreau T, Ahmad I, et al. . Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev. 2009;18(9):1247-1252.
    1. Liu X, Wu M, Peng Y, et al. . Improvement in poor graft function after allogeneic hematopoietic stem cell transplantation upon administration of mesenchymal stem cells from third-party donors: a pilot prospective study. Cell Transplant. 2014;23(9):1087-1098.

Source: PubMed

3
订阅