Improved Long-Term Survival of Patients with Recurrent Medulloblastoma Treated with a "MEMMAT-like" Metronomic Antiangiogenic Approach

Irene Slavc, Lisa Mayr, Natalia Stepien, Johannes Gojo, Maria Aliotti Lippolis, Amedeo A Azizi, Monika Chocholous, Alicia Baumgartner, Cora S Hedrich, Stefan Holm, Astrid Sehested, Pierre Leblond, Karin Dieckmann, Christine Haberler, Thomas Czech, Marcel Kool, Andreas Peyrl, Irene Slavc, Lisa Mayr, Natalia Stepien, Johannes Gojo, Maria Aliotti Lippolis, Amedeo A Azizi, Monika Chocholous, Alicia Baumgartner, Cora S Hedrich, Stefan Holm, Astrid Sehested, Pierre Leblond, Karin Dieckmann, Christine Haberler, Thomas Czech, Marcel Kool, Andreas Peyrl

Abstract

Medulloblastoma (MB) recurrence is usually incurable despite intensive therapy including high-dose chemotherapy. An evolving alternative approach to conventional chemotherapy aims at interfering with tumor angiogenesis at different levels. We report on a novel combinatorial metronomic antiangiogenic approach. The study is a retrospective observational study of 29 consecutive patients with first or multiple recurrences prospectively treated according to the MEMMAT strategy ("MEMMAT-like") before the formal protocol (MEMMAT; ClinicalTrials.gov Identifier: NCT01356290) started. The study period was 11/2006 to 06/2016. Treatment consisted of daily oral thalidomide, fenofibrate, celecoxib, and alternating 21-day cycles of low-dose oral etoposide and cyclophosphamide supplemented by IV bevacizumab and intraventricular therapy consisting of alternating etoposide and liposomal cytarabine. Median overall survival (OS) after recurrence for the whole group was 29.5 months, OS was 48.3 ± 9.3% at three years and 34.5 ± 8.8% at five years, and progression-free survival was 42.0 ± 9.5% at three years and 29.4 ± 9% at five years. As of 07/2022, 9/29 patients are alive 86 to 164 months after the recurrence that prompted the "MEMMAT-like" therapy. Treatment was primarily out-patient and generally well-tolerated. Toxicities did occur but were manageable. In conclusion, antiangiogenic therapy according to the MEMMAT strategy increased median OS of patients with recurrent MB and may lead to long-term survival. Adherence to the protocol, including intraventricular therapy, appears important.

Keywords: MEMMAT; antiangiogenic therapy; bevacizumab; intraventricular therapy; low-dose oral therapy; medulloblastoma recurrence; metronomic therapy.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Drugs, dosing, and schedule of MEMMAT-based therapy.
Figure 2
Figure 2
Overall survival (OS) for all 29 patients from time of diagnosis of recurrence that prompted MEMMAT-like therapy. Median OS was 29.5 months (KI 2-57).
Figure 3
Figure 3
Progression-free survival (PFS) for all 29 patients from time of diagnosis of recurrence that prompted MEMMAT-like therapy. Median PFS was 22.1 months (KI 6-39).
Figure 4
Figure 4
Event-free survival (EFS) for all 29 patients from time of diagnosis of recurrence that prompted MEMMAT-like therapy. Median EFS was 21.0 months (KI 7-35).
Figure 5
Figure 5
Overall survival (OS) of MB_G3 versus MB_G4 of 21 patients with recurrent non-WNT/non-SHH medulloblastoma for which molecular group was known.
Figure 6
Figure 6
Event-free survival (EFS) of MB_G3 versus MB_G4 of 21 patients with recurrent non-WNT/ non-SHH medulloblastoma for which molecular group was known.

References

    1. Ostrom Q.T., Price M., Ryan K., Edelson J., Neff C., Cioffi G., Waite K.A., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Pediatric Brain Tumor Foundation Childhood and Adolescent Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro-Oncol. 2022;24:iii1–iii38. doi: 10.1093/neuonc/noac161.
    1. Michalski J., Vezina G., Burger P., Gajjar A., Pollack I., Merchant T., Fitzgerald T., Booth T., Tarbell N., Shieh I., et al. Mb-109preliminary results of cog acns0331: A phase iii trial of involved field radiotherapy (ifrt) and low dose craniospinal irradiation (ld-csi) with chemotherapy in average risk medulloblastoma: A report from the children’s oncology group. Neuro-Oncol. 2016;18:iii122. doi: 10.1093/neuonc/now076.104.
    1. Tarbell N.J., Friedman H., Polkinghorn W.R., Yock T., Zhou T., Chen Z., Burger P., Barnes P., Kun L. High-Risk Medulloblastoma: A Pediatric Oncology Group Randomized Trial of Chemotherapy before or after Radiation Therapy (POG 9031) J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013;31:2936–2941. doi: 10.1200/JCO.2012.43.9984.
    1. Hoff K.v., Hinkes B., Gerber N.U., Deinlein F., Mittler U., Urban C., Benesch M., Warmuth-Metz M., Soerensen N., Zwiener I., et al. Long-Term Outcome and Clinical Prognostic Factors in Children with Medulloblastoma Treated in the Prospective Randomised Multicentre Trial HIT’91. Eur. J. Cancer Oxf. Engl. 1990. 2009;45:1209–1217. doi: 10.1016/j.ejca.2009.01.015.
    1. Johnston D.L., Keene D., Kostova M., Lafay-Cousin L., Fryer C., Scheinemann K., Carret A.-S., Fleming A., Percy V., Afzal S., et al. Survival of Children with Medulloblastoma in Canada Diagnosed between 1990 and 2009 Inclusive. J. Neurooncol. 2015;124:247–253. doi: 10.1007/s11060-015-1831-0.
    1. Northcott P.A., Korshunov A., Witt H., Hielscher T., Eberhart C.G., Mack S., Bouffet E., Clifford S.C., Hawkins C.E., French P., et al. Medulloblastoma Comprises Four Distinct Molecular Variants. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011;29:1408–1414. doi: 10.1200/JCO.2009.27.4324.
    1. Cho Y.-J., Tsherniak A., Tamayo P., Santagata S., Ligon A., Greulich H., Berhoukim R., Amani V., Goumnerova L., Eberhart C.G., et al. Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011;29:1424–1430. doi: 10.1200/JCO.2010.28.5148.
    1. Thompson M.C., Fuller C., Hogg T.L., Dalton J., Finkelstein D., Lau C.C., Chintagumpala M., Adesina A., Ashley D.M., Kellie S.J., et al. Genomics Identifies Medulloblastoma Subgroups That Are Enriched for Specific Genetic Alterations. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006;24:1924–1931. doi: 10.1200/JCO.2005.04.4974.
    1. Kool M., Koster J., Bunt J., Hasselt N.E., Lakeman A., van Sluis P., Troost D., Meeteren N.S., Caron H.N., Cloos J., et al. Integrated Genomics Identifies Five Medulloblastoma Subtypes with Distinct Genetic Profiles, Pathway Signatures and Clinicopathological Features. PLoS ONE. 2008;3:e3088. doi: 10.1371/journal.pone.0003088.
    1. Taylor M.D., Northcott P.A., Korshunov A., Remke M., Cho Y.-J., Clifford S.C., Eberhart C.G., Parsons D.W., Rutkowski S., Gajjar A., et al. Molecular Subgroups of Medulloblastoma: The Current Consensus. Acta Neuropathol. 2012;123:465–472. doi: 10.1007/s00401-011-0922-z.
    1. Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016;131:803–820. doi: 10.1007/s00401-016-1545-1.
    1. Schwalbe E.C., Lindsey J.C., Nakjang S., Crosier S., Smith A.J., Hicks D., Rafiee G., Hill R.M., Iliasova A., Stone T., et al. Novel Molecular Subgroups for Clinical Classification and Outcome Prediction in Childhood Medulloblastoma: A Cohort Study. Lancet Oncol. 2017;18:958–971. doi: 10.1016/S1470-2045(17)30243-7.
    1. Northcott P.A., Buchhalter I., Morrissy A.S., Hovestadt V., Weischenfeldt J., Ehrenberger T., Gröbner S., Segura-Wang M., Zichner T., Rudneva V.A., et al. The Whole-Genome Landscape of Medulloblastoma Subtypes. Nature. 2017;547:311–317. doi: 10.1038/nature22973.
    1. Cavalli F.M.G., Remke M., Rampasek L., Peacock J., Shih D.J.H., Luu B., Garzia L., Torchia J., Nor C., Morrissy A.S., et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2017;31:737–754. doi: 10.1016/j.ccell.2017.05.005.
    1. Robinson G.W., Rudneva V.A., Buchhalter I., Billups C.A., Waszak S.M., Smith K.S., Bowers D.C., Bendel A., Fisher P.G., Partap S., et al. Risk-Adapted Therapy for Young Children with Medulloblastoma (SJYC07): Therapeutic and Molecular Outcomes from a Multicentre, Phase 2 Trial. Lancet Oncol. 2018;19:768–784. doi: 10.1016/S1470-2045(18)30204-3.
    1. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncol. 2021;23:1231–1251. doi: 10.1093/neuonc/noab106.
    1. Ellison D.W., Onilude O.E., Lindsey J.C., Lusher M.E., Weston C.L., Taylor R.E., Pearson A.D., Clifford S.C. United Kingdom Children’s Cancer Study Group Brain Tumour Committee Beta-Catenin Status Predicts a Favorable Outcome in Childhood Medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005;23:7951–7957. doi: 10.1200/JCO.2005.01.5479.
    1. Clifford S.C., Lusher M.E., Lindsey J.C., Langdon J.A., Gilbertson R.J., Straughton D., Ellison D.W. Wnt/Wingless Pathway Activation and Chromosome 6 Loss Characterize a Distinct Molecular Sub-Group of Medulloblastomas Associated with a Favorable Prognosis. Cell Cycle Georget. Tex. 2006;5:2666–2670. doi: 10.4161/cc.5.22.3446.
    1. Gajjar A., Robinson G.W., Smith K.S., Lin T., Merchant T.E., Chintagumpala M., Mahajan A., Su J., Bouffet E., Bartels U., et al. Outcomes by Clinical and Molecular Features in Children With Medulloblastoma Treated With Risk-Adapted Therapy: Results of an International Phase III Trial (SJMB03) J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021;39:822–835. doi: 10.1200/JCO.20.01372.
    1. Ramaswamy V., Remke M., Bouffet E., Bailey S., Clifford S.C., Doz F., Kool M., Dufour C., Vassal G., Milde T., et al. Risk Stratification of Childhood Medulloblastoma in the Molecular Era: The Current Consensus. Acta Neuropathol. 2016;131:821–831. doi: 10.1007/s00401-016-1569-6.
    1. Northcott P.A., Robinson G.W., Kratz C.P., Mabbott D.J., Pomeroy S.L., Clifford S.C., Rutkowski S., Ellison D.W., Malkin D., Taylor M.D., et al. Medulloblastoma. Nat. Rev. Dis. Primer. 2019;5:11. doi: 10.1038/s41572-019-0063-6.
    1. Koschmann C., Bloom K., Upadhyaya S., Geyer J.R., Leary S.E.S. Survival After Relapse of Medulloblastoma. J. Pediatr. Hematol. Oncol. 2016;38:269–273. doi: 10.1097/MPH.0000000000000547.
    1. Sabel M., Fleischhack G., Tippelt S., Gustafsson G., Doz F., Kortmann R., Massimino M., Navajas A., von Hoff K., Rutkowski S., et al. Relapse Patterns and Outcome after Relapse in Standard Risk Medulloblastoma: A Report from the HIT-SIOP-PNET4 Study. J. Neurooncol. 2016;129:515–524. doi: 10.1007/s11060-016-2202-1.
    1. Johnston D.L., Keene D., Strother D., Taneva M., Lafay-Cousin L., Fryer C., Scheinemann K., Carret A.-S., Fleming A., Afzal S., et al. Survival Following Tumor Recurrence in Children With Medulloblastoma. J. Pediatr. Hematol. Oncol. 2018;40:e159–e163. doi: 10.1097/MPH.0000000000001095.
    1. Gajjar A., Pizer B. Role of High-Dose Chemotherapy for Recurrent Medulloblastoma and Other CNS Primitive Neuroectodermal Tumors. Pediatr. Blood Cancer. 2010;54:649–651. doi: 10.1002/pbc.22378.
    1. Pizer B., Donachie P.H.J., Robinson K., Taylor R.E., Michalski A., Punt J., Ellison D.W., Picton S. Treatment of Recurrent Central Nervous System Primitive Neuroectodermal Tumours in Children and Adolescents: Results of a Children’s Cancer and Leukaemia Group Study. Eur. J. Cancer Oxf. Engl. 1990. 2011;47:1389–1397. doi: 10.1016/j.ejca.2011.03.004.
    1. Bautista F., Fioravantti V., de Rojas T., Carceller F., Madero L., Lassaletta A., Moreno L. Medulloblastoma in Children and Adolescents: A Systematic Review of Contemporary Phase I and II Clinical Trials and Biology Update. Cancer Med. 2017;6:2606–2624. doi: 10.1002/cam4.1171.
    1. Kieran M.W., Chisholm J., Casanova M., Brandes A.A., Aerts I., Bouffet E., Bailey S., Leary S., MacDonald T.J., Mechinaud F., et al. Phase I Study of Oral Sonidegib (LDE225) in Pediatric Brain and Solid Tumors and a Phase II Study in Children and Adults with Relapsed Medulloblastoma. Neuro-Oncol. 2017;19:1542–1552. doi: 10.1093/neuonc/nox109.
    1. Li Y., Song Q., Day B.W. Phase I and Phase II Sonidegib and Vismodegib Clinical Trials for the Treatment of Paediatric and Adult MB Patients: A Systemic Review and Meta-Analysis. Acta Neuropathol. Commun. 2019;7:123. doi: 10.1186/s40478-019-0773-8.
    1. Frappaz D., Barritault M., Montané L., Laigle-Donadey F., Chinot O., Le Rhun E., Bonneville-Levard A., Hottinger A.F., Meyronnet D., Bidaux A.-S., et al. MEVITEM-a Phase I/II Trial of Vismodegib + Temozolomide vs Temozolomide in Patients with Recurrent/Refractory Medulloblastoma with Sonic Hedgehog Pathway Activation. Neuro-Oncol. 2021;23:1949–1960. doi: 10.1093/neuonc/noab087.
    1. Folkman J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971;285:1182–1186. doi: 10.1056/NEJM197111182852108.
    1. Kerbel R.S., Kamen B.A. The Anti-Angiogenic Basis of Metronomic Chemotherapy. Nat. Rev. Cancer. 2004;4:423–436. doi: 10.1038/nrc1369.
    1. Pasquier E., Kavallaris M., André N. Metronomic Chemotherapy: New Rationale for New Directions. Nat. Rev. Clin. Oncol. 2010;7:455–465. doi: 10.1038/nrclinonc.2010.82.
    1. Browder T., Butterfield C.E., Kräling B.M., Shi B., Marshall B., O’Reilly M.S., Folkman J. Antiangiogenic Scheduling of Chemotherapy Improves Efficacy against Experimental Drug-Resistant Cancer. Cancer Res. 2000;60:1878–1886.
    1. Klement G., Baruchel S., Rak J., Man S., Clark K., Hicklin D.J., Bohlen P., Kerbel R.S. Continuous Low-Dose Therapy with Vinblastine and VEGF Receptor-2 Antibody Induces Sustained Tumor Regression without Overt Toxicity. J. Clin. Invest. 2000;105:R15–R24. doi: 10.1172/JCI8829.
    1. Hanahan D., Bergers G., Bergsland E. Less Is More, Regularly: Metronomic Dosing of Cytotoxic Drugs Can Target Tumor Angiogenesis in Mice. J. Clin. Invest. 2000;105:1045–1047. doi: 10.1172/JCI9872.
    1. Berthold F., Hömberg M., Proleskovskaya I., Mazanek P., Belogurova M., Ernst A., Sterba J. Metronomic Therapy Has Low Toxicity and Is as Effective as Current Standard Treatment for Recurrent High-Risk Neuroblastoma. Pediatr. Hematol. Oncol. 2017;34:308–319. doi: 10.1080/08880018.2017.1373314.
    1. El Kababri M., Benmiloud S., Cherkaoui S., El Houdzi J., Maani K., Ansari N., Khoubila N., Kili A., El Khorassani M., Madani A., et al. Metro-SMHOP 01: Metronomics Combination with Cyclophosphamide-Etoposide and Valproic Acid for Refractory and Relapsing Pediatric Malignancies. Pediatr. Blood Cancer. 2020;67:e28508. doi: 10.1002/pbc.28508.
    1. Kerbel R.S. Reappraising Antiangiogenic Therapy for Breast Cancer. Breast Edinb. Scotl. 2011;20((Suppl. 3)):S56–S60. doi: 10.1016/S0960-9776(11)70295-8.
    1. Kieran M.W., Turner C.D., Rubin J.B., Chi S.N., Zimmerman M.A., Chordas C., Klement G., Laforme A., Gordon A., Thomas A., et al. A Feasibility Trial of Antiangiogenic (Metronomic) Chemotherapy in Pediatric Patients with Recurrent or Progressive Cancer. J. Pediatr. Hematol. Oncol. 2005;27:573–581. doi: 10.1097/01.mph.0000183863.10792.d4.
    1. Panigrahy D., Kaipainen A., Butterfield C.E., Chaponis D.M., Laforme A.M., Folkman J., Kieran M.W. Inhibition of Tumor Angiogenesis by Oral Etoposide. Exp. Ther. Med. 2010;1:739–746. doi: 10.3892/etm.2010.127.
    1. Robison N.J., Campigotto F., Chi S.N., Manley P.E., Turner C.D., Zimmerman M.A., Chordas C.A., Werger A.M., Allen J.C., Goldman S., et al. A Phase II Trial of a Multi-Agent Oral Antiangiogenic (Metronomic) Regimen in Children with Recurrent or Progressive Cancer. Pediatr. Blood Cancer. 2014;61:636–642. doi: 10.1002/pbc.24794.
    1. Peyrl A., Chocholous M., Kieran M.W., Azizi A.A., Prucker C., Czech T., Dieckmann K., Schmook M.-T., Haberler C., Leiss U., et al. Antiangiogenic Metronomic Therapy for Children with Recurrent Embryonal Brain Tumors. Pediatr. Blood Cancer. 2012;59:511–517. doi: 10.1002/pbc.24006.
    1. Lannering B., Rutkowski S., Doz F., Pizer B., Gustafsson G., Navajas A., Massimino M., Reddingius R., Benesch M., Carrie C., et al. Hyperfractionated versus Conventional Radiotherapy Followed by Chemotherapy in Standard-Risk Medulloblastoma: Results from the Randomized Multicenter HIT-SIOP PNET 4 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012;30:3187–3193. doi: 10.1200/JCO.2011.39.8719.
    1. Dietzsch S., Placzek F., Pietschmann K., von Bueren A.O., Matuschek C., Glück A., Guckenberger M., Budach V., Welzel J., Pöttgen C., et al. Evaluation of Prognostic Factors and Role of Participation in a Randomized Trial or a Prospective Registry in Pediatric and Adolescent Nonmetastatic Medulloblastoma—A Report From the HIT 2000 Trial. Adv. Radiat. Oncol. 2020;5:1158–1169. doi: 10.1016/j.adro.2020.09.018.
    1. Kortmann R.D., Kühl J., Timmermann B., Mittler U., Urban C., Budach V., Richter E., Willich N., Flentje M., Berthold F., et al. Postoperative Neoadjuvant Chemotherapy before Radiotherapy as Compared to Immediate Radiotherapy Followed by Maintenance Chemotherapy in the Treatment of Medulloblastoma in Childhood: Results of the German Prospective Randomized Trial HIT ’91. Int. J. Radiat. Oncol. Biol. Phys. 2000;46:269–279. doi: 10.1016/S0360-3016(99)00369-7.
    1. Dhall G., O’Neil S.H., Ji L., Haley K., Whitaker A.M., Nelson M.D., Gilles F., Gardner S.L., Allen J.C., Cornelius A.S., et al. Excellent Outcome of Young Children with Nodular Desmoplastic Medulloblastoma Treated on “Head Start” III: A Multi-Institutional, Prospective Clinical Trial. Neuro-Oncol. 2020;22:1862–1872. doi: 10.1093/neuonc/noaa102.
    1. Packer R.J., Gajjar A., Vezina G., Rorke-Adams L., Burger P.C., Robertson P.L., Bayer L., LaFond D., Donahue B.R., Marymont M.H., et al. Phase III Study of Craniospinal Radiation Therapy Followed by Adjuvant Chemotherapy for Newly Diagnosed Average-Risk Medulloblastoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006;24:4202–4208. doi: 10.1200/JCO.2006.06.4980.
    1. Hovestadt V., Remke M., Kool M., Pietsch T., Northcott P.A., Fischer R., Cavalli F.M.G., Ramaswamy V., Zapatka M., Reifenberger G., et al. Robust Molecular Subgrouping and Copy-Number Profiling of Medulloblastoma from Small Amounts of Archival Tumour Material Using High-Density DNA Methylation Arrays. Acta Neuropathol. 2013;125:913–916. doi: 10.1007/s00401-013-1126-5.
    1. Capper D., Jones D.T.W., Sill M., Hovestadt V., Schrimpf D., Sturm D., Koelsche C., Sahm F., Chavez L., Reuss D.E., et al. DNA Methylation-Based Classification of Central Nervous System Tumours. Nature. 2018;555:469–474. doi: 10.1038/nature26000.
    1. Fleischhack G., Reif S., Hasan C., Jaehde U., Hettmer S., Bode U. Feasibility of Intraventricular Administration of Etoposide in Patients with Metastatic Brain Tumours. Br. J. Cancer. 2001;84:1453–1459. doi: 10.1054/bjoc.2001.1841.
    1. Slavc I., Schuller E., Falger J., Günes M., Pillwein K., Czech T., Dietrich W., Rössler K., Dieckmann K., Prayer D., et al. Feasibility of Long-Term Intraventricular Therapy with Mafosfamide (n = 26) and Etoposide (n = 11): Experience in 26 Children with Disseminated Malignant Brain Tumors. J. Neurooncol. 2003;64:239–247. doi: 10.1023/A:1025633704071.
    1. Pajtler K.W., Tippelt S., Siegler N., Reichling S., Zimmermann M., Mikasch R., Bode U., Gnekow A., Pietsch T., Benesch M., et al. Intraventricular Etoposide Safety and Toxicity Profile in Children and Young Adults with Refractory or Recurrent Malignant Brain Tumors. J. Neurooncol. 2016;128:463–471. doi: 10.1007/s11060-016-2133-x.
    1. Peyrl A., Sauermann R., Traunmueller F., Azizi A.A., Gruber-Olipitz M., Gupper A., Slavc I. Pharmacokinetics and Safety of Intrathecal Liposomal Cytarabine in Children Aged <3 Years. Clin. Pharmacokinet. 2009;48:265–271. doi: 10.2165/00003088-200948040-00004.
    1. Peyrl A., Sauermann R., Chocholous M., Azizi A.A., Jäger W., Höferl M., Slavc I. Pharmacokinetics and Toxicity of Intrathecal Liposomal Cytarabine in Children and Adolescents Following Age-Adapted Dosing. Clin. Pharmacokinet. 2014;53:165–173. doi: 10.1007/s40262-013-0106-1.
    1. Warren K.E., Vezina G., Poussaint T.Y., Warmuth-Metz M., Chamberlain M.C., Packer R.J., Brandes A.A., Reiss M., Goldman S., Fisher M.J., et al. Response Assessment in Medulloblastoma and Leptomeningeal Seeding Tumors: Recommendations from the Response Assessment in Pediatric Neuro-Oncology Committee. Neuro-Oncol. 2018;20:13–23. doi: 10.1093/neuonc/nox087.
    1. Czech T., Reinprecht A., Dietrich W., Hainfellner J.A., Slavc I. Reversible Occlusion Shunt for Intraventricular Chemotherapy in Shunt-Dependent Brain Tumor Patients. Pediatr. Hematol. Oncol. 1997;14:375–380. doi: 10.3109/08880019709041597.
    1. Grill J., Geoerger B., Gesner L., Perek D., Leblond P., Cañete A., Aerts I., Madero L., de Toledo Codina J.S., Verlooy J., et al. Phase II Study of Irinotecan in Combination with Temozolomide (TEMIRI) in Children with Recurrent or Refractory Medulloblastoma: A Joint ITCC and SIOPE Brain Tumor Study. Neuro-Oncol. 2013;15:1236–1243. doi: 10.1093/neuonc/not097.
    1. Masferrer J.L., Leahy K.M., Koki A.T., Zweifel B.S., Settle S.L., Woerner B.M., Edwards D.A., Flickinger A.G., Moore R.J., Seibert K. Antiangiogenic and Antitumor Activities of Cyclooxygenase-2 Inhibitors. Cancer Res. 2000;60:1306–1311.
    1. Shaked Y., Emmenegger U., Man S., Cervi D., Bertolini F., Ben-David Y., Kerbel R.S. Optimal Biologic Dose of Metronomic Chemotherapy Regimens Is Associated with Maximum Antiangiogenic Activity. Blood. 2005;106:3058–3061. doi: 10.1182/blood-2005-04-1422.
    1. Bocci G., Nicolaou K.C., Kerbel R.S. Protracted Low-Dose Effects on Human Endothelial Cell Proliferation and Survival in Vitro Reveal a Selective Antiangiogenic Window for Various Chemotherapeutic Drugs. Cancer Res. 2002;62:6938–6943.
    1. Panigrahy D., Kaipainen A., Huang S., Butterfield C.E., Barnés C.M., Fannon M., Laforme A.M., Chaponis D.M., Folkman J., Kieran M.W. PPARalpha Agonist Fenofibrate Suppresses Tumor Growth through Direct and Indirect Angiogenesis Inhibition. Proc. Natl. Acad. Sci. USA. 2008;105:985–990. doi: 10.1073/pnas.0711281105.
    1. Piha-Paul S.A., Shin S.J., Vats T., Guha-Thakurta N., Aaron J., Rytting M., Kleinerman E., Kurzrock R. Pediatric Patients with Refractory Central Nervous System Tumors: Experiences of a Clinical Trial Combining Bevacizumab and Temsirolimus. Anticancer. Res. 2014;34:1939–1945.
    1. Bonney P.A., Santucci J.A., Maurer A.J., Sughrue M.E., McNall-Knapp R.Y., Battiste J.D. Dramatic Response to Temozolomide, Irinotecan, and Bevacizumab for Recurrent Medulloblastoma with Widespread Osseous Metastases. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2016;26:161–163. doi: 10.1016/j.jocn.2015.10.022.
    1. Schiavetti A., Varrasso G., Mollace M.G., Dominici C., Ferrara E., Papoff P., Di Biasi C. Bevacizumab-Containing Regimen in Relapsed/Progressed Brain Tumors: A Single-Institution Experience. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 2019;35:1007–1012. doi: 10.1007/s00381-019-04117-z.
    1. Levy A.S., Krailo M., Chi S., Villaluna D., Springer L., Williams-Hughes C., Fouladi M., Gajjar A. Temozolomide with Irinotecan versus Temozolomide, Irinotecan plus Bevacizumab for Recurrent Medulloblastoma of Childhood: Report of a COG Randomized Phase II Screening Trial. Pediatr. Blood Cancer. 2021;68:e29031. doi: 10.1002/pbc.29031.
    1. Fleischhack G., Jaehde U., Bode U. Pharmacokinetics Following Intraventricular Administration of Chemotherapy in Patients with Neoplastic Meningitis. Clin. Pharmacokinet. 2005;44:1–31. doi: 10.2165/00003088-200544010-00001.
    1. Rutkowski S., Bode U., Deinlein F., Ottensmeier H., Warmuth-Metz M., Soerensen N., Graf N., Emser A., Pietsch T., Wolff J.E.A., et al. Treatment of Early Childhood Medulloblastoma by Postoperative Chemotherapy Alone. N. Engl. J. Med. 2005;352:978–986. doi: 10.1056/NEJMoa042176.
    1. Du S., Yang S., Zhao X., Xiao J., Ren S., Li S., Zhang J., Wang Y., Gong X., Li M., et al. Clinical Characteristics and Outcome of Children With Relapsed Medulloblastoma: A Retrospective Study at a Single Center in China. J. Pediatr. Hematol. Oncol. 2018;40:598–604. doi: 10.1097/MPH.0000000000001241.
    1. Wasserstrom W.R., Glass J.P., Posner J.B. Diagnosis and Treatment of Leptomeningeal Metastases from Solid Tumors: Experience with 90 Patients. Cancer. 1982;49:759–772. doi: 10.1002/1097-0142(19820215)49:4<759::AID-CNCR2820490427>;2-7.
    1. Matsumoto K., Takahashi S., Sato A., Imaizumi M., Higano S., Sakamoto K., Asakawa H., Tada K. Leukoencephalopathy in Childhood Hematopoietic Neoplasm Caused by Moderate-Dose Methotrexate and Prophylactic Cranial Radiotherapy--an MR Analysis. Int. J. Radiat. Oncol. Biol. Phys. 1995;32:913–918. doi: 10.1016/0360-3016(95)00565-G.
    1. Korshunov A., Sahm F., Zheludkova O., Golanov A., Stichel D., Schrimpf D., Ryzhova M., Potapov A., Habel A., Meyer J., et al. DNA Methylation Profiling Is a Method of Choice for Molecular Verification of Pediatric WNT-Activated Medulloblastomas. Neuro-Oncol. 2019;21:214–221. doi: 10.1093/neuonc/noy155.
    1. Bakst R.L., Dunkel I.J., Gilheeney S., Khakoo Y., Becher O., Souweidane M.M., Wolden S.L. Reirradiation for Recurrent Medulloblastoma. Cancer. 2011;117:4977–4982. doi: 10.1002/cncr.26148.
    1. Wetmore C., Herington D., Lin T., Onar-Thomas A., Gajjar A., Merchant T.E. Reirradiation of Recurrent Medulloblastoma: Does Clinical Benefit Outweigh Risk for Toxicity? Cancer. 2014;120:3731–3737. doi: 10.1002/cncr.28907.
    1. Gupta T., Maitre M., Sastri G.J., Krishnatry R., Shirsat N., Epari S., Sahay A., Chinnaswamy G., Patil V., Shetty P., et al. Outcomes of Salvage Re-Irradiation in Recurrent Medulloblastoma Correlate with Age at Initial Diagnosis, Primary Risk-Stratification, and Molecular Subgrouping. J. Neurooncol. 2019;144:283–291. doi: 10.1007/s11060-019-03225-9.
    1. Tsang D.S., Sarhan N., Ramaswamy V., Nobre L., Yee R., Taylor M.D., Hawkins C., Bartels U., Huang A., Tabori U., et al. Re-Irradiation for Children with Recurrent Medulloblastoma in Toronto, Canada: A 20-Year Experience. J. Neurooncol. 2019;145:107–114. doi: 10.1007/s11060-019-03272-2.
    1. Kumar R., Smith K.S., Deng M., Terhune C., Robinson G.W., Orr B.A., Liu A.P.Y., Lin T., Billups C.A., Chintagumpala M., et al. Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021;39:807–821. doi: 10.1200/JCO.20.01359.
    1. Dunkel I.J., Gardner S.L., Garvin J.H., Goldman S., Shi W., Finlay J.L. High-Dose Carboplatin, Thiotepa, and Etoposide with Autologous Stem Cell Rescue for Patients with Previously Irradiated Recurrent Medulloblastoma. Neuro-Oncol. 2010;12:297–303. doi: 10.1093/neuonc/nop031.
    1. Wachsberger P., Burd R., Dicker A.P. Tumor Response to Ionizing Radiation Combined with Antiangiogenesis or Vascular Targeting Agents: Exploring Mechanisms of Interaction. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2003;9:1957–1971.
    1. Timke C., Zieher H., Roth A., Hauser K., Lipson K.E., Weber K.J., Debus J., Abdollahi A., Huber P.E. Combination of Vascular Endothelial Growth Factor Receptor/Platelet-Derived Growth Factor Receptor Inhibition Markedly Improves Radiation Tumor Therapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008;14:2210–2219. doi: 10.1158/1078-0432.CCR-07-1893.

Source: PubMed

3
订阅