Central wave reflection is associated with peripheral arterial resistance in addition to arterial stiffness in subjects without antihypertensive medication

Matias Wilenius, Antti J Tikkakoski, Anna M Tahvanainen, Antti Haring, Jenni Koskela, Heini Huhtala, Mika Kähönen, Tiit Kööbi, Jukka T Mustonen, Ilkka H Pörsti, Matias Wilenius, Antti J Tikkakoski, Anna M Tahvanainen, Antti Haring, Jenni Koskela, Heini Huhtala, Mika Kähönen, Tiit Kööbi, Jukka T Mustonen, Ilkka H Pörsti

Abstract

Background: Augmentation index, a marker of central wave reflection, is influenced by age, sex, height, blood pressure, heart rate, and arterial stiffness. However, the detailed haemodynamic determinants of augmentation index, and their relations, remain uncertain. We examined the association of augmentation index with vascular resistance and other haemodynamic and non-haemodynamic factors.

Methods: Background information, laboratory values, and haemodynamics of 488 subjects (239 men, 249 women) without antihypertensive medication were obtained. Indices of central wave reflection, systemic vascular resistance, cardiac function, and pulse wave velocity were measured using continuous radial pulse wave analysis and whole-body impedance cardiography.

Results: In a regression model including only haemodynamic variables, augmentation index in males and female subjects, respectively, was associated with systemic vascular resistance (β = 0.425, β = 0.336), pulse wave velocity (β = 0.409, β = 0.400) (P < 0.001 for all), stroke volume (β = 0.256, β = 0.278) (P = 0.001 for both) and heart rate (β = -0.150, β = -0.156) (P = 0.049 and P = 0.036). When age, height, weight, smoking habits, and laboratory values were included in the regression model, the most significant explanatory variables for augmentation index in males and females, respectively, were age (β = 0.577, β = 0.557) and systemic vascular resistance (β = 0.437, β = 0.295) (P < 0.001 for all). In the final regression model, pulse wave velocity was not a significant explanatory variable for augmentation index, probably due to the high correlation of this variable with age (Spearman's correlation ≥0.617).

Conclusion: Augmentation index is strongly associated with systemic vascular resistance in addition to arterial stiffness.

Trial registration: ClinicalTrials.gov, NCT01742702 .

Keywords: Arterial stiffness; Augmentation index; Central wave reflection; Systemic vascular resistance.

Figures

Fig. 1
Fig. 1
Associations between augmentation index and its known determinants. Scatter plots show associations between augmentation index and age (a, b), height (c, d), and heart rate (e, f) in male and female subjects, the lines depict mean and 95 % confidence intervals of mean
Fig. 2
Fig. 2
Associations between augmentation index and haemodynamic variables, and association between pulse wave velocity and age. Scatter plots show associations between augmentation index and systemic vascular resistance index (a, b), the common logarithm of pulse wave velocity (c, d), and association between pulse wave velocity and age (e, f) in male and female subjects, the lines depict mean and 95 % confidence intervals of mean
Fig. 3
Fig. 3
Associations between augmentation index and weight (a, b) and stroke volume index (c, d). Scatter plots in male and female subjects, the lines depict mean and 95 % confidence intervals of mean
Fig. 4
Fig. 4
Comparison of two methods in the evaluation of large arterial stiffness. Correlation between pulse wave velocity measured using impedance cardiography and applanation tonometry, the lines depict mean and 95 % confidence intervals of mean (a); and differences between the two methods plotted against the average value of the methods with limits of agreement (±2SD) shown (b)

References

    1. Nichols WW, O’Rourke MF. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. London: Arnold; 1998.
    1. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–605. doi: 10.1093/eurheartj/ehl254.
    1. Chen CH, Ting CT, Nussbacher A, Nevo E, Kass DA, Pak P, Wang SP, Chang MS, Yin FC. Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension. 1996;27(2):168–75. doi: 10.1161/01.HYP.27.2.168.
    1. Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, Kass DA. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95(7):1827–36. doi: 10.1161/01.CIR.95.7.1827.
    1. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31(15):1865–71. doi: 10.1093/eurheartj/ehq024.
    1. Chirinos JA, Kips JG, Jacobs DR, Jr, Brumback L, Duprez DA, Kronmal R, Bluemke DA, Townsend RR, Vermeersch S, Segers P. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis) J Am Coll Cardiol. 2012;60(21):2170–7. doi: 10.1016/j.jacc.2012.07.054.
    1. Wang KL, Cheng HM, Sung SH, Chuang SY, Li CH, Spurgeon HA, Ting CT, Najjar SS, Lakatta EG, Yin FC, et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based study. Hypertension. 2010;55(3):799–805. doi: 10.1161/HYPERTENSIONAHA.109.139964.
    1. Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Vita JA, Levy D, Benjamin EJ. Arterial stiffness and cardiovascular events: the Framingham Heart Study. Circulation. 2010;121(4):505–11. doi: 10.1161/CIRCULATIONAHA.109.886655.
    1. Hayward CS, Kelly RP. Gender-related differences in the central arterial pressure waveform. J Am Coll Cardiol. 1997;30(7):1863–71. doi: 10.1016/S0735-1097(97)00378-1.
    1. London GM, Guerin AP, Pannier B, Marchais SJ, Stimpel M. Influence of sex on arterial hemodynamics and blood pressure. Role of body height. Hypertension. 1995;26(3):514–9. doi: 10.1161/01.HYP.26.3.514.
    1. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT) J Am Coll Cardiol. 2005;46(9):1753–60. doi: 10.1016/j.jacc.2005.07.037.
    1. Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol. 2000;525(Pt 1):263–70. doi: 10.1111/j.1469-7793.2000.t01-1-00263.x.
    1. Angel K, Provan SA, Hammer HB, Mowinckel P, Kvien TK, Atar D. Changes in arterial stiffness during continued infliximab treatment in patients with inflammatory arthropathies. Fundam Clin Pharmacol. 2011;25(4):511–7. doi: 10.1111/j.1472-8206.2010.00872.x.
    1. Cherney DZ, Scholey JW, Jiang S, Har R, Lai V, Sochett EB, Reich HN. The effect of direct renin inhibition alone and in combination with ACE inhibition on endothelial function, arterial stiffness, and renal function in type 1 diabetes. Diabetes Care. 2012;35(11):2324–30. doi: 10.2337/dc12-0773.
    1. Kaur M, Lal C, Bhowmik D, Jaryal AK, Deepak KK, Agarwal SK. Reduction in augmentation index after successful renal transplantation. Clin Exp Nephrol. 2013;17(1):134–9. doi: 10.1007/s10157-012-0653-z.
    1. Patange AR, Valentini RP, Du W, Pettersen MD. Vitamin D deficiency and arterial wall stiffness in children with chronic kidney disease. Pediatr Cardiol. 2012;33(1):122–8. doi: 10.1007/s00246-011-0101-y.
    1. Rogowicz-Frontczak A, Araszkiewicz A, Pilacinski S, Zozulinska-Ziolkiewicz D, Wykretowicz A, Wierusz-Wysocka B. Carotid intima-media thickness and arterial stiffness in type 1 diabetic patients with and without microangiopathy. Arch Med Sci. 2012;8(3):484–90. doi: 10.5114/aoms.2012.29526.
    1. Vyssoulis G, Karpanou E, Kyvelou SM, Vlachopoulos C, Tzamou V, Stefanadis C. Prostate-specific antigen levels are associated with arterial stiffness in essential hypertensive patients. J Sex Med. 2012;9(12):3205–10. doi: 10.1111/j.1743-6109.2010.01979.x.
    1. Kalaitzidis RG, Karasavvidou DP, Tatsioni A, Pappas K, Katatsis G, Liontos A, Elisaf MS. Albuminuria as a marker of arterial stiffness in chronic kidney disease patients. World J Nephrol. 2015;4(3):406–14. doi: 10.5527/wjn.v4.i3.406.
    1. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, Heffernan KS, Lakatta EG, McEniery CM, Mitchell GF, et al. Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement From the American Heart Association. Hypertension. 2015;66(3):698–722. doi: 10.1161/HYP.0000000000000033.
    1. Tahvanainen A, Koskela J, Tikkakoski A, Lahtela J, Leskinen M, Kähönen M, Nieminen T, Kööbi T, Mustonen J, Pörsti I. Analysis of cardiovascular responses to passive head-up tilt using continuous pulse wave analysis and impedance cardiography. Scand J Clin Lab Invest. 2009;69(1):128–37. doi: 10.1080/00365510802439098.
    1. Kelly RP, Millasseau SC, Ritter JM, Chowienczyk PJ. Vasoactive drugs influence aortic augmentation index independently of pulse-wave velocity in healthy men. Hypertension. 2001;37(6):1429–33. doi: 10.1161/01.HYP.37.6.1429.
    1. Sharman JE, Davies JE, Jenkins C, Marwick TH. Augmentation index, left ventricular contractility, and wave reflection. Hypertension. 2009;54(5):1099–105. doi: 10.1161/HYPERTENSIONAHA.109.133066.
    1. Tahvanainen A, Koskela J, Leskinen M, Ilveskoski E, Nordhausen K, Kähönen M, Kööbi T, Mustonen J, Pörsti I. Reduced systemic vascular resistance in healthy volunteers with presyncopal symptoms during a nitrate-stimulated tilt-table test. Br J Clin Pharmacol. 2011;71(1):41–51. doi: 10.1111/j.1365-2125.2010.03794.x.
    1. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) J Hypertens. 2013;31(7):1281–357. doi: 10.1097/.
    1. Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med. 2004;141(12):929–37. doi: 10.7326/0003-4819-141-12-200412210-00009.
    1. Kööbi T, Kähönen M, Iivainen T, Turjanmaa V. Simultaneous non-invasive assessment of arterial stiffness and haemodynamics - a validation study. Clin Physiol Funct Imaging. 2003;23(1):31–6. doi: 10.1046/j.1475-097X.2003.00465.x.
    1. Kööbi T, Kaukinen S, Turjanmaa VM, Uusitalo AJ. Whole-body impedance cardiography in the measurement of cardiac output. Crit Care Med. 1997;25(5):779–85. doi: 10.1097/00003246-199705000-00012.
    1. Koskela JK, Tahvanainen A, Haring A, Tikkakoski AJ, Ilveskoski E, Viitala J, Leskinen MH, Lehtimaki T, Kahonen MA, Koobi T, et al. Association of resting heart rate with cardiovascular function: a cross-sectional study in 522 Finnish subjects. BMC Cardiovasc Disord. 2013;13:102. doi: 10.1186/1471-2261-13-102.
    1. Koivistoinen T, Koobi T, Jula A, Hutri-Kahonen N, Raitakari OT, Majahalme S, Kukkonen-Harjula K, Lehtimaki T, Reunanen A, Viikari J, et al. Pulse wave velocity reference values in healthy adults aged 26–75 years. Clin Physiol Funct Imaging. 2007;27(3):191–6. doi: 10.1111/j.1475-097X.2007.00734.x.
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10. doi: 10.1016/S0140-6736(86)90837-8.
    1. Muiesan ML, Salvetti M, Rizzoni D, Paini A, Agabiti-Rosei C, Aggiusti C, Bertacchini F, Stassaldi D, Gavazzi A, Porteri E, et al. Pulsatile hemodynamics and microcirculation: evidence for a close relationship in hypertensive patients. Hypertension. 2013;61(1):130–6. doi: 10.1161/HYPERTENSIONAHA.111.00006.
    1. Agabiti-Rosei E, Heagerty AM, Rizzoni D. Effects of antihypertensive treatment on small artery remodelling. J Hypertens. 2009;27(6):1107–14. doi: 10.1097/HJH.0b013e328329272e.
    1. Munir S, Jiang B, Guilcher A, Brett S, Redwood S, Marber M, Chowienczyk P. Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. Am J Physiol Heart Circ Physiol. 2008;294(4):H1645–50. doi: 10.1152/ajpheart.01171.2007.
    1. Heffernan KS, Patvardhan EA, Hession M, Ruan J, Karas RH, Kuvin JT. Elevated augmentation index derived from peripheral arterial tonometry is associated with abnormal ventricular-vascular coupling. Clin Physiol Funct Imaging. 2010;30(5):313–7.
    1. Mitchell GF, Vita JA, Larson MG, Parise H, Keyes MJ, Warner E, Vasan RS, Levy D, Benjamin EJ. Cross-sectional relations of peripheral microvascular function, cardiovascular disease risk factors, and aortic stiffness: the Framingham Heart Study. Circulation. 2005;112(24):3722–8. doi: 10.1161/CIRCULATIONAHA.105.551168.
    1. Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. Hypertension. 2012;60(2):534–41. doi: 10.1161/HYPERTENSIONAHA.112.194571.

Source: PubMed

3
订阅