Intensity matters: protocol for a randomized controlled trial exercise intervention for individuals with chronic stroke

Lynden Rodrigues, Kevin Moncion, Janice J Eng, Kenneth S Noguchi, Elise Wiley, Bernat de Las Heras, Shane N Sweet, Joyce Fung, Marilyn MacKay-Lyons, Aimee J Nelson, Diogo Medeiros, Jennifer Crozier, Alexander Thiel, Ada Tang, Marc Roig, Lynden Rodrigues, Kevin Moncion, Janice J Eng, Kenneth S Noguchi, Elise Wiley, Bernat de Las Heras, Shane N Sweet, Joyce Fung, Marilyn MacKay-Lyons, Aimee J Nelson, Diogo Medeiros, Jennifer Crozier, Alexander Thiel, Ada Tang, Marc Roig

Abstract

Rationale: Cardiovascular exercise is an effective method to improve cardiovascular health outcomes, but also promote neuroplasticity during stroke recovery. Moderate-intensity continuous cardiovascular training (MICT) is an integral part of stroke rehabilitation, yet it may remain a challenge to exercise at sufficiently high intensities to produce beneficial adaptations to neuroplasticity. High-intensity interval training (HIIT) could provide a viable alternative to achieve higher intensities of exercise by using shorter bouts of intense exercise interspersed with periods of recovery.

Methods and design: This is a two-arm, parallel-group multi-site RCT conducted at the Jewish Rehabilitation Hospital (Laval, Québec, Canada) and McMaster University (Hamilton, Ontario, Canada). Eighty participants with chronic stroke will be recruited at both sites and will be randomly allocated into a HIIT or MICT individualized exercise program on a recumbent stepper, 3 days per week for 12 weeks. Outcomes will be assessed at baseline, at 12 weeks post-intervention, and at an 8-week follow-up.

Outcomes: The primary outcome is corticospinal excitability, a neuroplasticity marker in brain motor networks, assessed with transcranial magnetic stimulation (TMS). We will also examine additional markers of neuroplasticity, measures of cardiovascular health, motor function, and psychosocial responses to training.

Discussion: This trial will contribute novel insights into the effectiveness of HIIT to promote neuroplasticity in individuals with chronic stroke.

Trial registration: ClinicalTrials.gov NCT03614585 . Registered on 3 August 2018.

Keywords: Cardiovascular health; Clinical trial; Exercise; Neuroplasticity; Stroke.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study flow diagram
Fig. 2
Fig. 2
MICT and HIIT protocol
Fig. 3
Fig. 3
Schedule of enrolment, interventions, and assessments

References

    1. MacKay-Lyons M, Billinger SA, Eng JJ, Dromerick A, Giacomantonio N, Hafer-Macko C, et al. Aerobic exercise recommendations to optimize best practices in care after stroke: AEROBICS 2019 update. Phys Ther. 2020;100(1):149–56.
    1. Saunders DH, Sanderson M, Hayes S, Johnson L, Kramer S, Carter DD, et al. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2020;3(3):CD003316.
    1. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–872. doi: 10.1038/nrn2735.
    1. Thomas AG, Dennis A, Bandettini PA, Johansen-Berg H. The effects of aerobic activity on brain structure. Front Psychol. 2012;3:86. doi: 10.3389/fpsyg.2012.00086.
    1. Singh AM, Duncan RE, Neva JL, Staines WR. Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle. BMC Sports Sci Med Rehabil. 2014;6:23. doi: 10.1186/2052-1847-6-23.
    1. Singh AM, Neva JL, Staines WR. Acute exercise enhances the response to paired associative stimulation-induced plasticity in the primary motor cortex. Exp Brain Res. 2014;232(11):3675–3685. doi: 10.1007/s00221-014-4049-z.
    1. Singh AM, Neva JL, Staines WR. Aerobic exercise enhances neural correlates of motor skill learning. Behav Brain Res. 2016;301:19–26. doi: 10.1016/j.bbr.2015.12.020.
    1. Swayne OB, Rothwell JC, Ward NS, Greenwood RJ. Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cereb Cortex. 2008;18(8):1909–1922. doi: 10.1093/cercor/bhm218.
    1. Ostadan F, Centeno C, Daloze JF, Frenn M, Lundbye-Jensen J, Roig M. Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory. Neurobiol Learn Mem. 2016;136:196–203. doi: 10.1016/j.nlm.2016.10.009.
    1. Skriver K, Roig M, Lundbye-Jensen J, Pingel J, Helge JW, Kiens B, et al. Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem. 2014;116:46–58. doi: 10.1016/j.nlm.2014.08.004.
    1. Roig M, Skriver K, Lundbye-Jensen J, Kiens B, Nielsen JB. A single bout of exercise improves motor memory. PLoS One. 2012;7(9):e44594. doi: 10.1371/journal.pone.0044594.
    1. Mang CS, Snow NJ, Campbell KL, Ross CJ, Boyd LA. A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning. J Appl Physiol (1985) 2014;117(11):1325–1336. doi: 10.1152/japplphysiol.00498.2014.
    1. Murdoch K, Buckley JD, McDonnell MN. The effect of aerobic exercise on neuroplasticity within the motor cortex following stroke. PLoS One. 2016;11(3):e0152377. doi: 10.1371/journal.pone.0152377.
    1. Forrester LW, Wheaton LA, Luft AR. Exercise-mediated locomotor recovery and lower-limb neuroplasticity after stroke. J Rehabil Res Dev. 2008;45(2):205–220. doi: 10.1682/JRRD.2007.02.0034.
    1. Austin MW, Ploughman M, Glynn L, Corbett D. Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res. 2014;87:8–15. doi: 10.1016/j.neures.2014.06.007.
    1. Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, et al. High impact running improves learning. Neurobiol Learn Mem. 2007;87(4):597–609. doi: 10.1016/j.nlm.2006.11.003.
    1. Ploughman M, Windle V, MacLellan CL, White N, Dore JJ, Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke. 2009;40(4):1490–1495. doi: 10.1161/STROKEAHA.108.531806.
    1. MacLellan CL, Keough MB, Granter-Button S, Chernenko GA, Butt S, Corbett D. A critical threshold of rehabilitation involving brain-derived neurotrophic factor is required for poststroke recovery. Neurorehabil Neural Repair. 2011;25(8):740–748. doi: 10.1177/1545968311407517.
    1. Boyne P, Meyrose C, Westover J, Whitesel D, Hatter K, Reisman DS, et al. Exercise intensity affects acute neurotrophic and neurophysiological responses poststroke. J Appl Physiol (1985) 2019;126(2):431–443. doi: 10.1152/japplphysiol.00594.2018.
    1. Li X, Charalambous CC, Reisman DS, Morton SM. A short bout of high-intensity exercise alters ipsilesional motor cortical excitability post-stroke. Top Stroke Rehabil. 2019;26(6):405–411. doi: 10.1080/10749357.2019.1623458.
    1. Madhavan S, Stinear JW, Kanekar N. Effects of a single session of high intensity interval treadmill training on corticomotor excitability following stroke: implications for therapy. Neural Plast. 2016;2016:1686414. doi: 10.1155/2016/1686414.
    1. Nepveu J-F, Thiel A, Tang A, Fung J, Lundbye-Jensen J, Boyd LA, et al. A single bout of high-intensity interval training improves motor skill retention in individuals with stroke. Neurorehabil Neural Repair. 2017;31(8):726–735. doi: 10.1177/1545968317718269.
    1. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation. 2010;121(4):586–613. doi: 10.1161/CIRCULATIONAHA.109.192703.
    1. Pase MP, Beiser A, Enserro D, Xanthakis V, Aparicio H, Satizabal CL, et al. Association of ideal cardiovascular health with vascular brain injury and incident dementia. Stroke. 2016;47(5):1201–1206. doi: 10.1161/STROKEAHA.115.012608.
    1. Adams RJ, Chimowitz MI, Alpert JS, Awad IA, Cerqueria MD, Fayad P, et al. Coronary risk evaluation in patients with transient ischemic attack and ischemic stroke: a scientific statement for healthcare professionals from the Stroke council and the council on clinical cardiology of the American heart Association/American stroke association. Stroke. 2003;34(9):2310–2322. doi: 10.1161/01.STR.0000090125.28466.E2.
    1. Roth EJ. Heart disease in patients with stroke: incidence, impact, and implications for rehabilitation. Part 1: classification and prevalence. Arch Phys Med Rehabil. 1993;74(7):752–760. doi: 10.1016/0003-9993(93)90038-C.
    1. Gaciong Z, Sinski M, Lewandowski J. Blood pressure control and primary prevention of stroke: summary of the recent clinical trial data and meta-analyses. Curr Hypertens Rep. 2013;15(6):559–574. doi: 10.1007/s11906-013-0401-0.
    1. Portegies ML, Wolters FJ, Hofman A, Ikram MK, Koudstaal PJ, Ikram MA. Prestroke vascular pathology and the risk of recurrent stroke and poststroke dementia. Stroke. 2016;47(8):2119–2122. doi: 10.1161/STROKEAHA.116.014094.
    1. Tang A, Closson V, Marzolini S, Oh P, McIlroy W, Brooks D. Cardiac rehabilitation after stroke-need and opportunity. J Cardiopulm Rehabil Prev. 2009;29(2):97–104. doi: 10.1097/HCR.0b013e31819a00d4.
    1. Tang A, Sibley KM, Thomas SG, Bayley MT, Richardson D, McIlroy WE, et al. Effects of an aerobic exercise program on aerobic capacity, spatiotemporal gait parameters, and functional capacity in subacute stroke. Neurorehabil Neural Repair. 2009;23(4):398–406. doi: 10.1177/1545968308326426.
    1. Tang A, Marzolini S, Oh P, McIlroy WE, Brooks D. Factors associated with change in aerobic capacity following an exercise program for individuals with stroke. J Rehabil Med. 2013;45(1):32–37. doi: 10.2340/16501977-1053.
    1. Rimmer JH, Rauworth AE, Wang EC, Nicola TL, Hill B. A preliminary study to examine the effects of aerobic and therapeutic (nonaerobic) exercise on cardiorespiratory fitness and coronary risk reduction in stroke survivors. Arch Phys Med Rehabil. 2009;90(3):407–412. doi: 10.1016/j.apmr.2008.07.032.
    1. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39(1):10–15. doi: 10.1161/hy0102.099031.
    1. Chirinos JA, Zambrano JP, Chakko S, Veerani A, Schob A, Willens HJ, et al. Aortic pressure augmentation predicts adverse cardiovascular events in patients with established coronary artery disease. Hypertension. 2005;45(5):980–985. doi: 10.1161/01.HYP.0000165025.16381.44.
    1. Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–1234. doi: 10.1136/bjsports-2013-092576.
    1. Molmen-Hansen HE, Stolen T, Tjonna AE, Aamot IL, Ekeberg IS, Tyldum GA, et al. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol. 2012;19(2):151–160. doi: 10.1177/1741826711400512.
    1. Pagnan CE, Seidel A, MacDermid WS. I just can’t fit it in! Implications of the fit between work and family on health-promoting behaviors. J Fam Issues. 2016;38(11):1577–1603. doi: 10.1177/0192513X16631016.
    1. Rhodes RE, Fiala B, Conner M. A review and meta-analysis of affective judgments and physical activity in adult populations. Ann Behav Med. 2009;38(3):180–204. doi: 10.1007/s12160-009-9147-y.
    1. Ingledew DK, Markland D. The role of motives in exercise participation. Psychol Health. 2008;23(7):807–828. doi: 10.1080/08870440701405704.
    1. Olney N, Wertz T, LaPorta Z, Mora A, Serbas J, Astorino TA. Comparison of acute physiological and psychological responses between moderate-intensity continuous exercise and three regimes of high-intensity interval training. J Strength Cond Res. 2018;32(8):2130–2138. doi: 10.1519/JSC.0000000000002154.
    1. Niven A, Laird Y, Saunders DH, Phillips SM. A systematic review and meta-analysis of affective responses to acute high intensity interval exercise compared with continuous moderate- and high-Intensity exercise. Health Psychol Rev. 2021;15(4):540–573. doi: 10.1080/17437199.2020.1728564.
    1. Heinrich KM, Patel PM, O'Neal JL, Heinrich BS. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health. 2014;14:789. doi: 10.1186/1471-2458-14-789.
    1. Adeyemo BO, Simis M, Macea DD, Fregni F. Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Front Psychiatry. 2012;3:88. doi: 10.3389/fpsyt.2012.00088.
    1. Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608. doi: 10.1038/nrneurol.2014.162.
    1. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–199. doi: 10.1016/j.neuron.2007.06.026.
    1. Boyne P, Dunning K, Carl D, Gerson M, Khoury J, Kissela B. High-intensity interval training in stroke rehabilitation. Top Stroke Rehabil. 2013;20(4):317–330. doi: 10.1310/tsr2004-317.
    1. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Goff DC, Jr, Lloyd-Jones DM, Bennett G, Coady S, D'Agostino RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S49–S73.
    1. Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108(1):1–16. doi: 10.1016/S0168-5597(97)00096-8.
    1. Knowles AM, Herbert P, Easton C, Sculthorpe N, Grace FM. Impact of low-volume, high-intensity interval training on maximal aerobic capacity, health-related quality of life and motivation to exercise in ageing men. Age (Dordr) 2015;37(2):25. doi: 10.1007/s11357-015-9763-3.
    1. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(8):2532–2553. doi: 10.1161/STR.0000000000000022.
    1. Billinger SA, Boyne P, Coughenour E, Dunning K, Mattlage A. Does aerobic exercise and the FITT principle fit into stroke recovery? Curr Neurol Neurosci Rep. 2015;15(2):519. doi: 10.1007/s11910-014-0519-8.
    1. Carl DL, Boyne P, Meyrose C, Westover J, Whitesel D, Khoury J, et al. Feasibility and intensity of recumbent stepper in high intensity interval training (HIT) in chronic stroke: 917 Board #233 June 1, 2: 00 PM - 3: 30 PM. Med Sci Sports Exerc. 2016;48(5S):259. doi: 10.1249/01.mss.0000485780.66743.dd.
    1. Billinger SA, Tseng BY, Kluding PM. Modified total-body recumbent stepper exercise test for assessing peak oxygen consumption in people with chronic stroke. Phys Ther. 2008;88(10):1188–1195. doi: 10.2522/ptj.20080072.
    1. ACSM . ACSM’s guidelines for exercise testing and prescription. 8. Philadelphia: Lippincott Williams & Wilkins; 2010. p. 363.
    1. Tabet JY, Meurin P, Ben Driss A, Thabut G, Weber H, Renaud N, et al. Determination of exercise training heart rate in patients on beta-blockers after myocardial infarction. Eur J Cardiovasc Prev Rehabil. 2006;13(4):538–543. doi: 10.1097/01.hjr.0000209813.05573.4d.
    1. Boyne P, Dunning K, Carl D, Gerson M, Khoury J, Rockwell B, et al. High-intensity interval training and moderate-intensity continuous training in ambulatory chronic stroke: feasibility study. Phys Ther. 2016;96(10):1533–1544. doi: 10.2522/ptj.20150277.
    1. Lucas SJ, Cotter JD, Brassard P, Bailey DM. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J Cereb Blood Flow Metab. 2015;35(6):902–911. doi: 10.1038/jcbfm.2015.49.
    1. Washburn RA, Zhu W, McAuley E, Frogley M, Figoni SF. The physical activity scale for individuals with physical disabilities: development and evaluation. Arch Phys Med Rehabil. 2002;83(2):193–200. doi: 10.1053/apmr.2002.27467.
    1. Goldstein LB, Samsa GP. Reliability of the National Institutes of Health Stroke Scale. Extension to non-neurologists in the context of a clinical trial. Stroke. 1997;28(2):307–310. doi: 10.1161/01.STR.28.2.307.
    1. Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, et al. Measuring physical impairment and disability with the Chedoke-McMaster stroke assessment. Stroke. 1993;24(1):58–63. doi: 10.1161/01.STR.24.1.58.
    1. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–1107. doi: 10.1016/j.clinph.2015.02.001.
    1. Kleim JA, Kleim ED, Cramer SC. Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation. Nat Protoc. 2007;2(7):1675–1684. doi: 10.1038/nprot.2007.206.
    1. Garrett M, Caulfield B. Increased H (max):M (max) ratio in community walkers poststroke without increase in ankle plantarflexion during walking. Arch Phys Med Rehabil. 2001;82(8):1066–1072. doi: 10.1053/apmr.2001.23880.
    1. Bashir S, Yoo WK, Kim HS, Lim HS, Rotenberg A, Abu JA. The number of pulses needed to measure corticospinal excitability by navigated transcranial magnetic stimulation: eyes open vs. close condition. Front Hum Neurosci. 2017;11:121. doi: 10.3389/fnhum.2017.00121.
    1. Muellbacher W, Ziemann U, Boroojerdi B, Hallett M. Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol. 2000;111(6):1002–1007. doi: 10.1016/S1388-2457(00)00284-4.
    1. Tunovic S, Press DZ, Robertson EM. A physiological signal that prevents motor skill improvements during consolidation. J Neurosci. 2014;34(15):5302–5310. doi: 10.1523/JNEUROSCI.3497-13.2014.
    1. Stinear CM, Petoe MA, Byblow WD. Primary motor cortex excitability during recovery after stroke: implications for neuromodulation. Brain Stimul. 2015;8(6):1183–1190. doi: 10.1016/j.brs.2015.06.015.
    1. Bestmann S, Krakauer JW. The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res. 2015;233(3):679–689. doi: 10.1007/s00221-014-4183-7.
    1. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–2605. doi: 10.1093/eurheartj/ehl254.
    1. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445–448. doi: 10.1097/HJH.0b013e32834fa8b0.
    1. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–1327. doi: 10.1016/j.jacc.2009.10.061.
    1. Tang A, Eng JJ. Physical fitness training after stroke. Phys Ther. 2014;94(1):9–13. doi: 10.2522/ptj.20120331.
    1. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92–98.
    1. Winter Y, Rohrmann S, Linseisen J, Lanczik O, Ringleb PA, Hebebrand J, et al. Contribution of obesity and abdominal fat mass to risk of stroke and transient ischemic attacks. Stroke. 2008;39(12):3145–3151. doi: 10.1161/STROKEAHA.108.523001.
    1. Schneider HJ, Friedrich N, Klotsche J, Pieper L, Nauck M, John U, et al. The predictive value of different measures of obesity for incident cardiovascular events and mortality. J Clin Endocrinol Metab. 2010;95(4):1777–1785. doi: 10.1210/jc.2009-1584.
    1. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366(9497):1640–1649. doi: 10.1016/S0140-6736(05)67663-5.
    1. Laboratories ATSCoPSfCPF ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–117. doi: 10.1164/ajrccm.166.1.at1102.
    1. Murrock CJ, Bekhet A, Zauszniewski JA. Psychometric evaluation of the physical activity enjoyment scale in adults with functional limitations. Issues Ment Health Nurs. 2016;37(3):164–171. doi: 10.3109/01612840.2015.1088904.
    1. Motl RW, Snook EM, McAuley E, Scott JA, Douglass ML. Correlates of physical activity among individuals with multiple sclerosis. Ann Behav Med. 2006;32(2):154–161. doi: 10.1207/s15324796abm3202_13.
    1. Wilson PM, Rodgers WM, Loitz CC, Scime G. It’s Who I Am … Really!’ The importance of integrated regulation in exercise contexts1. J Appl Biobehav Res. 2006;11(2):79–104. doi: 10.1111/j.1751-9861.2006.tb00021.x.
    1. Sweet SN, Fortier MS, Strachan SM, Blanchard CM, Boulay P. Testing a longitudinal integrated self-efficacy and self-determination theory model for physical activity post-cardiac rehabilitation. Health Psychol Res. 2014;2(1):1008. doi: 10.4081/hpr.2014.1008.
    1. Sweet SN, Tulloch H, Fortier MS, Pipe AL, Reid RD. Patterns of motivation and ongoing exercise activity in cardiac rehabilitation settings: a 24-month exploration from the TEACH Study. Ann Behav Med. 2011;42(1):55–63. doi: 10.1007/s12160-011-9264-2.
    1. Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med. 1997;16(20):2349–2380. doi: 10.1002/(SICI)1097-0258(19971030)16:20<2349::AID-SIM667>;2-E.
    1. Cerin E, Taylor LM, Leslie E, Owen N. Small-scale randomized controlled trials need more powerful methods of mediational analysis than the Baron-Kenny method. J Clin Epidemiol. 2006;59(5):457–464. doi: 10.1016/j.jclinepi.2005.11.008.
    1. Moncion K, Rodrigues L, MacKay-Lyons M, Eng JJ, Billinger SA, Ploughman M, et al. Exercise-based stroke rehabilitation: clinical considerations following the COVID-19 pandemic. Neurorehabil Neural Repair. 2022;36(1):3-16.
    1. Crozier J, Roig M, Eng JJ, MacKay-Lyons M, Fung J, Ploughman M, et al. High-intensity interval training after stroke: an opportunity to promote functional recovery, cardiovascular health, and neuroplasticity. Neurorehabil Neural Repair. 2018;32(6-7):543–556. doi: 10.1177/1545968318766663.

Source: PubMed

3
订阅