Assessment of fatigability in patients with spinal muscular atrophy: development and content validity of a set of endurance tests

Bart Bartels, Laura E Habets, Marloes Stam, Renske I Wadman, Camiel A Wijngaarde, Marja A G C Schoenmakers, Tim Takken, Erik H J Hulzebos, W Ludo van der Pol, Janke F de Groot, Bart Bartels, Laura E Habets, Marloes Stam, Renske I Wadman, Camiel A Wijngaarde, Marja A G C Schoenmakers, Tim Takken, Erik H J Hulzebos, W Ludo van der Pol, Janke F de Groot

Abstract

Background: Fatigability has emerged as an important dimension of physical impairment in patients with Spinal Muscular Atrophy (SMA). At present reliable and valid outcome measures for both mildly and severely affected patients are lacking. Therefore the primary aim of this study is the development of clinical outcome measures for fatigability in patients with SMA across the range of severity.

Methods: We developed a set of endurance tests using five methodological steps as recommended by the 'COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN). In this iterative process, data from multiple sources were triangulated including a scoping review of scientific literature, input from a scientific and clinical multidisciplinary expert panel and three pilot studies including healthy persons (N = 9), paediatric patients with chronic disorders (N = 10) and patients with SMA (N = 15).

Results: Fatigability in SMA was operationalised as the decline in physical performance. The following test criteria were established; one method of testing for patients with SMA type 2-4, a set of outcome measures that mimic daily life activities, a submaximal test protocol of repetitive activities over a longer period; external regulation of pace. The scoping review did not generate suitable outcome measures. We therefore adapted the Endurance Shuttle Walk Test for ambulatory patients and developed the Endurance Shuttle Box and Block Test and the - Nine Hole Peg Test for fatigability testing of proximal and distal arm function. Content validity was established through input from experts and patients. Pilot testing showed that the set of endurance tests are comprehensible, feasible and meet all predefined test criteria.

Conclusions: The development of this comprehensive set of endurance tests is a pivotal step to address fatigability in patients with SMA.

Keywords: Endurance; Fatigability; Outcome measure; Spinal muscular atrophy.

Conflict of interest statement

Ethics approval and consent to participate

The Medical Ethics Committee of the University Medical Centre Utrecht in the Netherlands approved the research protocol. Written informed consent was obtained from all subjects and their parents.

Consent for publication

Written consent for publication was obtained from all subjects and their parents with regards to images used.

Competing interests

The employer of author Bart Bartels has received ad hoc consultancy fees from Scholar Rock and Cytokinetics (scientific advisory boards) and Biogen (speaker activity scientific conference). The employer of author Ludo van der Pol has received ad hoc consultancy fees from Biogen and Avexis (scientific advisory boards) and from Novartis (data monitoring committee). The remaining authors have no conflicts of interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P. Identification and characterization of a apinal muscular atrophy-determining gene. Cell. 1995;80:155–165. doi: 10.1016/0092-8674(95)90460-3.
    1. Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: controversies and challenges. The Lancet Neurology. 2012;11(5):443–452. doi: 10.1016/S1474-4422(12)70061-3.
    1. Wadman RI, Wijngaarde CA, Stam M, Bartels B, Otto LAM, Lemmink HH, et al. Muscle strength and motor function throughout life in a cross-sectional cohort of 180 patients with spinal muscular atrophy types 1c-4. European journal of neurology : the official journal of the European Federation of Neurological Societies. 2018;25(3):512–518. doi: 10.1111/ene.13534.
    1. Noto Y, Misawa S, Mori M, Kawaguchi N, Kanai K, Shibuya K, et al. Prominent fatigue in spinal muscular atrophy and spinal and bulbar muscular atrophy: evidence of activity-dependent conduction block. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2013;124(9):1893–1898. doi: 10.1016/j.clinph.2012.12.053.
    1. Wadman RI, Vrancken AFJE, van den Berg LH, Van der Pol WL. Dysfunction of the neuromuscular junciton in spinal muscular atrophy types 2 and 3. Neurology. 2012;79:2050–2055. doi: 10.1212/WNL.0b013e3182749eca.
    1. Pageaux B, Lepers R. Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Front Physiol. 2016;7:587. doi: 10.3389/fphys.2016.00587.
    1. Kluger BM, Krupp LB, Enoka RM. Fatigue and fatigability in neurologic. Neurology. 2013;80:409–416. doi: 10.1212/WNL.0b013e31827f07be.
    1. Kariya S, Park GH, Maeno-Hikichi Y, Leykekhman O, Lutz C, Arkovitz MS, et al. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol Genet. 2008;17(16):2552–2569. doi: 10.1093/hmg/ddn156.
    1. Kong L, Wang X, Choe DW, Polley M, Burnett BG, Bosch-Marce M, et al. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci. 2009;29(3):842–851. doi: 10.1523/JNEUROSCI.4434-08.2009.
    1. Arnold AS, Gueye M, Guettier-Sigrist S, Courdier-Fruh I, Coupin G, Poindron P, et al. Reduced expression of nicotinic AChRs in myotubes from spinal muscular atrophy I patients. Laboratory investigation; a journal of technical methods and pathology. 2004;84(10):1271–1278. doi: 10.1038/labinvest.3700163.
    1. Goulet B, Kothary R, Parks RJ. At the junction of spinal muscular atrophy pathogenesis: the role of neuromuscular junction dysfunction in SMA disease progression. Curr Mol Med. 2013;13(1–15).
    1. Pera MC, Luigetti M, Pane M, Coratti G, Forcina N, Fanelli L, et al. 6MWT can identify type 3 SMA patients with neuromuscular junction dysfunction. Neuromuscular disorders : NMD. 2017;27(10):879–882. doi: 10.1016/j.nmd.2017.07.007.
    1. Safety and Efficacy Study of Pyridostigmine on Patients With Spinal Muscular Atrophy Type 3. .
    1. Stam M, Wadman RI, Wijngaarde CA, Bartels B, Asselman FL, Otto LAM, et al. Protocol for a phase II, monocentre, double-blind, placebo-controlled, cross-over trial to assess efficacy of pyridostigmine in patients with spinal muscular atrophy types 2-4 (SPACE trial) BMJ Open. 2018;8(7):e019932. doi: 10.1136/bmjopen-2017-019932.
    1. Health USDo, Human Services FDACfDE, Research, Health USDo, Human Services FDACfBE, Research et al. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance. Health Qual Life Outcomes. 2006;4:79. doi: 10.1186/1477-7525-4-79.
    1. (CHMP) Cfmpfhu. Reflection paper on the regulatory guidance for the use of health-related quality of life (HRQL) measures in the evaluation of medicinal products. European Medicines Agency website, 2005.
    1. de Vet HC, Terwee CB, Mokkink LB, Knol DL. Measurement in medicine: practical guides to biostatistics and epidemiology. 4. Cambride: Cambride University Press; 2011.
    1. Mokkink LB, Terwee CB, Knol DL, Stratford PW, Alonso J, Patrick DL, et al. Protocol of the COSMIN study: COnsensus-based standards for the selection of health measurement INstruments. BMC Med Res Methodol. 2006;6:2. doi: 10.1186/1471-2288-6-2.
    1. Lou J-S. Techniques in assessing fatigue in neuromuscular diseases. Phys Med Rehabil Clin N Am. 2012;23:11–22. doi: 10.1016/j.pmr.2011.11.003.
    1. Alexander NB, Taffet GE, Horne FM, Eldadah BA, Ferrucci L, Nayfield S, et al. Bedside-to-bench conference: research agenda for idiopathic fatigue and aging. J Am Geriatr Soc. 2010;58(5):967–975. doi: 10.1111/j.1532-5415.2010.02811.x.
    1. Vollestad NK. Measurement of human fatigue. J Neurosci Methods. 1997;74(219/27).
    1. Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord. 2012;13:218. doi: 10.1186/1471-2474-13-218.
    1. Bar-Or O. Role of exercise in the assessment and management of neuromuscular disease in children. Med Sci Sports Exerc. 1996;28(4):421–427. doi: 10.1097/00005768-199604000-00005.
    1. Jones D, Round J, de Haan A. Skeletal muscle from molecules to movement. In: A textbook of muscle physiology for sports, exercise,physiotherapy and medicine. London: Churchill Livingstone; 2004.
    1. Féasson L, Camdessanché JP, El Mhandi L, Calmels P, Millet GY. Fatigue and neuromuscular diseases. Ann Readapt Med Phys. 2006;49(6):375–384. doi: 10.1016/j.annrmp.2006.04.016.
    1. Straver CG, van den Berg LH, van Doorn PA, Franssen H. Symptoms of activity induced weakness in peripheral nervous system disorders. J Peripher Nerv Syst. 2011;16:108–112. doi: 10.1111/j.1529-8027.2011.00327.x.
    1. van Mater HA, Williams JW, Jr, Coeytaux RR, Sanders GD, Kemper AR. Psychometric characteristics of outcome measures in juvenile idiopathic arthritis: a systematic review. Arthritis care & research. 2012;64(4):554–562. doi: 10.1002/acr.20667.
    1. Wadman RI, Stam M, Gijzen M, Lemmink HH, Snoeck IN, Wijngaarde CA, et al. Association of motor milestones, SMN2 copy and outcome in spinal muscular atrophy types 0-4. J Neurol Neurosurg Psychiatry. 2017;88(4):365–367. doi: 10.1136/jnnp-2016-314292.
    1. Bowen DJ, Kreuter M, Spring B, Cofta-Woerpel L, Linnan L, Weiner D, et al. How we design feasibility studies. Am J Prev Med. 2009;36(5):452–457. doi: 10.1016/j.amepre.2009.02.002.
    1. Utter AC, Robertson RJ, Nieman DC, Kang J. Children's OMNI scale of perceived exertion: walking/running evaluation. Med Sci Sports Exerc. 2002;34(1):139–144. doi: 10.1097/00005768-200201000-00021.
    1. Moller MC, Nygren de Boussard C, Oldenburg C, Bartfai A. An investigation of attention, executive, and psychomotor aspects of cognitive fatigability. J Clin Exp Neuropsychol. 2014;36(7):716–729. doi: 10.1080/13803395.2014.933779.
    1. Hart R, Ballaz L, Robert M, Pouliot A, D'Arcy S, Raison M, et al. Impact of exercise-induced fatigue on the strength, postural control, and gait of children with a neuromuscular disease. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists. 2014.
    1. Meriggioli MN, Sanders DB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. The Lancet Neurology. 2009;8(5):475–490. doi: 10.1016/S1474-4422(09)70063-8.
    1. Milner-Brown HS, Miller RG. Increased muscular fatigue in patients with neurogenic muscle weakness: quantification and pathophysiology. Arch Phys Med Rehabil. 1989;70(5):361–366.
    1. Iannaccone ST, White M, Browne R, Russman B, Buncher R, Samaha FJ. Muscle fatigue in spinal muscular atrophy. J Child Neurol. 1997;12(5):321–326. doi: 10.1177/088307389701200507.
    1. Granger MW, Buschang PH, Throckmorton GS, Iannaccone ST. Masticatory muscle function in patients with spinal muscular atrophy. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 1999;115(6):697–702. doi: 10.1016/S0889-5406(99)70296-9.
    1. Montes J, McDermott MP, Martens WB, Dunaway S, Glanzman AM, Riley S, et al. Six-minute walk test demonstrates motor fatigue in spinal muscular atrophy. Neurology. 2010;75(12):833–838. doi: 10.1212/WNL.0b013e3181d3e308.
    1. Montes J, Dunaway S, Montgomery MJ, Sproule D, Kaufmann P, De Vivo DC, et al. Fatigue leads to gait changes in spinal muscular atrophy. Muscle Nerve. 2011;43(4):485–488. doi: 10.1002/mus.21917.
    1. Montes J, Blumenschine M, Dunaway S, Alter AS, Engelstad K, Rao AK, et al. Weakness and fatigue in diverse neuromuscular diseases. J Child Neurol. 2013;28(10):1277–1283. doi: 10.1177/0883073813493663.
    1. Montes J, Dunaway S, Garber CE, Chiriboga CA, De Vivo DC, Rao AK. Leg muscle function and fatigue during walking in spinal muscular atrophy type 3. Muscle Nerve. 2013.
    1. Stam M, 'Wadman RI, Leeuw M, Wijngaarde CA, van den Berg LH, van der Pol WL. The repeated nine hole peg test as outcome measure for fatigability in SMA. Orphanet journal of rare diseases 2018.
    1. Lammers AE, Diller GP, Odendaal D, Tailor S, Derrick G, Haworth SG. Comparison of 6-min walk test distance and cardiopulmonary exercise test performance in children with pulmonary hypertension. Arch Dis Child. 2011;96(2):141–147. doi: 10.1136/adc.2009.169904.
    1. Dunaway Young S, Montes J, Kramer SS, Marra J, Salazar R, Cruz R, et al. Six-minute walk test is reliable and valid in spinal muscular atrophy. Muscle Nerve. 2016;54(5):836–842. doi: 10.1002/mus.25120.
    1. Revill SM, Morgan MDL, Singh SJ, Williams J, Hardman AE. The endurance shuttle walk test: a new field exercise test for the assessment of endurance capacity in chronic obstructive pulmonary disease. Thorax. 1999;54:213–222. doi: 10.1136/thx.54.3.213.
    1. Grice KO, Vogel KA, Le V, Mitchell A, Muniz S, Vollmer MA. Adult norms for a comercially available nine hole peg test for finger dexterity. Am J Occup Ther. 2003;57:570–573. doi: 10.5014/ajot.57.5.570.
    1. Poole JL, Burtner PA, Torres TA, McMullen CK, Markham A, Marcum ML, et al. Measuring dexterity in children using the nine-hole peg test. Journal of hand therapy : official journal of the American Society of Hand Therapists. 2005;18(3):348–351. doi: 10.1197/j.jht.2005.04.003.
    1. Mathiowetz V, Federman S, Box WD. Block test of manual dexterity norms for 6-19 years old. Can J Occup Ther. 1985;52(5).
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and block test of manual dexterity. The American journal of occupational therapy : official publication of the American Occupational Therapy Association. 1985;39(6):386–391. doi: 10.5014/ajot.39.6.386.
    1. Terwee CB, Prinsen CAC, Chiarotto A, Westerman MJ, Patrick DL, Alonso J, et al. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: a Delphi study. Quality of life research : an international journal of quality of life aspects of treatment, care and rehabilitation. 2018;27(5):1159–1170. doi: 10.1007/s11136-018-1829-0.
    1. Hill K, Dolmage TE, Woon L, Coutts D, Goldstein R, Brooks D. A simple method to derive speed for the endurance shuttle walk test. Respir Med. 2012;106(12):1665–1670. doi: 10.1016/j.rmed.2012.08.011.
    1. Qin J, Lin JH, Buchholz B, Xu X. Shoulder muscle fatigue development in young and older female adults during a repetitive manual task. Ergonomics. 2014:1–12.
    1. Qin J, Lin JH, Faber GS, Buchholz B, Xu X. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2014;24(3):404–411. doi: 10.1016/j.jelekin.2014.02.001.
    1. Conceicao A, Silva AJ, Barbosa T, Karsai I, Louro H. Neuromuscular fatigue during 200 m breaststroke. Journal of sports science & medicine. 2014;13(1):200–210.
    1. Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228–2238. doi: 10.1249/MSS.0000000000000929.
    1. Schillings ML, Kalkman JS, Janssen HM, van Engelen BG, Bleijenberg G, Zwarts MJ. Experienced and physiological fatigue in neuromuscular disorders. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2007;118(2):292–300. doi: 10.1016/j.clinph.2006.10.018.
    1. Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural contributions to muscle fatigue: from the brain to the muscle and Back again. Med Sci Sports Exerc. 2016;48(11):2294–2306. doi: 10.1249/MSS.0000000000000923.
    1. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332. doi: 10.1152/physrev.00015.2007.
    1. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):1725–1789. doi: 10.1152/physrev.2001.81.4.1725.
    1. Van Cutsem J, Marcora S, De Pauw K, Bailey S, Meeusen R, Roelands B. The effects of mental fatigue on physical performance: a systematic review. Sports Med. 2017;47(8):1569–1588. doi: 10.1007/s40279-016-0672-0.
    1. Ripolone M, Ronchi D, Violano R, Vallejo D, Fagiolari G, Barca E, et al. Impaired muscle mitochondrial biogenesis and Myogenesis in spinal muscular atrophy. JAMA neurology. 2015;72(6):666–675. doi: 10.1001/jamaneurol.2015.0178.
    1. Shababi M, Lorson CL, Rudnik-Schoneborn SS. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease? J Anat. 2014;224(1):15–28. doi: 10.1111/joa.12083.
    1. CMW Gaasterland, Jansen-van der Weide MC, Vroom E, Leeson-Beevers K, Kaatee M, Kaczmarek R, et al. The POWER-protocol: recommendations for involving patient representatives in choosing relevant outcome measures during rare diseases clinical trial design journal health policy. 2018;accepted.
    1. Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725–741. doi: 10.2165/00007256-200131100-00003.

Source: PubMed

3
订阅