Targeting Paretic Propulsion and Walking Speed With a Soft Robotic Exosuit: A Consideration-of-Concept Trial

Franchino Porciuncula, Teresa C Baker, Dheepak Arumukhom Revi, Jaehyun Bae, Regina Sloutsky, Terry D Ellis, Conor J Walsh, Louis N Awad, Franchino Porciuncula, Teresa C Baker, Dheepak Arumukhom Revi, Jaehyun Bae, Regina Sloutsky, Terry D Ellis, Conor J Walsh, Louis N Awad

Abstract

Background: Soft robotic exosuits can facilitate immediate increases in short- and long-distance walking speeds in people with post-stroke hemiparesis. We sought to assess the feasibility and rehabilitative potential of applying propulsion-augmenting exosuits as part of an individualized and progressive training program to retrain faster walking and the underlying propulsive strategy. Methods: A 54-yr old male with chronic hemiparesis completed five daily sessions of Robotic Exosuit Augmented Locomotion (REAL) gait training. REAL training consists of high-intensity, task-specific, and progressively challenging walking practice augmented by a soft robotic exosuit and is designed to facilitate faster walking by way of increased paretic propulsion. Repeated baseline assessments of comfortable walking speed over a 2-year period provided a stable baseline from which the effects of REAL training could be elucidated. Additional outcomes included paretic propulsion, maximum walking speed, and 6-minute walk test distance. Results: Comfortable walking speed was stable at 0.96 m/s prior to training and increased by 0.30 m/s after training. Clinically meaningful increases in maximum walking speed (Δ: 0.30 m/s) and 6-minute walk test distance (Δ: 59 m) were similarly observed. Improvements in paretic peak propulsion (Δ: 2.80 %BW), propulsive power (Δ: 0.41 W/kg), and trailing limb angle (Δ: 6.2 degrees) were observed at comfortable walking speed (p's < 0.05). Likewise, improvements in paretic peak propulsion (Δ: 4.63 %BW) and trailing limb angle (Δ: 4.30 degrees) were observed at maximum walking speed (p's < 0.05). Conclusions: The REAL training program is feasible to implement after stroke and capable of facilitating rapid and meaningful improvements in paretic propulsion, walking speed, and walking distance.

Keywords: exosuit; gait training; neurorehabilitation; propulsion; soft robotics; stroke; walking; wearable robots.

Conflict of interest statement

JB is currently an employee of Apple Inc. Apple Inc. did not play a role in this study. Patents describing the exosuit components documented in this article have been filed with the U.S. Patent Office. CJW and JB are inventors of at least one of the following patent/patent applications: U.S. 9,351,900, U.S. 14/660,704, U.S. 15/097,744, U.S. 14/893,934, PCT/US2014/068462, PCT/US2015/051107, and PCT/US2017/042286, U.S. 10,434,030, U.S. 10,843,332, U.S. 10,427,293 filed by Harvard University. CJW is a paid consultant to ReWalk Robotics. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Porciuncula, Baker, Arumukhom Revi, Bae, Sloutsky, Ellis, Walsh and Awad.

Figures

Figure 1
Figure 1
Progression of our stroke exosuits program from device development to development of the Robotic Exosuit Augmented Locomotion (REAL) gait training program. a, Awad et al. (2017a); b, Bae et al. (2015); c, Awad et al. (2017b); d, Bae et al. (2018b); e, Awad et al. (2020a); f, Bae et al. (2018a); g, Siviy et al. (2020). *Single-session comparisons of exosuit powered vs. unpowered (or not worn); **Multi-session evaluations of pre-to-post training effects of REAL gait training.
Figure 2
Figure 2
(A) Schematic of soft robotic exosuit with representative force profiles for dorsiflexion and plantarflexion assistance. (B) Laboratory setup for biomechanical evaluation of overground walking. (C) Illustration of Robotic Exosuit Augmented Locomotion (REAL) training, administered by a physical therapist on the treadmill and overground. DF, Dorsiflexion; PF, Plantarflexion; AP-GRF, Anterior-posterior ground reaction force; %bw, Percent body weight; IMU, Inertial measurement unit. (A) Green shoe refers to paretic foot, and red shoe refers to non-paretic foot.
Figure 3
Figure 3
Effects of Robotic Exosuit Augmented Locomotion (REAL) training on 10-m walk test speeds and 6-minute walk test distance. (A) Five comfortable walking speed measurements repeatedly assessed over 2 years prior to the onset of REAL training (four historical timepoints and one pre-training evaluation conducted immediately before the training period), post-training evaluation comfortable walking speed, and pre-to-post maximum walking speeds. (B) Pre-to-post comparisons of 6-minute walk test distance. (C) Time series of anteroposterior ground reaction forces (AP-GRF) of each speed condition; (D) Peak propulsion of each speed condition. CWS, Comfortable walking speed; MWS, Maximum walking speed; MDC, Minimum detectable change; MCID, Minimal clinically importance difference; *: (p < 0.05).

References

    1. Abbasian S., Rastegar M. M. M. (2018). Is the intensity or duration of treadmill training important for stroke patients? a meta-analysis. J. Stroke Cerebrovasc. Dis. 27, 32–43. 10.1016/j.jstrokecerebrovasdis.2017.09.061
    1. Ada L., Dean C. M., Hall J. M., Bampton J., Crompton S. (2003). A treadmill and overground walking program improves walking in persons residing in the community after stroke. Arch. Phys. Med. Rehabil. 84, 1486–1491. 10.1016/S0003-9993(03)00349-6
    1. Alingh J. F., Groen B. E., Kamphuis J. F., Geurts A. C. H., Weerdesteyn V. (2021). Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study. J. NeuroEng. Rehabil. 18:69. 10.1186/s12984-021-00858-8
    1. Alingh J. F., Groen B. E., van Asseldonk E. H. F., Geurts A. C. H., Weerdesteyn V. (2020). Effectiveness of rehabilitation interventions to improve paretic propulsion in individuals with stroke—a systematic review. Clin. Biomech. 71, 176–188. 10.1016/j.clinbiomech.2019.10.021
    1. Ardestani M. M., Henderson C. E., Hornby T. G. (2019b). Improved walking function in laboratory does not guarantee increased community walking in stroke survivors: potential role of gait biomechanics. J. Biomech. 91, 151–159. 10.1016/j.jbiomech.2019.05.011
    1. Ardestani M. M., Kinnaird C. R., Henderson C. E., Hornby T. G. (2019a). Compensation or recovery? altered kinetics and neuromuscular synergies following high-intensity stepping training poststroke. Neurorehabil. Neural Repair 33, 47–58. 10.1177/1545968318817825
    1. Awad L. N., Bae J., Kudzia P., Long A., Hendron K., Holt K. G., et al. . (2017b). Reducing circumduction and hip hiking during hemiparetic walking through targeted assistance of the paretic limb using a soft robotic exosuit. Am. J. Phys. Med. Rehabil. 96, S157–S164. 10.1097/PHM.0000000000000800
    1. Awad L. N., Bae J., O'Donnell K., De Rossi S. M. M., Hendron K., Sloot L. H., et al. . (2017a). A soft robotic exosuit improves walking in patients after stroke. Sci. Transl. Med. 9:eaai9084. 10.1126/scitranslmed.aai9084
    1. Awad L. N., Binder-Macleod S. A., Pohlig R. T., Reisman D. S. (2015a). Paretic propulsion and trailing limb angle are key determinants of long-distance walking function after stroke. Neurorehabil. Neural Repair. 29, 499–508. 10.1177/1545968314554625
    1. Awad L. N., Hsiao H., Binder-Macleod S. A. (2020b). Central drive to the paretic ankle plantarflexors affects the relationship between propulsion and. J. Neurol. Phys. Ther. 44, 42–48. 10.1097/NPT.0000000000000299
    1. Awad L. N., Kudzia P., Arumukhom Revi D., Ellis T. D., Walsh C. J. (2020a). Walking faster and farther with a soft robotic exosuit: implications for post-stroke gait assistance and rehabilitation. IEEE Open J. Eng. Med. Biol. 1, 108–115. 10.1109/OJEMB.2020.2984429
    1. Awad L. N., Palmer J. A., Pohlig R. T., Binder-macleod S. A., Reisman D. S. (2015b). Walking speed and step length asymmetry modify the energy cost of walking after stroke. Neurorehabil. Neural Repair 29, 416–423. 10.1177/1545968314552528
    1. Awad L. N., Reisman D. S., Kesar T. M., Binder-Macleod S. A. (2014). Targeting paretic propulsion to improve poststroke walking function: a preliminary study. Arch. Phys. Med. Rehabil. 95, 840–848. 10.1016/j.apmr.2013.12.012
    1. Awad L. N., Reisman D. S., Pohlig R. T., Binder-Macleod S. A. (2016). Identifying candidates for targeted gait rehabilitation after stroke: better prediction through biomechanics-informed characterization. J. NeuroEng. Rehabil. 13, 1–8. 10.1186/s12984-016-0188-8
    1. Bae J., Awad L. N., Long A., et al. . (2018b). Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke. J. Exp. Biol. 221, 1–11. 10.1242/jeb.168815
    1. Bae J., De Rossi S. M. M., O'Donnell K., Hendron K. L., Awad L. N., Teles Dos Santos T. R., et al. . (2015). A soft exosuit for patients with stroke: feasibility study with a mobile off-board actuation unit, in IEEE International Conference on Rehabilitation Robotics (Singapore: ), 131–138.
    1. Bae J., Siviy C., Rouleau M., Menard N., O'Donnell K., Geliana I., et al. . (2018a). A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke, in Proceedings–IEEE International Conference on Robotics and Automation (Brisbane, QLD: ), 2820–2827.
    1. Balbinot G., Schuch C. P., Bianchi Oliveira H., Peyré-Tartaruga L. A. (2020). Mechanical and energetic determinants of impaired gait following stroke: segmental work and pendular energy transduction during treadmill walking. Biol. Open 9:bio051581. 10.1242/bio.051581
    1. Barthuly A. M., Bohannon R. W., Gorack W. (2012). Gait speed is a responsive measure of physical performance for patients undergoing short-term rehabilitation. Gait Posture 36, 61–64. 10.1016/j.gaitpost.2012.01.002
    1. Bates B., Bates B. (1996). Single-subject methodology: an alternative approach. Med. Sci. Sports Exerc. 28, 631–638. 10.1249/00005768-199605000-00016
    1. Bohannon R., Andrews A., Smith M. (1988). Rehabilitation goals of patients with hemiplegia. Int. J. Rehabil. Res. 11, 181–183. 10.1097/00004356-198806000-00012
    1. Bohannon R. W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age Ageing 26, 15–19. 10.1093/ageing/26.1.15
    1. Bowden M. G., Balasubramanian C. K., Behrman A. L., Kautz S. A. (2008). Validation of a speed-based classification system using quantitative measures of walking performance post-stroke. Neurorehabil. Neural Repair 22, 672–675. 10.1177/1545968308318837
    1. Bowden M. G., Balasubramanian C. K., Neptune R. R., Kautz S. A. (2006). Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke 37, 872–876. 10.1161/01.STR.0000204063.75779.8d
    1. Bowden M. G., Behrman A. L., Neptune R. R., Gregory C. M., Kautz S. A. (2013). Locomotor rehabilitation of individuals with chronic stroke: difference between responders and nonresponders. Arch. Phys. Med. Rehabil. 94, 856–862. 10.1016/j.apmr.2012.11.032
    1. Bowden M. G., Behrman A. L., Woodbury M., Gregory C. M., Velozo C. A., Kautz S. A. (2012). Advancing measurement of locomotor rehabilitation outcomes to optimize interventions and differentiate between recovery versus compensation. J. Neurol. Phys. Ther. 36, 38–44. 10.1097/NPT.0b013e3182472cf6
    1. Campanini I., Merlo A. (2009). Reliabilty, smallest real difference, and concurrent validity of indices computed from GRF components in gait of stroke patients. Gait Posture 30, 127–131. 10.1016/j.gaitpost.2009.03.011
    1. Chen G., Patten C., Kothari D. H., Zajac F. E. (2005). Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 22, 51–56. 10.1016/j.gaitpost.2004.06.009
    1. Cianchetti M., Laschi C., Menciassi A., Dario P. (2018). Biomedical applications of soft robotics. Nat. Rev. Mater. 3, 143–153. 10.1038/s41578-018-0022-y
    1. Combs S. A., Dugan E. L., Ozimek E. N., Curtis A. B. (2012). Effects of body-weight supported treadmill training on kinetic symmetry in persons with chronic stroke. Clin. Biomech. 27, 887–892. 10.1016/j.clinbiomech.2012.06.011
    1. Cruz T. H., Lewek M. D., Dhaher Y. Y. (2009). Biomechanical impairments and gait adaptations post-stroke: multi-factorial associations. J. Biomech. 42, 1673–1677. 10.1016/j.jbiomech.2009.04.015
    1. Dobkin B. H. (2009). Progressive staging of pilot studies to improve phase III trials for motor interventions. Neurorehabil. Neural Repair 23, 197–206. 10.1177/1545968309331863
    1. Esquenazi A., Talaty M., Jayaraman A. (2017). Powered exoskeletons for walking assistance in persons with central nervous system injuries: a narrative review. PM R 9, 46–62. 10.1016/j.pmrj.2016.07.534
    1. Fickey S. N., Browne M. G., Franz J. R. (2018). Biomechanical effects of augmented ankle power output during human walking. J. Exp. Biol. 221:jeb182113. 10.1242/jeb.182113
    1. Forrester L. W., Roy A., Hafer-Macko C., Krebs H. I., Macko R. F. (2016). Task-specific ankle robotics gait training after stroke: a randomized pilot study. J. NeuroEng. Rehabil. 13, 1–6. 10.1186/s12984-016-0158-1
    1. Fulk G. D., He Y., Boyne P., Dunning K. (2017). Predicting home and community walking activity poststroke. Stroke 48, 406–412. 10.1161/STROKEAHA.116.015309
    1. Geiger M., Supiot A., Pradon D., Do M. C., Zory R., Roche N. (2019). Minimal detectable change of kinematic and spatiotemporal parameters in patients with chronic stroke across three sessions of gait analysis. Hum. Mov. Sci. 64, 101–107. 10.1016/j.humov.2019.01.011
    1. Guadagnoli M. A., Lee T. D. (2004). Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J. Mot. Behav. 36, 212–224. 10.3200/JMBR.36.2.212-224
    1. Hall A. L., Bowden M. G., Kautz S. A., Neptune R. R. (2012). Biomechanical variables related to walking performance 6-months following post-stroke rehabilitation. Clin. Biomech. 27, 1017–1022. 10.1016/j.clinbiomech.2012.07.006
    1. Higginson J. S., Zajac F. E., Neptune R. R., Kautz S. A., Delp S. L. (2006). Muscle contributions to support during gait in an individual with post-stroke hemiparesis. Journal of Biomechanics. 39:1769–1777. 10.1016/j.jbiomech.2005.05.032
    1. Hobbs B., Artemiadis P. (2020). A review of robot-assisted lower-limb stroke therapy: unexplored paths and future directions in gait rehabilitation. Front. Neurorobot. 14:19. 10.3389/fnbot.2020.00019
    1. Hornby T. G., Reisman D. S., Ward I. G., Scheets P. L., Miller A., Haddad D., et al. . (2020). Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury and brain injury. J. Neurol. Phys. Ther. 44, 49–100. 10.1097/NPT.0000000000000303
    1. Hsiao H., Awad L. N., Palmer J. A., Higginson S., Binder M., Acleod S. A. (2016a). Contribution of paretic and non-paretic limb peak propulsive forces to changes in walking speed in individuals poststroke HaoYuan. Neurorehabil. Neural Repair 30, 743–752. 10.1177/1545968315624780
    1. Hsiao H., Knarr B. A., Higginson J. S., Binder-Macleod S. A. (2015). The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Hum. Mov. Sci. 39, 212–221. 10.1016/j.humov.2014.11.008
    1. Hsiao H., Knarr B. A., Pohlig R. T., Higginson J. S., Binder-Macleod S. A. (2016b). Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke HaoYuan. J. Biomech. 49, 388–395. 10.1016/j.jbiomech.2015.12.040
    1. Jarvis H. L., Brown S. J., Price M., Butterworth C., Groenevelt R., Jackson K., et al. . (2019). Return to employment after stroke in young adults: How important is the speed and energy cost of walking? Stroke 50, 3198–3204. 10.1161/STROKEAHA.119.025614
    1. Kleim J. A., Jones T. A. (2008). Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51, 225–239. 10.1044/1092-4388(2008/018)
    1. Kratochwill T. R. (1978). Single Subject Research: Strategies for Evaluating Change. London: Oxford Press, Academic Press, Inc., 1–316.
    1. Kuo A. D., Donelan J. M. (2010). Dynamic principles of gait and their clinical implications. Phys. Ther. 90, 157–174. 10.2522/ptj.20090125
    1. Lewek M. D., Osborn A. J., Wutzke C. J. (2012). The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking. Arch. Phys. Med. Rehabil. 93, 123–128. 10.1016/j.apmr.2011.08.019
    1. Lewek M. D., Sawicki G. S. (2019). Trailing limb angle is a surrogate for propulsive limb forces during walking post-stroke. Clin. Biomech. 67, 115–118. 10.1016/j.clinbiomech.2019.05.011
    1. Lo A. C. (2012). Clinical designs of recent robot rehabilitation trials. Am. J. Phys. Med. Rehabil. 91(11 Suppl. 3), 204–216. 10.1097/PHM.0b013e31826bcfa3
    1. Lohse K. R., Lang C. E., Boyd L. A. (2014). Is more better? using meta-data to explore dose-response relationships in stroke rehabilitation. Stroke 45, 2053–2058. 10.1161/STROKEAHA.114.004695
    1. Luo L., Zhu S., Shi L., Wang P., Li M., Yuan S. (2019). High intensity exercise for walking competency in individuals with stroke: a systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 28:104414. 10.1016/j.jstrokecerebrovasdis.2019.104414
    1. Mahon C. E., Farris D. J., Sawicki G. S., Lewek M. D. (2015). Individual limb mechanical analysis of gait following stroke. J. Biomech. 48, 984–989. 10.1016/j.jbiomech.2015.02.006
    1. Mcgrath R. L., Ziegler M., Pires-Fernandes M., Knarr B. A., Higginson J. S., Sergi F. (2019). The effect of stride length on lower extremity joint kinetics at various gait speeds. PLoS ONE 14:e0200862. 10.1101/363788
    1. Moore J. L., Roth E. J., Killian C., Hornby T. G. (2010). Locomotor training improves daily stepping activity and gait efficiency in individuals poststroke who have reached a “plateau” in recovery. Stroke 41, 129–135. 10.1161/STROKEAHA.109.563247
    1. Morone G., Paolucci S., Cherubini A., et al. . (2017). Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 13, 1303–1311. 10.2147/NDT.S114102
    1. Müssgens D. M., Ullén F. (2015). Transfer in motor sequence learning: effects of practice schedule and sequence context. Front. Hum. Neurosci. 9:642. 10.3389/fnhum.2015.00642
    1. Nadeau S. E., Wu S. S., Dobkin B. H., Azen S. P., Rose D. K., Tilson J. K., et al. . (2013). Effects of task-specific and impairment-based training compared with usual care on functional walking ability after inpatient stroke rehabilitation: leaps trial. Neurorehabil. Neural Repair 27, 370–380. 10.1177/1545968313481284
    1. Palmer J. A., Hsiao H. Y., Awad L. N., Binder-Macleod S. A. (2016). Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke. Clin. Neurophysiol. 127, 1837–1844. 10.1016/j.clinph.2015.12.003
    1. Parker C. J., Guerin H., Buchanan B., Lewek M. D. (2021). Targeted verbal cues can immediately alter gait following stroke. Top. Stroke Rehabil. 22, 1–10. 10.1080/10749357.2021.1928840
    1. Penke K., Scott K., Sinskey Y., Lewek M. D. (2019). Propulsive forces applied to the body's center of mass affect metabolic energetics poststroke. Arch. Phys. Med. Rehabil. 100, 1068–1075. 10.1016/j.apmr.2018.10.010
    1. Perera S., Mody S. H., Woodman R. C., Studenski S. A. (2006). Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 54, 743–749. 10.1111/j.1532-5415.2006.00701.x
    1. Reinkensmeyer D. J., Burdet E., Casadio M., Krakauer J. W., Kwakkel G., Lang C. E., et al. . (2016). Computational neurorehabilitation: modeling plasticity and learning to predict recovery. J. Neuroeng. Rehabil.13:42. 10.1007/978-3-319-28603-7
    1. Roelker S. A., Bowden M. G., Kautz S. A., Neptune R. R. (2019). Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: a review. Gait Posture 68, 6–14. 10.1016/j.gaitpost.2018.10.027
    1. Routson R. L., Clark D. J., Bowden M. G., Kautz S. A., Neptune R. R. (2013). The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture. 38, 511–517. 10.1016/j.gaitpost.2013.01.020
    1. Shi B., Chen X., Yue Z., Yin S., Weng Q., Zhang X. (2019). Wearable ankle robots in post-stroke rehabilitation of gait: a systematic review. Front. Neurorobot. 13, 1–16. 10.3389/fnbot.2019.00063
    1. Shumway-Cook A., Woollacott M. (2001). Motor Control: Theory and Practical Applications. Philadelphia, PA: Lippincott Williams and Wilkins.
    1. Siviy C., Bae J., Baker L., Porciuncula F., Baker T., Ellis T. D., et al. . (2020). Offline assistance optimization of a soft exosuit for augmenting ankle power of stroke survivors during walking. IEEE Robot. Autom. Lett. 5, 828–835. 10.1109/LRA.2020.2965072
    1. Tang A., Eng J. J., Rand D. (2012). Relationship between perceived and measured changes in walking after stroke. J. Neurol. Phys. Ther. 36, 115–121. 10.1097/NPT.0b013e318262dbd0
    1. Tedla J. S., Dixit S., Gular K., Abohashrh M. (2019). Robotic-assisted gait training effect on function and gait speed in subacute and chronic stroke population: a systematic review and meta-analysis of randomized controlled trials. Eur. Neurol. 81, 103–111. 10.1159/000500747
    1. Tilson J. K., Sullivan K. J., Cen S. Y., Rose D. K., Koradia C. H., Azen S. P., et al. . (2010). Meaningful gait speed improvement during the first 60 days poststroke: minimal clinically important difference. Phys. Ther. 90, 196–208. 10.2522/ptj.20090079
    1. Turns L. J., Neptune R. R., Kautz S. A. (2007). Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking lindsey. Arch. Phys. Med. Rehabil. 88, 1127–1135. 10.1016/j.apmr.2007.05.027
    1. Vistamehr A., Kautz S. A., Bowden M. G., Neptune R. R. (2016). Correlations between measures of dynamic balance in individuals with post-stroke hemiparesis. J. Biomech. 49, 396–400. 10.1016/j.jbiomech.2015.12.047
    1. Wakida M., Ohata K., Hashiguchi Y., Mori K., Hase K., Yamada S. (2020). Immediate effect on ground reaction forces induced by step training based on discrete skill during gait in poststroke individuals: a pilot study. Rehabil. Res. Pract. 2020, 1–8. 10.1155/2020/2397374

Source: PubMed

3
订阅