Reduced cortical thickness associated with visceral fat and BMI

Ralf Veit, Stephanie Kullmann, Martin Heni, Jürgen Machann, Hans-Ulrich Häring, Andreas Fritsche, Hubert Preissl, Ralf Veit, Stephanie Kullmann, Martin Heni, Jürgen Machann, Hans-Ulrich Häring, Andreas Fritsche, Hubert Preissl

Abstract

Structural brain imaging studies have shown that obesity is associated with widespread reductions in gray matter (GM) volume. Although the body mass index (BMI) is an easily accessible anthropometric measure, substantial health problems are more related to specific body fat compartments, like visceral adipose tissue (VAT). We investigated cortical thickness measures in a group of 72 healthy subjects (BMI range 20-35 kg/m(2), age range 19-50 years). Multiple regression analyses were performed using VAT and BMI as predictors and age, gender, total surface area and education as confounds. BMI and VAT were independently associated with reductions in cortical thickness in clusters comprising the left lateral occipital area, the left inferior temporal cortex, and the left precentral and inferior parietal area, while the right insula, the left fusiform gyrus and the right inferior temporal area showed a negative correlation with VAT only. In addition, we could show significant reductions in cortical thickness with increasing VAT adjusted for BMI in the left temporal cortex. We were able to detect widespread cortical thinning in a young to middle-aged population related to BMI and VAT; these findings show close resemblance to studies focusing on GM volume differences in diabetic patients. This may point to the influence of VAT related adverse effects, like low-grade inflammation, as a potentially harmful factor on brain integrity already in individuals at risk of developing diabetes, metabolic syndromes and arteriosclerosis.

Keywords: Cortical thickness; MR imaging; Obesity; Visceral adipose tissue.

Figures

Fig. 1
Fig. 1
Lateral and inferior views of the reductions in cortical thickness in relation to BMI adjusted for sex, age, total surface area and education. Significant clusters in the left inferior temporal and left inferior parietal cortex (a) and right precentral gyrus (b). Scatter plots represent the association between BMI and the averaged cortical thickness of each subject in the corresponding clusters representing the left inferior temporal cortex (c) and the right precentral gyrus (d). The t-value and the corresponding p-value are depicted.
Fig. 2
Fig. 2
(a) Lateral and inferior views of the reductions in cortical thickness in relation to visceral adipose tissue adjusted for sex, age, total surface area and education. Significant clusters in the left fusiform gyrus (a) and the right inferior temporal and mid-insular region (b). Scatter plots represent the association between VAT and the averaged cortical thickness of each subject in the cluster representing the left inferior temporal cortex (c) and the right mid-insular gyrus (d). The t-value and the corresponding p-value are depicted.
Fig. 3
Fig. 3
Lateral view of the reductions in cortical thickness in relation to VAT adjusted for BMI, sex, age, total surface area and education. A significant cluster in the left transverse temporal gyrus extending into the superior temporal gyrus and mid-insula. Scatter plot represents the association between VAT and the averaged cortical thickness in the corresponding area in each subject. The t-value and the corresponding p-value are depicted.

References

    1. Aronson D., Bartha P., Zinder O., Kerner A., Markiewicz W., Avizohar O., Brook G.J., Levy Y. Obesity is the major determinant of elevated C-reactive protein in subjects with the metabolic syndrome. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity. 2004;28:674–679.
    1. Ashburner J., Friston K.J. Why voxel-based morphometry should be used. Neuroimage. 2001;14:1238–1243.
    1. Bernal-Rusiel J.L., Atienza M., Cantero J.L. Determining the optimal level of smoothing in cortical thickness analysis: a hierarchical approach based on sequential statistical thresholding. Neuroimage. 2010;52:158–171.
    1. Brundel M., van den Heuvel M., de Bresser J., Kappelle L.J., Biessels G.J., Utrecht Diabetic Encephalopathy Study Group Cerebral cortical thickness in patients with type 2 diabetes. Journal of the Neurological Sciences. 2010;299:126–130.
    1. Cardenas V.A., Reed B., Chao L.L., Chui H., Sanossian N., DeCarli C.C., Mack W., Kramer J., Hodis H.N., Yan M., Buonocore M.H., Carmichael O., Jagust W.J., Weiner M.W. Associations among vascular risk factors, carotid atherosclerosis, and cortical volume and thickness in older adults. Stroke. 2012;43:2865–2870.
    1. Carnell S., Gibson C., Benson L., Ochner C.N., Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obesity Reviews: an Official Journal of the International Association for the Study of Obesity. 2012;13:43–56.
    1. Choi J., Joseph L., Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obesity Reviews: an Official Journal of the International Association for the Study of Obesity. 2013;14:232–244.
    1. Dale A.M., Fischl B., Sereno M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–194.
    1. Debette S., Beiser A., Hoffmann U., Decarli C., O'Donnell C.J., Massaro J.M., Au R., Himali J.J., Wolf P.A., Fox C.S., Seshadri S. Visceral fat is associated with lower brain volume in healthy middle-aged adults. Annals of Neurology. 2010;68:136–144.
    1. Fischl B., Dale A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:11050–11055.
    1. Fischl B., Liu A., Dale A.M. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging. 2001;20:70–80.
    1. Hassenstab J.J., Sweet L.H., Del Parigi A., McCaffery J.M., Haley A.P., Demos K.E., Cohen R.A., Wing R.R. Cortical thickness of the cognitive control network in obesity and successful weight loss maintenance: a preliminary MRI study. Psychiatry Research. 2012;202:77–79.
    1. Hutton C., Draganski B., Ashburner J., Weiskopf N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage. 2009;48:371–380.
    1. Isaac V., Sim S., Zheng H., Zagorodnov V., Tai E.S., Chee M. Adverse associations between visceral adiposity, brain structure, and cognitive performance in healthy elderly. Frontiers in Aging Neuroscience. 2011;3:12.
    1. Jiao Y., Chen R., Ke X., Chu K., Lu Z., Herskovits E.H. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage. 2010;50:589–599.
    1. Karlsson H.K., Tuulari J.J., Hirvonen J., Lepomäki V., Parkkola R., Hiltunen J., Hannukainen J.C., Soinio M., Pham T., Salminen P., Nuutila P., Nummenmaa L. Obesity is associated with white matter atrophy: a combined diffusion tensor imaging and voxel-based morphometric study. Obesity (Silver Spring) 2013;21(12):2530–2537.
    1. Kullmann S., Pape A.A., Heni M., Ketterer C., Schick F., Häring H.U., Fritsche A., Preissl H., Veit R. Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults. Cerebral Cortex (New York, N.Y.: 1991) 2013;23:1247–1256.
    1. Kurth F., Levitt J.G., Phillips O.R., Luders E., Woods R.P., Mazziotta J.C., Toga A.W., Narr K.L. Relationships between gray matter, body mass index, and waist circumference in healthy adults. Human Brain Mapping. 2013;34:1737–1746.
    1. Lerch J.P., Evans A.C. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage. 2005;24:163–173.
    1. Machann J., Thamer C., Schnoedt B., Haap M., Haring H.U., Claussen C.D., Stumvoll M., Fritsche A., Schick F. Standardized assessment of whole body adipose tissue topography by MRI. Journal of Magnetic Resonance Imaging: JMRI. 2005;21:455–462.
    1. Maislin G., Ahmed M.M., Gooneratne N., Thorne-Fitzgerald M., Kim C., Teff K., Arnardottir E.S., Benediktsdottir B., Einarsdottir H., Juliusson S., Pack A.I., Gislason T., Schwab R.J. Single slice vs. volumetric MR assessment of visceral adipose tissue: reliability and validity among the overweight and obese. Obesity (Silver Spring) 2012;20:2124–2132.
    1. Marqués-Iturria I., Pueyo R., Garolera M., Segura B., Junqué C., García-García I., José Sender-Palacios M., Vernet-Vernet M., Narberhaus A., Ariza M., Jurado M.Á. Frontal cortical thinning and subcortical volume reductions in early adulthood obesity. Psychiatry Research. 2013;214:109–115.
    1. Neeland I.J., Ayers C.R., Rohatgi A.K., Turer A.T., Berry J.D., Das S.R., Vega G.L., Khera A., McGuire D.K., Grundy S.M., de Lemos J.A. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity (Silver Spring, Md.) 2013;21:E439–E447.
    1. Nobili F., Rodriguez G., Marenco S., De Carli F., Gambaro M., Castello C., Pontremoli R., Rosadini G. Regional cerebral blood flow in chronic hypertension. A correlative study. Stroke; a Journal of Cerebral Circulation. 1993;24:1148–1153.
    1. Pannacciulli N., Del Parigi A., Chen K., Le D.S., Reiman E.M., Tataranni P.A. Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage. 2006;31:1419–1425.
    1. Pereira J.B., Ibarretxe-Bilbao N., Marti M.J., Compta Y., Junqué C., Bargallo N., Tolosa E. Assessment of cortical degeneration in patients with Parkinson's disease by voxel-based morphometry, cortical folding, and cortical thickness. Human Brain Mapping. 2012;33:2521–2534.
    1. Raschpichler M., Straatman K., Schroeter M.L., Arelin K., Schlögl H., Fritzsch D., Mende M., Pampel A., Böttcher Y., Stumvoll M., Villringer A., Mueller K. Abdominal fat distribution and its relationship to brain changes: the differential effects of age on cerebellar structure and function: a cross-sectional, exploratory study. BMJ Open. 2013;3
    1. Stefan N., Kantartzis K., Machann J., Schick F., Thamer C., Rittig K., Balletshofer B., Machicao F., Fritsche A., Häring H.U. Identification and characterization of metabolically benign obesity in humans. Archives of Internal Medicine. 2008;168:1609–1616.
    1. Taki Y., Thyreau B., Kinomura S., Sato K., Goto R., Wu K., Kakizaki M., Tsuji I., Kawashima R., Fukuda H. Correlation between high-sensitivity C-reactive protein and brain gray matter volume in healthy elderly subjects. Human Brain Mapping. 2013;34:2418–2424.
    1. van der Laan L.N., de Ridder D.T., Viergever M.A., Smeets P.A. The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage. 2011;55:296–303.
    1. Walther K., Birdsill A.C., Glisky E.L., Ryan L. Structural brain differences and cognitive functioning related to body mass index in older females. Human Brain Mapping. 2010;31:1052–1064.
    1. Weise C.M., Thiyyagura P., Reiman E.M., Chen K., Krakoff J. Fat-free body mass but not fat mass is associated with reduced gray matter volume of cortical brain regions implicated in autonomic and homeostatic regulation. Neuroimage. 2013;64:712–721.
    1. Wersching H., Duning T., Lohmann H., Mohammadi S., Stehling C., Fobker M., Conty M., Minnerup J., Ringelstein E.B., Berger K., Deppe M., Knecht S. Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function. Neurology. 2010;74:1022–1029.

Source: PubMed

3
订阅