Optical Coherence Tomography as a Biomarker for Diagnosis, Progression, and Prognosis of Neurodegenerative Diseases

Maria Satue, Javier Obis, Maria J Rodrigo, Sofia Otin, Maria I Fuertes, Elisa Vilades, Hector Gracia, Jose R Ara, Raquel Alarcia, Vicente Polo, Jose M Larrosa, Luis E Pablo, Elena Garcia-Martin, Maria Satue, Javier Obis, Maria J Rodrigo, Sofia Otin, Maria I Fuertes, Elisa Vilades, Hector Gracia, Jose R Ara, Raquel Alarcia, Vicente Polo, Jose M Larrosa, Luis E Pablo, Elena Garcia-Martin

Abstract

Neurodegenerative diseases present a current challenge for accurate diagnosis and for providing precise prognostic information. Developing imaging biomarkers for multiple sclerosis (MS), Parkinson disease (PD), and Alzheimer's disease (AD) will improve the clinical management of these patients and may be useful for monitoring treatment effectiveness. Recent research using optical coherence tomography (OCT) has demonstrated that parameters provided by this technology may be used as potential biomarkers for MS, PD, and AD. Retinal thinning has been observed in these patients and new segmentation software for the analysis of the different retinal layers may provide accurate information on disease progression and prognosis. In this review we analyze the application of retinal evaluation using OCT technology to provide better understanding of the possible role of the retinal layers thickness as biomarker for the detection of these neurodegenerative pathologies. Current OCT analysis of the retinal nerve fiber layer and, specially, the ganglion cell layer thickness may be considered as a good biomarker for disease diagnosis, severity, and progression.

Figures

Figure 1
Figure 1
Optic nerve head (a) and retinal nerve fiber layer analysis (b) as obtained with swept-source optical coherence tomography in a 43-year-old patient with multiple sclerosis who suffered a previous episode of optic neuritis 5 years ago. The pixel map and the clock sector analysis (marked with the white square) of the optic disc shows important retinal nerve fiber layer loss in most sectors of the peripapillary area.
Figure 2
Figure 2
Mean peripapillary retinal nerve fiber layer (pRNFL) thickness of 100 multiple sclerosis (MS) patients compared with 97 healthy controls, as measured with optical coherence tomography. The peripapillary area is divided into 6 different sectors (superonasal, superotemporal, nasal, inferonasal, inferotemporal, and temporal) and average thickness. All measurements except nasal thickness were found to be significantly reduced in MS patients compared to controls (Garcia-Martin et al., data not published).
Figure 3
Figure 3
Example of segmentation analysis of the different retinal layers, in a cross-sectional linear scan of the macular area (a), obtained with Spectralis optical coherence tomography, in a healthy control (b) and a patient diagnosed with Parkinson disease (c). The marked lines are automatically provided by the segmentation software and represent the different layers of the retina. Corresponding acronyms are also provided by the segmentation software: ILM: inner limiting membrane; GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; ELM: external limiting membrane; PR: photoreceptors; MB: Bruch's membrane.
Figure 4
Figure 4
Example of segmentation analysis of the macular ganglion cell layer, obtained with Spectralis optical coherence tomography, in a healthy control (a) and a patient diagnosed with Parkinson disease (b). The segmentation report shows the ganglion cell layer thickness (in microns) and total volume (in mm3) of the ETDRS macular area. In this patient (b), the central and inner macular areas present thinning of the ganglion cell layer, compared with the healthy control (a).

References

    1. Huang D., Swanson E. A., Lin C. P., et al. Optical coherence tomography. Science. 1991;254(5035):1178–1181. doi: 10.1126/science.1957169.
    1. Fujimoto J. G., Brezinski M. E., Tearney G. J., et al. Optical biopsy and imaging using optical coherence tomography. Nature Medicine. 1995;1(9):970–972. doi: 10.1038/nm0995-970.
    1. Garcia-Martin E., Pueyo V., Ara J. R., et al. Effect of optic neuritis on progressive axonal damage in multiple sclerosis patients. Multiple Sclerosis Journal. 2011;17(7):830–837. doi: 10.1177/1352458510397414.
    1. Burgansky-Eliash Z., Wollstein G., Chu T., et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Investigative Ophthalmology & Visual Science. 2005;46(11):4147–4152. doi: 10.1167/iovs.05-0366.
    1. García-Martín E., Pueyo V., Martin J., et al. Progressive changes in the retinal nerve fiber layer in patients with multiple sclerosis. European Journal of Ophthalmology. 2010;20(1):167–173.
    1. Garcia-Martin E., Pablo L. E., Herrero R., et al. Diagnostic ability of a linear discriminant function for spectral-domain optical coherence tomography in patients with multiple sclerosis. Ophthalmology. 2012;119(8):1705–1711. doi: 10.1016/j.ophtha.2012.01.046.
    1. Larrosa J. M., Garcia-Martin E., Bambo M. P., et al. Potential new diagnostic tool for Alzheimer's disease using a linear Discriminant function for Fourier domain optical coherence tomography. Investigative Ophthalmology & Visual Science. 2014;55(5):3043–3051. doi: 10.1167/iovs.13-13629.
    1. Garcia-Martin E., Satue M., Otin S., et al. Retina measurements for diagnosis of parkinson disease. Retina. 2014;34(5):971–980. doi: 10.1097/IAE.0000000000000028.
    1. Martinez-Lapiscina E. H., Arnow S., Wilson J. A., et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. The Lancet Neurology. 2016;15(6):574–584. doi: 10.1016/S1474-4422(16)00068-5.
    1. Compston A., Coles A. Multiple sclerosis. The Lancet. 2008;372(9648):1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. McDonald W. I. Multiple sclerosis: epidemiology and HLA associations. Annals of the New York Academy of Sciences. 1984;436:109–117. doi: 10.1111/j.1749-6632.1984.tb14781.x.
    1. Palace J. Inflammation versus neurodegeneration: consequences for treatment. Journal of the Neurological Sciences. 2007;259(1-2):46–49. doi: 10.1016/j.jns.2006.05.072.
    1. Hauser S. L., Oksenberg J. R. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron. 2006;52(1):61–76. doi: 10.1016/j.neuron.2006.09.011.
    1. Green A. J., McQuaid S., Hauser S. L., Allen I. V., Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133(6):1591–1601. doi: 10.1093/brain/awq080.
    1. Parisi V., Manni G., Spadaro M., et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Investigative Ophthalmology and Visual Science. 1999;40(11):2520–2527.
    1. Huang-Link Y.-M., Fredrikson M., Link H. Benign multiple sclerosis is associated with reduced tinning of the retinal nerve fiber and ganglion cell layers in non-optic-neuritis eyes. Journal of Clinical Neurology (Korea) 2015;11(3):241–247. doi: 10.3988/jcn.2015.11.3.241.
    1. Serbecic N., Aboul-Enein F., Beutelspacher S. C., et al. High resolution spectral domain optical coherence tomography (SD-OCT) in multiple sclerosis: the first follow up study over two years. PLoS ONE. 2011;6(5) doi: 10.1371/journal.pone.0019843.e19843
    1. Pueyo V., Martin J., Fernandez J., et al. Axonal loss in the retinal nerve fiber layer in patients with multiple sclerosis. Multiple Sclerosis. 2008;14(5):609–614. doi: 10.1177/1352458507087326.
    1. Talman L. S., Bisker E. R., Sackel D. J., et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Annals of Neurology. 2010;67(6):749–760. doi: 10.1002/ana.22005.
    1. Saidha S., Syc S. B., Durbin M. K., et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Multiple Sclerosis Journal. 2011;17(12):1449–1463. doi: 10.1177/1352458511418630.
    1. Burkholder B. M., Osborne B., Loguidice M. J., et al. Macular volume determined by optical coherence tomography as a measure of neuronal loss in multiple sclerosis. Archives of Neurology. 2009;66(11):1366–1372. doi: 10.1001/archneurol.2009.230.
    1. Saidha S., Sotirchos E. S., Oh J., et al. Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurology. 2013;70(1):34–43. doi: 10.1001/jamaneurol.2013.573.
    1. Gordon-Lipkin E., Chodkowski B., Reich D. S., et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology. 2007;69(16):1603–1609. doi: 10.1212/.
    1. Sepulcre J., Murie-Fernandez M., Salinas-Alaman A., García-Layana A., Bejarano B., Villoslada P. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology. 2007;68(18):1488–1494. doi: 10.1212/01.wnl.0000260612.51849.ed.
    1. Toledo J., Sepulcre J., Salinas-Alaman A., et al. Retinal nerve fiber layer atrophy is associated with physical and cognitive disability in multiple sclerosis. Multiple Sclerosis. 2008;14(7):906–912. doi: 10.1177/1352458508090221.
    1. Cifelli A., Arridge M., Jezzard P., Esiri M. M., Palace J., Matthews P. M. Thalamic neurodegeneration in multiple sclerosis. Annals of Neurology. 2002;52(5):650–653. doi: 10.1002/ana.10326.
    1. Garcia-Martin E., Pueyo V., Almarcegui C., et al. Risk factors for progressive axonal degeneration of the retinal nerve fibre layer in multiple sclerosis patients. British Journal of Ophthalmology. 2011;95(11):1577–1582. doi: 10.1136/bjo.2010.199232.
    1. Garcia-Martin E., Rodriguez-Mena D., Herrero R., et al. Neuro-ophthalmologic evaluation, quality of life, and functional disability in patients with MS. Neurology. 2013;81(1):76–83. doi: 10.1212/wnl.0b013e318299ccd9.
    1. Sung K. R., Wollstein G., Bilonick R. A., et al. Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head. Ophthalmology. 2009;116(6):1119–1124. doi: 10.1016/j.ophtha.2009.01.004.
    1. Herrero R., Garcia-Martin E., Almarcegui C., et al. Progressive degeneration of the retinal nerve fiber layer in patients with multiple sclerosis. Investigative Ophthalmology and Visual Science. 2012;53(13):8344–8349. doi: 10.1167/iovs.12-10362.
    1. Fairless R., Williams S. K., Hoffmann D. B., et al. Preclinical retinal neurodegeneration in a model of multiple sclerosis. The Journal of Neuroscience. 2012;32(16):5585–5597. doi: 10.1523/jneurosci.5705-11.2012.
    1. Walter S. D., Ishikawa H., Galetta K. M., et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology. 2012;119(6):1250–1257. doi: 10.1016/j.ophtha.2011.11.032.
    1. Davies E. C., Galetta K. M., Sackel D. J., et al. Retinal ganglion cell layer volumetric assessment by spectral-domain optical coherence tomography in multiple sclerosis: application of a high-precision manual estimation technique. Journal of Neuro-Ophthalmology. 2011;31(3):260–264. doi: 10.1097/wno.0b013e318221b434.
    1. Garcia-Martin E., Polo V., Larrosa J. M., et al. Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography. Ophthalmology. 2014;121(2):573–579. doi: 10.1016/j.ophtha.2013.09.035.
    1. González-López J. J., Rebolleda G., Leal M., et al. Comparative diagnostic accuracy of ganglion cell-inner plexiform and retinal nerve fiber layer thickness measures by Cirrus and Spectralis optical coherence tomography in relapsing-remitting multiple sclerosis. BioMed Research International. 2014;2014:10. doi: 10.1155/2014/128517.128517
    1. Narayanan D., Cheng H., Bonem K. N., Saenz R., Tang R. A., Frishman L. J. Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis. Multiple Sclerosis Journal. 2014;20(10):1331–1341. doi: 10.1177/1352458514523498.
    1. Cummings J. L., Masterman D. L. Depression in patients with Parkinson's disease. International Journal of Geriatric Psychiatry. 1999;14(9):711–718. doi: 10.1002/(sici)1099-1166(199909)14:938;lt;711::aid-gps4>;2-1.
    1. Martinez-Martin P., Schapira A. H. V., Stocchi F., et al. Prevalence of nonmotor symptoms in Parkinson's disease in an international setting; study using nonmotor symptoms questionnaire in 545 patients. Movement Disorders. 2007;22(11):1623–1629. doi: 10.1002/mds.21586.
    1. Levy G., Jacobs D. M., Tang M.-X., et al. Memory and executive function impairment predict dementia in Parkinson's disease. Movement Disorders. 2002;17(6):1221–1226. doi: 10.1002/mds.10280.
    1. Wüllner U., Schmitz-Hübsch T., Antony G., et al. Autonomic dysfunction in 3414 Parkinson's disease patients enrolled in the German Network on Parkinson's disease (KNP e.V.): the effect of ageing. European Journal of Neurology. 2007;14(12):1405–1408. doi: 10.1111/j.1468-1331.2007.01982.x.
    1. Comella C. L. Sleep disturbances and excessive daytime sleepiness in Parkinson disease: an overview. Journal of Neural Transmission, Supplement. 2006;70:349–355.
    1. Bodis-Wollner I. Visual acuity and contrast sensitivity in patients with cerebral lesions. Science. 1972;178(4062):769–771. doi: 10.1126/science.178.4062.769.
    1. Bodis Wollner I., Diamond S. P. The measurement of spatial contrast sensitivity in cases of blurred vision associated with cerebral lesions. Brain. 1976;99(4):695–710. doi: 10.1093/brain/99.4.695.
    1. Bodis-Wollner I. Retinopathy in Parkinson disease. Journal of Neural Transmission. 2009;116(11):1493–1501. doi: 10.1007/s00702-009-0292-z.
    1. Price M. J., Feldman R., Adelberg D., Kayne H. Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology. 1992;42(4):887–890. doi: 10.1212/wnl.42.4.887.
    1. Oh Y.-S., Kim J.-S., Chung S.-W., et al. Color vision in Parkinson's disease and essential tremor. European Journal of Neurology. 2011;18(4):577–583. doi: 10.1111/j.1468-1331.2010.03206.x.
    1. Hipp G., Diederich N. J., Pieria V., Vaillant M. Primary vision and facial emotion recognition in early Parkinson's disease. Journal of the Neurological Sciences. 2014;338(1-2):178–182. doi: 10.1016/j.jns.2013.12.047.
    1. Archibald N. K., Clarke M. P., Mosimann U. P., Burn D. J. Retinal thickness in Parkinson's disease. Parkinsonism and Related Disorders. 2011;17(6):431–436. doi: 10.1016/j.parkreldis.2011.03.004.
    1. Harnois C., Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson's disease. Investigative Ophthalmology & Visual Science. 1990;31(11):2473–2475.
    1. Djamgoz M. B. A., Hankins M. W., Hirano J., Archer S. N. Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Research. 1997;37(24):3509–3529. doi: 10.1016/S0042-6989(97)00129-6.
    1. Archibald N. K., Clarke M. P., Mosimann U. P., Burn D. J. The retina in Parkinson's disease. Brain. 2009;132(5):1128–1145. doi: 10.1093/brain/awp068.
    1. Inzelberg R., Ramirez J. A., Nisipeanu P., Ophir A. Retinal nerve fiber layer thinning in Parkinson disease. Vision Research. 2004;44(24):2793–2797. doi: 10.1016/j.visres.2004.06.009.
    1. Cubo E., Tedejo R. P., Rodriguez Mendez V., López Peña M. J., Trejo Gabriel y Galán J. M. Retina thickness in Parkinson's disease and essential tremor. Movement Disorders. 2010;25(14):2461–2462. doi: 10.1002/mds.23215.
    1. Altintaş Ö., Işeri P., Özkan B., Çağlar Y. Correlation between retinal morphological and functional findings and clinical severity in Parkinson's disease. Documenta Ophthalmologica. 2008;116(2):137–146. doi: 10.1007/s10633-007-9091-8.
    1. La Morgia C., Barboni P., Rizzo G., et al. Loss of temporal retinal nerve fibers in Parkinson disease: a mitochondrial pattern? European Journal of Neurology. 2013;20(1):198–201. doi: 10.1111/j.1468-1331.2012.03701.x.
    1. Satue M., Garcia-Martin E., Fuertes I., et al. Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson's disease patients. Eye. 2013;27(4):507–514. doi: 10.1038/eye.2013.4.
    1. Satue M., Seral M., Otin S., et al. Retinal thinning and correlation with functional disability in patients with Parkinson's disease. British Journal of Ophthalmology. 2014;98(3):350–355. doi: 10.1136/bjophthalmol-2013-304152.
    1. Hajee M. E., March W. F., Lazzaro D. R., et al. Inner retinal layer thinning in Parkinson disease. Archives of Ophthalmology. 2009;127(6):737–741. doi: 10.1001/archophthalmol.2009.106. Erratum in Archives of Ophthalmology, vol. 127, no. 12, p. 1615, 2009.
    1. Aaker G. D., Myung J. S., Ehrlich J. R., Mohammed M., Henchcliffe C., Kiss S. Detection of retinal changes in Parkinson's disease with spectral-domain optical coherence tomography. Clinical Ophthalmology. 2010;4(1):1427–1432. doi: 10.2147/opth.s15136.
    1. Bittersohl D., Stemplewitz B., Keserü M., Buhmann C., Richard G., Hassenstein A. Detection of retinal changes in idiopathic Parkinson's disease using high-resolution optical coherence tomography and heidelberg retina tomography. Acta Ophthalmologica. 2015;93(7):e578–e584. doi: 10.1111/aos.12757.
    1. Chorostecki J., Seraji-Bozorgzad N., Shah A., et al. Characterization of retinal architecture in Parkinson's disease. Journal of the Neurological Sciences. 2015;355(1-2):44–48. doi: 10.1016/j.jns.2015.05.007.
    1. Spund B., Ding Y., Liu T., et al. Remodeling of the fovea in Parkinson disease. Journal of Neural Transmission. 2013;120(5):745–753. doi: 10.1007/s00702-012-0909-5.
    1. Garcia-Martin E., Larrosa J. M., Polo V., Pablo L. E. Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration. American Journal of Ophthalmology. 2014;157(2):470–478. doi: 10.1016/j.ajo.2014.06.025.
    1. Blennow K., de Leon M. J., Zetterberg H. Alzheimer's disease. The Lancet. 2006;368(9533):387–403. doi: 10.1016/s0140-6736(06)69113-7.
    1. Cronin-Golomb A., Corkin S., Rizzo J. F., Cohen J., Growdon J. H., Banks K. S. Visual dysfunction in Alzheimer's disease: relation to normal aging. Annals of Neurology. 1991;29(1):41–52. Erratum in: Annals of Neurology, vol. 29, no. 3, article 271, 1991.
    1. Cronin-Golomb A., Corkin S., Growdon J. H. Visual dysfunction predicts cognitive deficits in alzheimer’s disease. Optometry and Vision Science. 1995;72(3):168–176. doi: 10.1097/00006324-199503000-00004.
    1. Valenti D. A. Alzheimer's disease: visual system review. Optometry. 2010;81(1):12–21. doi: 10.1016/j.optm.2009.04.101.
    1. He X.-F., Liu Y.-T., Peng C., Zhang F., Zhuang S., Zhang J.-S. Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer's disease: a meta-analysis. International Journal of Ophthalmology. 2012;5(3):401–405. doi: 10.3980/j.issn.2222-3959.2012.03.30.
    1. Paquet C., Boissonnot M., Roger F., Dighiero P., Gil R., Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer's disease. Neuroscience Letters. 2007;420(2):97–99. doi: 10.1016/j.neulet.2007.02.090.
    1. Iseri P. K., Altinaş Ö., Tokay T., Yüksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. Journal of Neuro-Ophthalmology. 2006;26(1):18–24. doi: 10.1097/01.wno.0000204645.56873.26.
    1. Coppola G., Di Renzo A., Ziccardi L., et al. Optical coherence tomography in Alzheimer's disease: a meta-analysis. PLoS ONE. 2015;10(8) doi: 10.1371/journal.pone.0134750.e0134750
    1. Polo V., Garcia-Martin E., Bambo M. P., et al. Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer's disease. Eye. 2014;28(6):680–690. doi: 10.1038/eye.2014.51.
    1. Larrosa J. M., Garcia-Martin E., Bambo M. P., et al. Potential new diagnostic tool for Alzheimer's disease using a linear Discriminant function for Fourier domain optical coherence tomography. Investigative Ophthalmology and Visual Science. 2014;55(5):3043–3051. doi: 10.1167/iovs.13-13629.
    1. Garcia-Martin E. S., Rojas B., Ramirez A. I., et al. Macular thickness as a potential biomarker of mild Alzheimer's disease. Ophthalmology. 2014;121(5):1149–1151. doi: 10.1016/j.ophtha.2013.12.023.
    1. Blanks J. C., Torigoe Y., Hinton D. R., Blanks R. H. I. Retinal pathology in Alzheimer's disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiology of Aging. 1996;17(3):377–384. doi: 10.1016/0197-4580(96)00010-3.
    1. Marziani E., Pomati S., Ramolfo P., et al. Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer's disease using spectral-domain optical coherence tomography. Investigative Ophthalmology and Visual Science. 2013;54(9):5953–5958. doi: 10.1167/iovs.13-12046.
    1. Curcio C. A., Drucker D. N. Retinal ganglion cells in Alzheimer's disease and aging. Annals of Neurology. 1993;33(3):248–257.
    1. Laycock R., Crewther S. G., Crewther D. P. A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders. Neuroscience and Biobehavioral Reviews. 2007;31(3):363–376. doi: 10.1016/j.neubiorev.2006.10.003.
    1. Martin P. R., White A. J. R., Goodchild A. K., Wilder H. D., Sefton A. E. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. European Journal of Neuroscience. 1997;9(7):1536–1541. doi: 10.1111/j.1460-9568.1997.tb01509.x.
    1. Solomon S. G., Lennie P. The machinery of colour vision. Nature Reviews Neuroscience. 2007;8(4):276–286. doi: 10.1038/nrn2094.
    1. Kirby E., Bandelow S., Hogervorst E. Visual impairment in Alzheimer's disease: a critical review. Journal of Alzheimer's Disease. 2010;21(1):15–34. doi: 10.3233/jad-2010-080785.
    1. Williams P. A., Thirgood R. A., Oliphant H., et al. Retinal ganglion cell dendritic degeneration in a mouse model of Alzheimer's disease. Neurobiology of Aging. 2013;34(7):1799–1806. doi: 10.1016/j.neurobiolaging.2013.01.006.
    1. Lim J. K., He Z., Vingrys A. J., et al. Age-related changes in retinal structure and function in a mouse model of Alzheimer’s disease. Proceedings of the ARVO; 2016;
    1. Cheung C. Y.-L., Ong Y. T., Hilal S., et al. Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer's disease. Journal of Alzheimer's Disease. 2015;45(1):45–56. doi: 10.3233/jad-141659.
    1. Garcia-Martin E., Bambo M. P., Marques M. L., et al. Ganglion cell layer measurements correlate with disease severity in patients with Alzheimer's disease. Acta Ophthalmologica. 2016;94(6):e454–e459. doi: 10.1111/aos.12977.

Source: PubMed

3
订阅