Pitfalls in the measurement of muscle mass: a need for a reference standard

Fanny Buckinx, Francesco Landi, Matteo Cesari, Roger A Fielding, Marjolein Visser, Klaus Engelke, Stefania Maggi, Elaine Dennison, Nasser M Al-Daghri, Sophie Allepaerts, Jurgen Bauer, Ivan Bautmans, Maria Luisa Brandi, Olivier Bruyère, Tommy Cederholm, Francesca Cerreta, Antonio Cherubini, Cyrus Cooper, Alphonso Cruz-Jentoft, Eugene McCloskey, Bess Dawson-Hughes, Jean-Marc Kaufman, Andrea Laslop, Jean Petermans, Jean-Yves Reginster, René Rizzoli, Sian Robinson, Yves Rolland, Ricardo Rueda, Bruno Vellas, John A Kanis, Fanny Buckinx, Francesco Landi, Matteo Cesari, Roger A Fielding, Marjolein Visser, Klaus Engelke, Stefania Maggi, Elaine Dennison, Nasser M Al-Daghri, Sophie Allepaerts, Jurgen Bauer, Ivan Bautmans, Maria Luisa Brandi, Olivier Bruyère, Tommy Cederholm, Francesca Cerreta, Antonio Cherubini, Cyrus Cooper, Alphonso Cruz-Jentoft, Eugene McCloskey, Bess Dawson-Hughes, Jean-Marc Kaufman, Andrea Laslop, Jean Petermans, Jean-Yves Reginster, René Rizzoli, Sian Robinson, Yves Rolland, Ricardo Rueda, Bruno Vellas, John A Kanis

Abstract

Background: All proposed definitions of sarcopenia include the measurement of muscle mass, but the techniques and threshold values used vary. Indeed, the literature does not establish consensus on the best technique for measuring lean body mass. Thus, the objective measurement of sarcopenia is hampered by limitations intrinsic to assessment tools. The aim of this study was to review the methods to assess muscle mass and to reach consensus on the development of a reference standard.

Methods: Literature reviews were performed by members of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis working group on frailty and sarcopenia. Face-to-face meetings were organized for the whole group to make amendments and discuss further recommendations.

Results: A wide range of techniques can be used to assess muscle mass. Cost, availability, and ease of use can determine whether the techniques are better suited to clinical practice or are more useful for research. No one technique subserves all requirements but dual energy X-ray absorptiometry could be considered as a reference standard (but not a gold standard) for measuring muscle lean body mass.

Conclusions: Based on the feasibility, accuracy, safety, and low cost, dual energy X-ray absorptiometry can be considered as the reference standard for measuring muscle mass.

Keywords: Lean body mass; Lean mass; Muscle mass; Reference standard.

© 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

Figures

Figure 1
Figure 1
Body compartments based on reference man.
Figure 2
Figure 2
Relations between appendicular lean soft tissue (ALST) and total‐body skeletal muscle (SM) mass.25

References

    1. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr 1997;127:990s–991s.
    1. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998;147:755–763.
    1. Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G, Boirie Y, Bosaeus I, Cederholm T, Costelli P, et al. Consensus definition of sarcopenia, cachexia and pre‐cachexia: joint document elaborated by Special Interest Groups (SIG) "cachexia‐anorexia in chronic wasting diseases" and "nutrition in geriatrics". Clin Nutr 2010;29:154–159.
    1. Cruz‐Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010;39:412–423.
    1. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB. Abellan van Kan G, Andrieu S, Bauer J, Breuille D, et al: Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 2011;12:249–256.
    1. Dam TT, Peters KW, Fragala M, Cawthon PM, Harris TB, McLean R, Shardell M, Alley DE, Kenny A, Ferrucci L, et al. An evidence‐based comparison of operational criteria for the presence of sarcopenia. J Gerontol A Biol Sci Med Sci 2014;69:584–590.
    1. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Coats AJ, Cummings SR, Evans WJ, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 2011;12:403–409.
    1. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 2014;69:547–558.
    1. Cooper C, Dere W, Evans W, Kanis JA, Rizzoli R, Sayer AA, Sieber CC, Kaufman JM. Abellan van Kan G, Boonen S, et al: Frailty and sarcopenia: definitions and outcome parameters. Osteoporos Int 2012;23:1839–1848.
    1. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15:95–101.
    1. Marzetti E. Editorial: imaging, functional and biological markers for sarcopenia: the pursuit of the golden ratio. J Frailty Aging 2012;1:97–98.
    1. Beaudart C, McCloskey E, Bruyere O, Cesari M, Rolland Y, Rizzoli R. Araujo de Carvalho I, Amuthavalli Thiyagarajan J, Bautmans I, Bertiere MC, et al: Sarcopenia in daily practice: assessment and management. BMC Geriatr 2016;16:170.
    1. Cruz‐Jentoft AJ, Landi F. Sarcopenia. Clin Med (Lond) 2014;14:183–186.
    1. Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA, Anker SD, Rutkove S, Vrijbloed JW, Isaac M, et al. Biomarkers of sarcopenia in clinical trials‐recommendations from the International Working Group on Sarcopenia. J Cachexia Sarcopenia Muscle 2012;3:181–190.
    1. Lustgarten MS, Fielding RA. Assessment of analytical methods used to measure changes in body composition in the elderly and recommendations for their use in phase II clinical trials. J Nutr Health Aging 2011;15:368–375.
    1. Mijnarends DM, Meijers JM, Halfens RJ, ter Borg S, Luiking YC, Verlaan S, Schoberer D, Cruz Jentoft AJ, van Loon LJ, Schols JM. Validity and reliability of tools to measure muscle mass, strength, and physical performance in community‐dwelling older people: a systematic review. J Am Med Dir Assoc 2013;14:170–178.
    1. Heymsfield SB, Gonzalez MC, Lu J, Jia G, Zheng J. Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc Nutr Soc 2015;74:355–366.
    1. Kuriyan R, Thomas T, Ashok S, Jayakumar J, Kurpad AV. A 4‐compartment model based validation of air displacement plethysmography, dual energy X‐ray absorptiometry, skinfold technique & bio‐electrical impedance for measuring body fat in Indian adults. Indian J Med Res 2014;139:700–707.
    1. Dawson‐Hughes B, Bischoff‐Ferrari H. Considerations concerning the definition of sarcopenia. Osteoporos Int 2016;27:3139–3144.
    1. Matiegka J. The testing of physical efficiency. Am J Phys Anthropol 1921;4:223–230.
    1. Hounsfield GN. Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. Br J Radiol 1995;68:H166–H172.
    1. Bruyere OB, Beaudart C, Reginster J‐Y, Buckinx F, Schoene D, Hirani V, Cooper C, Kanis J‐A, Rizzoli R, McCloskey E, Cederholm T, Cruz‐Jentoft A, Freiberger E. Assessment of muscle mass, muscle strength and physical performance in clinical practice: an international survey. European Geriatric Medicine 2016;.
    1. Scafoglieri A, Deklerck R, Tresignie J, De Mey J, Clarys JP, Bautmans I. Assessment of regional adipose tissue depots: a DXA and CT comparison in cadavers of elderly persons. Exp Gerontol 2013;48:985–991.
    1. Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol (1985) 2000;89:81–88.
    1. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total‐body skeletal muscle mass: estimation by a new dual‐energy X‐ray absorptiometry method. Am J Clin Nutr 2002;76:378–383.
    1. Dittmar M, Reber H. New equations for estimating body cell mass from bioimpedance parallel models in healthy older Germans. Am J Physiol Endocrinol Metab 2001;281:E1005–E1014.
    1. Erlandson MC, Lorbergs AL, Mathur S, Cheung AM. Muscle analysis using pQCT, DXA and MRI. Eur J Radiol 2016;85:1505–1511.
    1. Blake GM, Fogelman I. Technical principles of dual energy x‐ray absorptiometry. Semin Nucl Med 1997;27:210–228.
    1. Quantitative aspects of bone densitometry: contents . J icru 2009, 9 :Np.
    1. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual‐energy X‐ray absorptiometry body composition model: review of physical concepts. Am J Physiol 1996;271:E941–E951.
    1. Maden‐Wilkinson TM, Degens H, Jones DA, McPhee JS. Comparison of MRI and DXA to measure muscle size and age‐related atrophy in thigh muscles. J Musculoskelet Neuronal Interact 2013;13:320–328.
    1. Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM. Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle 2014;5:9–18.
    1. Visser M, Fuerst T, Lang T, Salamone L, Harris TB. Validity of fan‐beam dual‐energy X‐ray absorptiometry for measuring fat‐free mass and leg muscle mass. Health, aging, and body composition study – dual‐energy X‐ray absorptiometry and body composition working group. J Appl Physiol (1985) 1999;87:1513–1520.
    1. Bredella MA, Ghomi RH, Thomas BJ, Torriani M, Brick DJ, Gerweck AV, Misra M, Klibanski A, Miller KK. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring) 2010;18:2227–2233.
    1. Bilsborough JC, Greenway K, Opar D, Livingstone S, Cordy J, Coutts AJ. The accuracy and precision of DXA for assessing body composition in team sport athletes. J Sports Sci 2014;32:1821–1828.
    1. Carver TE, Christou NV, Andersen RE. In vivo precision of the GE iDXA for the assessment of total body composition and fat distribution in severely obese patients. Obesity (Silver Spring) 2013;21:1367–1369.
    1. Hind K, Oldroyd B. In‐vivo precision of the GE Lunar iDXA densitometer for the measurement of appendicular and trunk lean and fat mass. Eur J Clin Nutr 2013;67:1331–1333.
    1. Knapp KM, Welsman JR, Hopkins SJ, Shallcross A, Fogelman I, Blake GM. Obesity increases precision errors in total body dual‐energy x‐ray absorptiometry measurements. J Clin Densitom 2015;18:209–216.
    1. Toombs RJ, Ducher G, Shepherd JA, De Souza MJ. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity (Silver Spring) 2012;20:30–39.
    1. Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J. The official positions of the international society for clinical densitometry: acquisition of dual‐energy X‐ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom 2013;16:520–536.
    1. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X‐ray‐based imaging techniques used in osteoporosis. Eur Radiol 2010;20:2707–2714.
    1. Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr 2014;38:940–953.
    1. Rothney MP, Brychta RJ, Schaefer EV, Chen KY, Skarulis MC. Body composition measured by dual‐energy X‐ray absorptiometry half‐body scans in obese adults. Obesity (Silver Spring) 2009;17:1281–1286.
    1. Genant HK, Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C. Universal standardization for dual x‐ray absorptiometry: patient and phantom cross‐calibration results. J Bone Miner Res 1994;9:1503–1514.
    1. Hull H, He Q, Thornton J, Javed F, Allen L, Wang J, Pierson RN Jr, Gallagher D. iDXA, prodigy, and DPXL dual‐energy X‐ray absorptiometry whole‐body scans: a cross‐calibration study. J Clin Densitom 2009;12:95–102.
    1. Saarelainen J, Hakulinen M, Rikkonen T, Kroger H, Tuppurainen M, Koivumaa‐Honkanen H, Honkanen R, Hujo M, Jurvelin JS. Cross‐calibration of GE healthcare lunar prodigy and iDXA dual‐energy X‐ray densitometers for bone mineral measurements. J Osteoporos 2016;2016: 1424582.
    1. Snyder WSC, Cook MJ, Nasset ES, Karhansen LR, Howells GP, Tipton IH. Report of the task group on reference men. Oxford, United Kingdom: Pergamon Press; 1975.
    1. Daguet E, Jolivet E, Bousson V, Boutron C, Dahmen N, Bergot C, Vicaut E, Laredo JD. Fat content of hip muscles: an anteroposterior gradient. J Bone Joint Surg Am 2011;93:1897–1905.
    1. Paulus MJ, Gleason SS, Kennel SJ, Hunsicker PR, Johnson DK. High resolution X‐ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2000;2:62–70.
    1. Strandberg S, Wretling ML, Wredmark T, Shalabi A. Reliability of computed tomography measurements in assessment of thigh muscle cross‐sectional area and attenuation. BMC Med Imaging 2010;10:18.
    1. Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: advances in models and methods. Annu Rev Nutr 1997;17:527–558.
    1. Ross R, Rissanen J, Pedwell H, Clifford J, Shragge P. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol (1985) 1996;81:2445–2455.
    1. Hoffer EC, Meador CK, Simpson DC. Correlation of whole‐body impedance with total body water volume. J Appl Physiol 1969;27:531–534.
    1. Nyboer J. Workable volume and flow concepts of bio‐segments by electrical impedance plethysmography. 1972. Nutrition 1991;7:396–408, discussion 409.
    1. Thomasset A. Bioelectrical properties of tissue impedance measurements. Lyon Med 1962;94:107–118.
    1. Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors (Basel) 2014;14:10895–10928.
    1. Buckinx F, Reginster JY, Dardenne N, Croisiser JL, Kaux JF, Beaudart C, Slomian J, Bruyere O. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X‐ray absorptiometry: a cross‐sectional study. BMC Musculoskelet Disord 2015;16:60.
    1. Bioelectrical impedance analysis in body composition measurement: national institutes of health technology assessment conference statement. Am J Clin Nutr 1996;64:524s–532s.
    1. Sergi G, Coin A, Marin S, Vianello A, Manzan A, Peruzza S, Inelmen EM, Busetto L, Mulone S, Enzi G. Body composition and resting energy expenditure in elderly male patients with chronic obstructive pulmonary disease. Respir Med 2006;100:1918–1924.
    1. Ling CH, de Craen AJ, Slagboom PE, Gunn DA, Stokkel MP, Westendorp RG, Maier AB. Accuracy of direct segmental multi‐frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle‐aged adult population. Clin Nutr 2011;30:610–615.
    1. Clark RV, Walker AC, O'Connor‐Semmes RL, Leonard MS, Miller RR, Stimpson SA, Turner SM, Ravussin E, Cefalu WT, Hellerstein MK, Evans WJ. Total body skeletal muscle mass: estimation by creatine (methyl‐d3) dilution in humans. J Appl Physiol (1985) 2014;116:1605–1613.
    1. Crim MC, Calloway DH, Margen S. Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J Nutr 1975;105:428–438.
    1. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S. Measurement of muscle mass in humans: validity of the 24‐hour urinary creatinine method. Am J Clin Nutr 1983;37:478–494.
    1. Wyss M, Kaddurah‐Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000;80:1107–1213.
    1. Li J, Spieker AJ, Rosen GD, Rutkove SB. Electrical impedance alterations in the rat hind limb with unloading. J Musculoskelet Neuronal Interact 2013;13:37–44.
    1. Tarulli AW, Duggal N, Esper GJ, Garmirian LP, Fogerson PM, Lin CH, Rutkove SB. Electrical impedance myography in the assessment of disuse atrophy. Arch Phys Med Rehabil 2009;90:1806–1810.
    1. Rutkove SB. Electrical impedance myography: background, current state, and future directions. Muscle Nerve 2009;40:936–946.
    1. Stevens DE, Smith CB, Harwood B, Rice CL. In vivo measurement of fascicle length and pennation of the human anconeus muscle at several elbow joint angles. J Anat 2014;225:502–509.
    1. Thomaes T, Thomis M, Onkelinx S, Coudyzer W, Cornelissen V, Vanhees L. Reliability and validity of the ultrasound technique to measure the rectus femoris muscle diameter in older CAD‐patients. BMC Med Imaging 2012;12:7.
    1. Ismail C, Zabal J, Hernandez HJ, Woletz P, Manning H, Teixeira C, DiPietro L, Blackman MR, Harris‐Love MO. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia. Front Physiol 2015;6:302.
    1. Menon MK, Houchen L, Harrison S, Singh SJ, Morgan MD, Steiner MC. Ultrasound assessment of lower limb muscle mass in response to resistance training in COPD. Respir Res 2012;13:119.
    1. Mueller N, Murthy S, Tainter CR, Lee J, Riddell K, Fintelmann FJ, Grabitz SD, Timm FP, Levi B, Kurth T, Eikermann M. Can sarcopenia quantified by ultrasound of the rectus femoris muscle predict adverse outcome of surgical intensive care unit patients as well as frailty? A prospective, observational cohort study. Ann Surg 2016;264:1116–1124.
    1. Nedergaard A, Dalgas U, Primdahl H, Johansen J, Overgaard J, Overgaard K, Henriksen K, Karsdal MA, Lonbro S. Collagen fragment biomarkers as serological biomarkers of lean body mass – a biomarker pilot study from the DAHANCA25B cohort and matched controls. J Cachexia Sarcopenia Muscle 2015;6:335–342.
    1. Nedergaard A, Sun S, Karsdal MA, Henriksen K, Kjaer M, Lou Y, He Y, Zheng Q, Suetta C. Type VI collagen turnover‐related peptides‐novel serological biomarkers of muscle mass and anabolic response to loading in young men. J Cachexia Sarcopenia Muscle 2013;4:267–275.
    1. Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, Montemurro F, Tedesco FS, Blaauw B, Cossu G, et al. Collagen VI regulates satellite cell self‐renewal and muscle regeneration. Nat Commun 2013;4:1964.
    1. Sabatelli P, Gualandi F, Gara SK, Grumati P, Zamparelli A, Martoni E, Pellegrini C, Merlini L, Ferlini A, Bonaldo P, et al. Expression of collagen VI alpha5 and alpha6 chains in human muscle and in Duchenne muscular dystrophy‐related muscle fibrosis. Matrix Biol 2012;31:187–196.
    1. Rivas DA, Lessard SJ, Rice NP, Lustgarten MS, So K, Goodyear LJ, Parnell LD, Fielding RA. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF‐1 signaling. FASEB J 2014;28:4133–4147.
    1. Roubenoff R, Kehayias JJ, Dawson‐Hughes B, Heymsfield SB. Use of dual‐energy x‐ray absorptiometry in body‐composition studies: not yet a "gold standard". Am J Clin Nutr 1993;58:589–591.
    1. Stewart Coats AJ, Ho GF, Prabhash K, von Haehling S, Tilson J, Brown R, Beadle J, Anker SD. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non‐small cell lung cancer or colorectal cancer: a randomized, double‐blind, placebo‐controlled, international multicentre phase II study (the ACT‐ONE trial). J Cachexia Sarcopenia Muscle 2016;7:355–365.
    1. van de Bool C, Rutten EPA, van Helvoort A, Franssen FME, Wouters EFM, Schols A. A randomized clinical trial investigating the efficacy of targeted nutrition as adjunct to exercise training in COPD. J Cachexia Sarcopenia Muscle 2017;8:748–758.
    1. Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, Fearon KC. Anamorelin in patients with non‐small‐cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double‐blind, phase 3 trials. Lancet Oncol 2016;17:519–531.
    1. Technical standardization for dual‐energy x‐ray absorptiometry. J Clin Densitom 2004;7:27–36.
    1. Kanis JA, Adachi JD, Cooper C, Clark P, Cummings SR, Diaz‐Curiel M, Harvey N, Hiligsmann M, Papaioannou A, Pierroz DD, et al. Standardising the descriptive epidemiology of osteoporosis: recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos Int 2013;24:2763–2764.
    1. Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height‐, weight‐, and body mass index‐adjusted models in assessing sarcopenia. Korean J Intern Med 2016;31:643–650.
    1. Merriwether EN, Host HH, Sinacore DR. Sarcopenic indices in community‐dwelling older adults. J Geriatr Phys Ther 2012;35:118–125.
    1. Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 2004;159:413–421.
    1. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 2002;50:889–896.
    1. Plank LD. Dual‐energy X‐ray absorptiometry and body composition. Curr Opin Clin Nutr Metab Care 2005;8:305–309.
    1. Sirola J, Kroger H. Similarities in acquired factors related to postmenopausal osteoporosis and sarcopenia. J Osteoporos 2011;2011:536735.
    1. von Haehling S, Morley JE, Coats AJ, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2015. J Cachexia Sarcopenia Muscle 2015;6:315–316.

Source: PubMed

3
订阅