Exploring the feasibility and synergistic value of the One Health approach in clinical research: protocol for a prospective observational study of diagnostic pathways in human and canine patients with suspected urinary tract infection

Gloria Cordoba, Tina Møller Sørensen, Anne Holm, Charlotte Reinhard Bjørnvad, Lars Bjerrum, Lisbeth Rem Jessen, Gloria Cordoba, Tina Møller Sørensen, Anne Holm, Charlotte Reinhard Bjørnvad, Lars Bjerrum, Lisbeth Rem Jessen

Abstract

Background: The One Health approach is emerging in response to the development of bacterial resistance. To the best of our knowledge, the possibility to use this approach in a clinical context has not yet been explored. Thus, in this paper, we report the procedures to implement a prospective observational study of diagnostic pathways in human and canine patients with suspected urinary tract infection as a means to assess the feasibility and synergistic value of setting up One Health clinical research projects and interventions.

Methods/design: A prospective observational study will compare different diagnostic pathways (i.e., 16 possible combinations of diagnostic tools) to gold standard in human and veterinary primary care practice in Denmark. Fifty primary care practices and 100 veterinary clinics will each consecutively include 20 human patients or 8-10 dogs, respectively. Data will be collected at practice and patient level comprising (a) information about the organization of the practice and access to different diagnostic tools, (b) information about clinical history, diagnostic path and treatment during the index consultation, (c) information about severity of symptoms during the 7-10 days following inclusion, and (d) urine culture (type of microorganism and susceptibility test). The feasibility and synergistic value of conducting future research, and/or designing common interventions, will be assessed by evaluating the comparability of human primary care and veterinary primary care with respect to study implementation and study results.

Discussion: Results from this study will give an insight into the feasibility and synergistic value of setting-up One Health research projects in a clinical context. This is crucial if we are to embrace the One Health approach, as a legitimate strategy to implement common interventions aimed at influencing the diagnostic process in human and canine patients in order to decrease inappropriate use of antibiotics.

Trial registration: The study in humans has been registered in ClinicalTrials.gov NCT02249273.

Keywords: Dysuria; Microbiology; Point-of-care systems.

Figures

Fig. 1
Fig. 1
Diagnostic path in patients with suspected UTI in human and veterinary primary care practices in Denmark. The decision tree illustrates the different diagnostic pathways that can be taken during the diagnostic process of a patient with a suspected UTI. The diagnostic pathways are divided into those pathways in which the result is available during the consultation (signs and symptoms, dipsticks, microscopy) and those in which the result is available 1–3 days after the consultation (culture and susceptibility test in practice, culture and susceptibility test at a reference microbiology laboratory)
Fig. 2
Fig. 2
Data collection flow chart. The diagram shows the phases and milestones of data collection before, during, and after the index consultation in human and veterinary primary care practices
Fig. 3
Fig. 3
Definition of appropriate and inappropriate use of antibiotics. Appropriate use of antibiotics means that the decision about not giving antibiotics is correct as far as the culture is negative or the bacteria is susceptible to the prescribed antibiotic. Inappropriate use of antibiotics can lead to two scenarios: (a) under-treatment: a patient with a positive culture is not given antibiotics or the bacteria are not susceptible to the prescribed antibiotic and (b) over-treatment: a patient with a negative culture is given antibiotics or is unnecessarily treated with a second-line antibiotic

References

    1. One Health Initiative Task Force . One health: a new professional imperative. Schaumburg: IL American Veterinary Medical Association; 2008. p. 76.
    1. Gerdts V, Wilson HL, Meurens F, van Drunen Littel-van den Hurk S, Wilson D, Walker S, Wheler C, Townsend H, Potter AA. Large animal models for vaccine development and testing. ILAR J. 2015;56(1):53–62.
    1. One Health Initiative. (2006). Accessed 27 Oct 2015.
    1. One Health Global Network. (2012). Accessed 27 Oct 2015.
    1. Cantas L, Suer K. Review: the important bacterial zoonoses in “one health” concept. Front Public Health. 2014;2:144.
    1. Cox-Witton K, Reiss A, Woods R, Grillo V, Baker RT, Blyde DJ, Boardman W, Cutter S, Lacasse C, McCracken H, Pyne M, Smith I, Vitali S, Vogelnest L, Wedd D, Phillips M, Bunn C, Post L. Emerging infectious diseases in free-ranging wildlife-Australian zoo based wildlife hospitals contribute to national surveillance. PLoS One. 2014;9(5):e95127.
    1. Cipolla M, Bonizzi L, Zecconi A. From “One Health” to “One Communication”: the contribution of communication in veterinary medicine to public health. Vet Sci. 2015;2(3):135.
    1. Statens Serum Institut . DANMAP 2011- Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Copenhagen: Statens Serum Institut; 2011. pp. 4–138.
    1. Center for Disease Control and Prevention. National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS). (2014). Accessed 27 Oct 2015.
    1. Harrison EMW LA, Holden MT, Welch JJ, Wilson K, Morgan FJ, Harris SR, Loeffler A, Boag AK, Peacock SJ, Paterson GK, Waller AS, Parkhill J. A shared population of epidemic methicillin-resistant Staphylococcus aureus 15 circulates in humans and companion animals. Mbio. 2014;5(3):e00985–13.
    1. WHO . Worldwide country situation analysis: response to antimicrobial resistance. Geneva: World Health Organization; 2015. p. 50.
    1. Franco BE, Altagracia Martínez M, Sanchez Rodriguez MA, Wertheimer AI. The determinants of the antibiotic resistance process. Infect Drug Resist. 2009;2:1–11.
    1. Hulscher ME, van der Meer JW, Grol RP. Antibiotic use: how to improve it? Int J Med Microbiol. 2010;300(6):351–6.
    1. McEwen SA, Fedorka-Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis. 2002;34 Suppl 3:S93–106.
    1. Tonkin-Crine S, Yardley L, Little P. Antibiotic prescribing for acute respiratory tract infections in primary care: a systematic review and meta-ethnography. J Antimicrob Chemother. 2011;66(10):2215–23.
    1. Michel-Lepage A, Ventelou B, Nebout A, Verger P, Pulcini C. Cross-sectional survey: risk-averse French GPs use more rapid-antigen diagnostic tests in tonsillitis in children. BMJ Open. 2013;3(10):e003540.
    1. Ferry SA, Holm SE, Stenlund H, Lundholm R, Monsen TJ. The natural course of uncomplicated lower urinary tract infection in women illustrated by a randomized placebo controlled study. Scand J Infect Dis. 2004;36(4):296–301.
    1. Weese JS, Blondeau JM, Boothe D, Breitschwerdt EB, Guardabassi L, Hillier A, Lloyd DH, Papich MG, Rankin SC, Turnidge JD, Sykes JE. Antimicrobial use guidelines for treatment of urinary tract disease in dogs and cats: antimicrobial guidelines working group of the international society for companion animal infectious diseases. Vet Med Int. 2011;2011:263768.
    1. Turner PJ. Extended-spectrum beta-lactamases. Clin Infect Dis. 2005;41(Suppl 4):S273–5.
    1. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103–20.
    1. Giesen LG, Cousins G, Dimitrov BD, van de Laar FA, Fahey T. Predicting acute uncomplicated urinary tract infection in women: a systematic review of the diagnostic accuracy of symptoms and signs. BMC Fam Pract. 2010;11:78.
    1. Heytens SD, Sutter A, De Backer D, Verschraegen G, Christiaens T. Cystitis: symptomatology in women with suspected uncomplicated urinary tract infection. J Womens Health (Larchmt) 2011;20(7):1117–21.
    1. McIsaac WJ, Moineddin R, Ross S. Validation of a decision aid to assist physicians in reducing unnecessary antibiotic drug use for acute cystitis. Arch Intern Med. 2007;167(20):2201–6.
    1. Bent S, Nallamothu BK, Simel DL, Fihn SD, Saint S. Does this woman have an acute uncomplicated urinary tract infection? JAMA. 2002;287(20):2701–10.
    1. Grigoryan L, Trautner BW, Gupta K. Diagnosis and management of urinary tract infections in the outpatient setting: a review. JAMA. 2014;312(16):1677–84.
    1. Bjerrum L, Grinsted P, Sogaard P. Can we rely on the results of urine microscopy and culture when tests are performed in general practice? Ugeskr Laeger. 2002;164(14):1927–30.
    1. Blum RN, Wright RA. Detection of pyuria and bacteriuria in symptomatic ambulatory women. J Gen Intern Med. 1992;7(2):140–4.
    1. O’Neil E, Horney B, Burton S, Lewis PJ, MacKenzie A, Stryhn H. Comparison of wet-mount, Wright-Giemsa and Gram-stained urine sediment for predicting bacteriuria in dogs and cats. Can Vet J. 2013;54(11):1061–6.
    1. Swenson CL, Boisvert AM, Kruger JM, Gibbons-Burgener SN. Evaluation of modified Wright-staining of urine sediment as a method for accurate detection of bacteriuria in dogs. J Am Vet Med Assoc. 2004;224(8):1282–9.
    1. Soraas A, Sundsfjord A, Sandven I, Brunborg C, Jenum PA. Risk factors for community-acquired urinary tract infections caused by ESBL-producing enterobacteriaceae--a case–control study in a low prevalence country. PLoS One. 2013;8(7):e69581.
    1. European Committee on Antimicrobial susceptibility testing. (2013). Accessed 27 Oct 2015.
    1. Clinical and Laboratory Standards Institute. (2015). Accessed 27 Oct 2015.
    1. Willis BH. Spectrum bias--why clinicians need to be cautious when applying diagnostic test studies. Fam Pract. 2008;25(5):390–6.
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S. A systematic review classifies sources of bias and variation in diagnostic test accuracy studies. J Clin Epidemiol. 2013;66(10):1093–104.
    1. Strandberg EL, Ovhed I, Troein M, Hakansson A. Influence of self-registration on audit participants and their non-participating colleagues. A retrospective study of medical records concerning prescription patterns. Scand J Prim Health Care. 2005;23(1):42–6.
    1. Lifshitz E, Kramer L. Outpatient urine culture: does collection technique matter? Arch Intern Med. 2000;160(16):2537–40.
    1. Lerner H, Berg C. The concept of health in One Health and some practical implications for research and education: what is One Health? Infect Ecol Epidemiol. 2015;5:25300.
    1. Lægehaandbogen. (2012). Accessed 27 Oct 2015.
    1. Spohr A, Schjøth B, Wiinberg B. [Antibiotic Use Guidelines for Companion Animal Practice]. . (2012). Accessed 27 Oct 2015.

Source: PubMed

3
订阅