Exosomes/miRNAs as mediating cell-based therapy of stroke

Hongqi Xin, Yi Li, Michael Chopp, Hongqi Xin, Yi Li, Michael Chopp

Abstract

Cell-based therapy, e.g., multipotent mesenchymal stromal cell (MSC) treatment, shows promise for the treatment of various diseases. The strong paracrine capacity of these cells and not their differentiation capacity, is the principal mechanism of therapeutic action. MSCs robustly release exosomes, membrane vesicles (~30-100 nm) originally derived in endosomes as intraluminal vesicles, which contain various molecular constituents including proteins and RNAs from maternal cells. Contained among these constituents, are small non-coding RNA molecules, microRNAs (miRNAs), which play a key role in mediating biological function due to their prominent role in gene regulation. The release as well as the content of the MSC generated exosomes are modified by environmental conditions. Via exosomes, MSCs transfer their therapeutic factors, especially miRNAs, to recipient cells, and therein alter gene expression and thereby promote therapeutic response. The present review focuses on the paracrine mechanism of MSC exosomes, and the regulation and transfer of exosome content, especially the packaging and transfer of miRNAs which enhance tissue repair and functional recovery. Perspectives on the developing role of MSC mediated transfer of exosomes as a therapeutic approach will also be discussed.

Keywords: Exosome; bio-information transfer; cell-based therapy; microRNAs (miRNAs); multipotent mesenchymal stromal cell (MSC); stroke.

Figures

Figure 1
Figure 1
The generation of MSC exosomes and bio-information shuttling between MSCs and brain parenchymal cells via exosomes. Exosomes are generated in the late endosomal compartment by inward budding of the limiting membrane of MVB. The exosome-filled MVBs are either fused with the plasma membrane to release exosomes or sent to lysosomes for degradation. Microvesicles are plasma membrane derived particles that are released into the extracellular environment by the direct outward budding and fission of the plasma membrane. The bio-information carried by MSC exosomes then transfer to brain parenchymal cells like astrocytes and neurons. ILV, intraluminal vesicles; MVB, multivesicular body; GC, Golgi complex; RER, rough endoplasmic reticulum.

References

    1. Agnati L. F., Guidolin D., Guescini M., Genedani S., Fuxe K. (2010). Understanding wiring and volume transmission. Brain Res. Rev. 64, 137–159. 10.1016/j.brainresrev.2010.03.003
    1. Alvarez-Erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345. 10.1038/nbt.1807
    1. Amano T., Furuno T., Hirashima N., Ohyama N., Nakanishi M. (2001). Dynamics of intracellular granules with CD63-GFP in rat basophilic leukemia cells. J. Biochem. 129, 739–744. 10.1093/oxfordjournals.jbchem.a002914
    1. Anthony D. F., Shiels P. G. (2013). Exploiting paracrine mechanisms of tissue regeneration to repair damaged organs. Transplant. Res. 2:10. 10.1186/2047-1440-2-10
    1. Bak M., Silahtaroglu A., Moller M., Christensen M., Rath M. F., Skryabin B., et al. . (2008). MicroRNA expression in the adult mouse central nervous system. RNA 14, 432–444. 10.1261/rna.783108
    1. Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297. 10.1016/S0092-8674(04)00045-5
    1. Bartel D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233. 10.1016/j.cell.2009.01.002
    1. Boon R. A., Vickers K. C. (2013). Intercellular transport of microRNAs. Arterioscler. Thromb. Vasc. Biol. 33, 186–192. 10.1161/ATVBAHA.112.300139
    1. Borlongan C. V., Glover L. E., Tajiri N., Kaneko Y., Freeman T. B. (2011). The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog. Neurobiol. 95, 213–228. 10.1016/j.pneurobio.2011.08.005
    1. Brennecke J., Hipfner D. R., Stark A., Russell R. B., Cohen S. M. (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36. 10.1016/S0092-8674(03)00231-9
    1. Bullerdiek J., Flor I. (2012). Exosome-delivered microRNAs of “chromosome 19 microRNA cluster” as immunomodulators in pregnancy and tumorigenesis. Mol. Cytogenet. 5, 27. 10.1186/1755-8166-5-27
    1. Cai Y., Yu X., Hu S., Yu J. (2009). A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 7, 147–154. 10.1016/S1672-0229(08)60044-3
    1. Camussi G., Deregibus M. C., Cantaluppi V. (2013). Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem. Soc. Trans. 41, 283–287. 10.1042/BST20120192
    1. Caplan A. I., Dennis J. E. (2006). Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 98, 1076–1084. 10.1002/jcb.20886
    1. Care A., Catalucci D., Felicetti F., Bonci D., Addario A., Gallo P., et al. . (2007). MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618. 10.1038/nm1582
    1. Chen C. Z., Li L., Lodish H. F., Bartel D. P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86. 10.1126/science.1091903
    1. Chen J., Li Y., Wang L., Lu M., Zhang X., Chopp M. (2001a). Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J. Neurol. Sci. 189, 49–57. 10.1016/S0022-510X(01)00557-3
    1. Chen J., Li Y., Wang L., Zhang Z., Lu D., Lu M., et al. . (2001b). Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32, 1005–1011. 10.1161/01.STR.32.4.1005
    1. Chen K., Page J. G., Schwartz A. M., Lee T. N., Dewall S. L., Sikkema D. J., et al. . (2013a). False-positive immunogenicity responses are caused by CD20(+) B cell membrane fragments in an anti-ofatumumab antibody bridging assay. J. Immunol. Methods 394, 22–31. 10.1016/j.jim.2013.04.011
    1. Chen T. S., Arslan F., Yin Y., Tan S. S., Lai R. C., Choo A. B., et al. . (2011). Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J. Transl. Med. 9, 47. 10.1186/1479-5876-9-47
    1. Chen T. S., Lai R. C., Lee M. M., Choo A. B., Lee C. N., Lim S. K. (2010). Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 38, 215–224. 10.1093/nar/gkp857
    1. Chen T. S., Lim S. K. (2013). Measurement of precursor miRNA in exosomes from human ESC-derived mesenchymal stem cells. Methods Mol. Biol. 1024, 69–86. 10.1007/978-1-62703-453-1_6
    1. Chen T. S., Yeo R. W. Y., Arslan F., Yin Y., Tan S. S., Lai R. C., et al. (2013b). Efficiency of exosome production correlates inversely with the developmental maturity of MSC donor. J. Stem Cell Res. Ther. 3:145 10.4172/2157-7633.1000145
    1. Chen X., Li Y., Wang L., Katakowski M., Zhang L., Chen J., et al. . (2002). Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22, 275–279. 10.1046/j.1440-1789.2002.00450.x
    1. Chiba Y., Tanabe M., Goto K., Sakai H., Misawa M. (2009). Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. Am. J. Respir. Crit. Care Med. 180, 713–719. 10.1164/rccm.200903-0325OC
    1. Chopp M., Li Y. (2002). Treatment of neural injury with marrow stromal cells. Lancet Neurol. 1, 92–100. 10.1016/S1474-4422(02)00040-6
    1. Chopp M., Li Y., Zhang J. (2008). Plasticity and remodeling of brain. J. Neurol. Sci. 265, 97–101. 10.1016/j.jns.2007.06.013
    1. Clayton A., Turkes A., Dewitt S., Steadman R., Mason M. D., Hallett M. B. (2004). Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 18, 977–979. 10.1096/fj.03-1094fje
    1. Cocucci E., Racchetti G., Meldolesi J. (2009). Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51. 10.1016/j.tcb.2008.11.003
    1. Collino F., Deregibus M. C., Bruno S., Sterpone L., Aghemo G., Viltono L., et al. . (2010). Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE 5:e11803. 10.1371/journal.pone.0011803
    1. Corrado C., Raimondo S., Chiesi A., Ciccia F., De Leo G., Alessandro R. (2013). Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int. J. Mol. Sci. 14, 5338–5366. 10.3390/ijms14035338
    1. Costa-Mattioli M., Sossin W. S., Klann E., Sonenberg N. (2009). Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26. 10.1016/j.neuron.2008.10.055
    1. Cuellar T. L., McManus M. T. (2005). MicroRNAs and endocrine biology. J. Endocrinol. 187, 327–332. 10.1677/joe.1.06426
    1. Dalton A. J. (1975). Microvesicles and vesicles of multivesicular bodies versus “virus-like” particles. J. Natl. Cancer Inst. 54, 1137–1148.
    1. Denzer K., Kleijmeer M. J., Heijnen H. F., Stoorvogel W., Geuze H. J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113(Pt 19), 3365–3374.
    1. Dergham P., Ellezam B., Essagian C., Avedissian H., Lubell W. D., McKerracher L. (2002). Rho signaling pathway targeted to promote spinal cord repair. J. Neurosci. 22, 6570–6577.
    1. Dharmasaroja P. (2009). Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. J. Clin. Neurosci. 16, 12–20. 10.1016/j.jocn.2008.05.006
    1. Ding X., Li Y., Liu Z., Zhang J., Cui Y., Chen X., et al. . (2013). The sonic hedgehog pathway mediates brain plasticity and subsequent functional recovery after bone marrow stromal cell treatment of stroke in mice. J. Cereb. Blood Flow Metab. 33, 1015–1024. 10.1038/jcbfm.2013.50
    1. Dogini D. B., Ribeiro P. A., Rocha C., Pereira T. C., Lopes-Cendes I. (2008). MicroRNA expression profile in murine central nervous system development. J. Mol. Neurosci. 35, 331–337. 10.1007/s12031-008-9068-4
    1. Duisters R. F., Tijsen A. J., Schroen B., Leenders J. J., Lentink V., Van Der Made I., et al. . (2009). miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104, 170–178, 176p following 178. 10.1161/CIRCRESAHA.108.182535
    1. Eguchi A., Dowdy S. F. (2009). siRNA delivery using peptide transduction domains. Trends Pharmacol. Sci. 30, 341–345. 10.1016/j.tips.2009.04.009
    1. EL Andaloussi S., Mager I., Breakefield X. O., Wood M. J. (2013). Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357. 10.1038/nrd3978
    1. Eldh M., Ekstrom K., Valadi H., Sjostrand M., Olsson B., Jernas M., et al. . (2010). Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS ONE 5:e15353. 10.1371/journal.pone.0015353
    1. Feng Y., Huang W., Wani M., Yu X., Ashraf M. (2014). Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE 9:e88685. 10.1371/journal.pone.0088685
    1. Ferrand J., Noel D., Lehours P., Prochazkova-Carlotti M., Chambonnier L., Menard A., et al. . (2011). Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS ONE 6:e19569. 10.1371/journal.pone.0019569
    1. Fevrier B., Raposo G. (2004). Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16, 415–421. 10.1016/j.ceb.2004.06.003
    1. Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., et al. . (2004). Cells release prions in association with exosomes. Proc. Natl. Acad. Sci. U.S.A. 101, 9683–9688. 10.1073/pnas.0308413101
    1. Fiore R., Siegel G., Schratt G. (2008). MicroRNA function in neuronal development, plasticity and disease. Biochim. Biophys. Acta 1779, 471–478. 10.1016/j.bbagrm.2007.12.006
    1. Friedman R. C., Farh K. K., Burge C. B., Bartel D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105. 10.1101/gr.082701.108
    1. Fujita Y., Yoshioka Y., Ito S., Araya J., Kuwano K., Ochiya T. (2014). Intercellular communication by extracellular vesicles and their microRNAs in asthma. Clin. Ther. 36, 873–881. 10.1016/j.clinthera.2014.05.006
    1. Gao J., Dennis J. E., Muzic R. F., Lundberg M., Caplan A. I. (2001). The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169, 12–20. 10.1159/000047856
    1. Gao Q., Katakowski M., Chen X., Li Y., Chopp M. (2005). Human marrow stromal cells enhance connexin43 gap junction intercellular communication in cultured astrocytes. Cell Transplant. 14, 109–117. 10.3727/000000005783983205
    1. Gao Q., Li Y., Shen L., Zhang J., Zheng X., Qu R., et al. . (2008). Bone marrow stromal cells reduce ischemia-induced astrocytic activation in vitro. Neuroscience 152, 646–655. 10.1016/j.neuroscience.2007.10.069
    1. Gatti S., Bruno S., Deregibus M. C., Sordi A., Cantaluppi V., Tetta C., et al. . (2011). Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant 26, 1474–1483. 10.1093/ndt/gfr015
    1. Gheldof D., Mullier F., Chatelain B., Dogne J. M., Chatelain C. (2013). Inhibition of tissue factor pathway inhibitor increases the sensitivity of thrombin generation assay to procoagulant microvesicles. Blood Coagul. Fibrinolysis 24, 567–572. 10.1097/MBC.0b013e328360a56e
    1. Goldie B. J., Cairns M. J. (2012). Post-transcriptional trafficking and regulation of neuronal gene expression. Mol. Neurobiol. 45, 99–108. 10.1007/s12035-011-8222-0
    1. Gould S. J., Raposo G. (2013). As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2:20389. 10.3402/jev.v2i0.20389
    1. Greenwalt T. J. (2006). The how and why of exocytic vesicles. Transfusion 46, 143–152. 10.1111/j.1537-2995.2006.00692.x
    1. Harfe B. D., McManus M. T., Mansfield J. H., Hornstein E., Tabin C. J. (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. U.S.A. 102, 10898–10903. 10.1073/pnas.0504834102
    1. Hass R., Otte A. (2012). Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun. Signal. 10, 26. 10.1186/1478-811X-10-26
    1. He J., Wang Y., Sun S., Yu M., Wang C., Pei X., et al. . (2012). Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17, 493–500. 10.1111/j.1440-1797.2012.01589.x
    1. Herberts C. A., Kwa M. S., Hermsen H. P. (2011). Risk factors in the development of stem cell therapy. J. Transl. Med. 9:29. 10.1186/1479-5876-9-29
    1. Hergenreider E., Heydt S., Treguer K., Boettger T., Horrevoets A. J., Zeiher A. M., et al. . (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat. Cell Biol. 14, 249–256. 10.1038/ncb2441
    1. Hermann D. M., Chopp M. (2012). Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 11, 369–380. 10.1016/S1474-4422(12)70039-X
    1. Hess D. C., Borlongan C. V. (2008). Cell-based therapy in ischemic stroke. Expert Rev. Neurother. 8, 1193–1201. 10.1586/14737175.8.8.1193
    1. Hessvik N. P., Sandvig K., Llorente A. (2013). Exosomal miRNAs as Biomarkers for Prostate Cancer. Front. Genet. 4:36. 10.3389/fgene.2013.00036
    1. Holtje M., Djalali S., Hofmann F., Munster-Wandowski A., Hendrix S., Boato F., et al. . (2009). A 29-amino acid fragment of Clostridium botulinum C3 protein enhances neuronal outgrowth, connectivity, and reinnervation. FASEB J. 23, 1115–1126. 10.1096/fj.08-116855
    1. Horstman L. L., Jy W., Minagar A., Bidot C. J., Jimenez J. J., Alexander J. S., et al. . (2007). Cell-derived microparticles and exosomes in neuroinflammatory disorders. Int. Rev. Neurobiol. 79, 227–268. 10.1016/S0074-7742(07)79010-4
    1. Hu G., Drescher K. M., Chen X. M. (2012). Exosomal miRNAs: biological properties and therapeutic potential. Front. Genet. 3:56. 10.3389/fgene.2012.00056
    1. Hugel B., Martinez M. C., Kunzelmann C., Freyssinet J. M. (2005). Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20, 22–27. 10.1152/physiol.00029.2004
    1. Jeyaseelan K., Lim K. Y., Armugam A. (2008). MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39, 959–966. 10.1161/STROKEAHA.107.500736
    1. Kapsimali M., Kloosterman W. P., De Bruijn E., Rosa F., Plasterk R. H., Wilson S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 8, R173. 10.1186/gb-2007-8-8-r173
    1. Katakowski M., Buller B., Zheng X., Lu Y., Rogers T., Osobamiro O., et al. . (2013). Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 335, 201–204. 10.1016/j.canlet.2013.02.019
    1. Kim J., Inoue K., Ishii J., Vanti W. B., Voronov S. V., Murchison E., et al. . (2007a). A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224. 10.1126/science.1140481
    1. Kim S. H., Bianco N. R., Shufesky W. J., Morelli A. E., Robbins P. D. (2007b). Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J. Immunol. 179, 2242–2249. 10.4049/jimmunol.179.4.2242
    1. Kim S. H., Lechman E. R., Bianco N., Menon R., Keravala A., Nash J., et al. . (2005). Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174, 6440–6448. 10.4049/jimmunol.174.10.6440
    1. Klohn P. C., Castro-Seoane R., Collinge J. (2013). Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J. Infect. 67, 359–368. 10.1016/j.jinf.2013.07.024
    1. Kocerha J., Kauppinen S., Wahlestedt C. (2009). microRNAs in CNS disorders. Neuromolecular Med. 11, 162–172. 10.1007/s12017-009-8066-1
    1. Koh W., Sheng C. T., Tan B., Lee Q. Y., Kuznetsov V., Kiang L. S., et al. . (2010). Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha. BMC Genomics 11(Suppl. 1), S6. 10.1186/1471-2164-11-S1-S6
    1. Konig H. G., Kogel D., Rami A., Prehn J. H. (2005). TGF-{beta}1 activates two distinct type I receptors in neurons: implications for neuronal NF-{kappa}B signaling. J. Cell Biol. 168, 1077–1086. 10.1083/jcb.200407027
    1. Kooijmans S. A., Vader P., Van Dommelen S. M., Van Solinge W. W., Schiffelers R. M. (2012). Exosome mimetics: a novel class of drug delivery systems. Int. J. Nanomedicine 7, 1525–1541. 10.2147/IJN.S29661
    1. Kordelas L., Rebmann V., Ludwig A. K., Radtke S., Ruesing J., Doeppner T. R., et al. . (2014). MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28, 970–973. 10.1038/leu.2014.41
    1. Lai R. C., Arslan F., Lee M. M., Sze N. S., Choo A., Chen T. S., et al. . (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4, 214–222. 10.1016/j.scr.2009.12.003
    1. Lai R. C., Chen T. S., Lim S. K. (2011). Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen. Med. 6, 481–492. 10.2217/rme.11.35
    1. Lai R. C., Tan S. S., Teh B. J., Sze S. K., Arslan F., De Kleijn D. P., et al. . (2012). Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int. J. Proteomics 2012, 971907. 10.1155/2012/971907
    1. Lai R. C., Yeo R. W., Tan K. H., Lim S. K. (2013a). Exosomes for drug delivery–a novel application for the mesenchymal stem cell. Biotechnol. Adv. 31, 543–551. 10.1016/j.biotechadv.2012.08.008
    1. Lai R. C., Yeo R. W., Tan K. H., Lim S. K. (2013b). Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regen. Med. 8, 197–209. 10.2217/rme.13.4
    1. Lakhal S., Wood M. J. (2011). Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays 33, 737–741. 10.1002/bies.201100076
    1. Lee C., Mitsialis S. A., Aslam M., Vitali S. H., Vergadi E., Konstantinou G., et al. . (2012). Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126, 2601–2611. 10.1161/CIRCULATIONAHA.112.114173
    1. Lee J. K., Park S. R., Jung B. K., Jeon Y. K., Lee Y. S., Kim M. K., et al. . (2013). Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE 8:e84256. 10.1371/journal.pone.0084256
    1. Lee T. H., D'asti E., Magnus N., Al-Nedawi K., Meehan B., Rak J. (2011). Microvesicles as mediators of intercellular communication in cancer–the emerging science of cellular ‘debris’. Semin. Immunopathol. 33, 455–467. 10.1007/s00281-011-0250-3
    1. Lewis B. P., Burge C. B., Bartel D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20. 10.1016/j.cell.2004.12.035
    1. Li T., Yan Y., Wang B., Qian H., Zhang X., Shen L., et al. . (2013). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 22, 845–854. 10.1089/scd.2012.0395
    1. Li Y., Chen J., Wang L., Lu M., Chopp M. (2001). Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56, 1666–1672. 10.1212/WNL.56.12.1666
    1. Li Y., Chopp M. (2009). Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci. Lett. 456, 120–123. 10.1016/j.neulet.2008.03.096
    1. Liang X., Ding Y., Zhang Y., Tse H. F., Lian Q. (2014). Paracrine mechanisms of mesenchymal Stem cell-based therapy: current status and perspectives. Cell Transplant. 23, 1045–1059. 10.3727/096368913X667709
    1. Lim L. P., Lau N. C., Garrett-Engele P., Grimson A., Schelter J. M., Castle J., et al. . (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773. 10.1038/nature03315
    1. Lim L. P., Lau N. C., Weinstein E. G., Abdelhakim A., Yekta S., Rhoades M. W., et al. . (2003). The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008. 10.1101/gad.1074403
    1. Liu F. J., Lim K. Y., Kaur P., Sepramaniam S., Armugam A., Wong P. T., et al. . (2013). microRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS ONE 8:e66393. 10.1371/journal.pone.0066393
    1. Liu N. K., Xu X. M. (2011). MicroRNA in central nervous system trauma and degenerative disorders. Physiol. Genomics 43, 571–580. 10.1152/physiolgenomics.00168.2010
    1. Lotvall J., Valadi H. (2007). Cell to cell signalling via exosomes through esRNA. Cell Adh. Migr. 1, 156–158. 10.4161/cam.1.3.5114
    1. Lu D., Li Y., Mahmood A., Wang L., Rafiq T., Chopp M. (2002). Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury. J. Neurosurg. 97, 935–940. 10.3171/jns.2002.97.4.0935
    1. Lusardi T. A., Murphy S. J., Phillips J. I., Chen Y., Davis C. M., Young J. M., et al. . (2014). MicroRNA responses to focal cerebral ischemia in male and female mouse brain. Front. Mol. Neurosci. 7:11. 10.3389/fnmol.2014.00011
    1. Lv H., Zhang S., Wang B., Cui S., Yan J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109. 10.1016/j.jconrel.2006.04.014
    1. Mahmood A., Lu D., Chopp M. (2004). Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J. Neurotrauma 21, 33–39. 10.1089/089771504772695922
    1. Mathivanan S., Ji H., Simpson R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. J. Proteomics 73, 1907–1920. 10.1016/j.jprot.2010.06.006
    1. Meckes D. G., Jr., Gunawardena H. P., Dekroon R. M., Heaton P. R., Edwards R. H., Ozgur S., et al. . (2013). Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc. Natl. Acad. Sci. U.S.A. 110, E2925–E2933. 10.1073/pnas.1303906110
    1. Mignot G., Roux S., Thery C., Segura E., Zitvogel L. (2006). Prospects for exosomes in immunotherapy of cancer. J. Cell. Mol. Med. 10, 376–388. 10.1111/j.1582-4934.2006.tb00406.x
    1. Mittelbrunn M., Sanchez-Madrid F. (2012). Intercellular communication: diverse structures for exchange of genetic information. Nat. Rev. Mol. Cell Biol. 13, 328–335. 10.1038/nrm3335
    1. Momen-Heravi F., Balaj L., Alian S., Mantel P. Y., Halleck A. E., Trachtenberg A. J., et al. . (2013). Current methods for the isolation of extracellular vesicles. Biol. Chem. 394, 1253–1262. 10.1515/hsz-2013-0141
    1. Montecalvo A., Larregina A. T., Shufesky W. J., Stolz D. B., Sullivan M. L., Karlsson J. M., et al. . (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119, 756–766. 10.1182/blood-2011-02-338004
    1. Mor E., Cabilly Y., Goldshmit Y., Zalts H., Modai S., Edry L., et al. . (2011). Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Res. 39, 3710–3723. 10.1093/nar/gkq1325
    1. Muralidharan-Chari V., Clancy J. W., Sedgwick A., D'souza-Schorey C. (2010). Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci. 123, 1603–1611. 10.1242/jcs.064386
    1. Olde Loohuis N. F., Kos A., Martens G. J., Van Bokhoven H., Nadif Kasri N., Aschrafi A. (2012). MicroRNA networks direct neuronal development and plasticity. Cell. Mol. Life Sci. 69, 89–102. 10.1007/s00018-011-0788-1
    1. Ono M., Kosaka N., Tominaga N., Yoshioka Y., Takeshita F., Takahashi R. U., et al. . (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal. 7, ra63. 10.1126/scisignal.2005231
    1. Park J. E., Tan H. S., Datta A., Lai R. C., Zhang H., Meng W., et al. . (2010). Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol. Cell. Proteomics 9, 1085–1099. 10.1074/mcp.M900381-MCP200
    1. Phinney D. G., Prockop D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25, 2896–2902. 10.1634/stemcells.2007-0637
    1. Qu R., Li Y., Gao Q., Shen L., Zhang J., Liu Z., et al. . (2007). Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27, 355–363. 10.1111/j.1440-1789.2007.00792.x
    1. Raposo G., Stoorvogel W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383. 10.1083/jcb.201211138
    1. Record M., Carayon K., Poirot M., Silvente-Poirot S. (2014). Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 1841, 108–120. 10.1016/j.bbalip.2013.10.004
    1. Record M., Subra C., Silvente-Poirot S., Poirot M. (2011). Exosomes as intercellular signalosomes and pharmacological effectors. Biochem. Pharmacol. 81, 1171–1182. 10.1016/j.bcp.2011.02.011
    1. Reis L. A., Borges F. T., Simoes M. J., Borges A. A., Sinigaglia-Coimbra R., Schor N. (2012). Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS ONE 7:e44092 10.1371/journal.pone.0044092
    1. Roccaro A. M., Sacco A., Maiso P., Azab A. K., Tai Y. T., Reagan M., et al. . (2013). BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J. Clin. Invest. 123, 1542–1555. 10.1172/JCI66517
    1. Roth L. M., Luse S. A. (1964). Fine structure of the neurohypophysis of the opossum (Didelphis Virginiana). J. Cell Biol. 20, 459–472. 10.1083/jcb.20.3.459
    1. Saba R., Schratt G. M. (2010). MicroRNAs in neuronal development, function and dysfunction. Brain Res. 1338, 3–13. 10.1016/j.brainres.2010.03.107
    1. Sano S., Izumi Y., Yamaguchi T., Yamazaki T., Tanaka M., Shiota M., et al. . (2014). Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 445, 327–333. 10.1016/j.bbrc.2014.01.183
    1. Schrier S. L., Godin D., Gould R. G., Swyryd B., Junga I., Seeger M. (1971). Characterization of microvesicles produced by shearing of human erythrocyte membranes. Biochim. Biophys. Acta 233, 26–36. 10.1016/0005-2736(71)90354-3
    1. Sdrimas K., Kourembanas S. (2014). MSC microvesicles for the treatment of lung disease: a new paradigm for cell-free therapy. Antioxid. Redox Signal. 21, 1905–1915. 10.1089/ars.2013.5784
    1. Sethi P., Lukiw W. J. (2009). Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer's disease temporal lobe neocortex. Neurosci. Lett. 459, 100–104. 10.1016/j.neulet.2009.04.052
    1. Shen B., Wu N., Yang J. M., Gould S. J. (2011a). Protein targeting to exosomes/microvesicles by plasma membrane anchors. J. Biol. Chem. 286, 14383–14395. 10.1074/jbc.M110.208660
    1. Shen L. H., Li Y., Chopp M. (2010). Astrocytic endogenous glial cell derived neurotrophic factor production is enhanced by bone marrow stromal cell transplantation in the ischemic boundary zone after stroke in adult rats. Glia 58, 1074–1081. 10.1002/glia.20988
    1. Shen L. H., Li Y., Gao Q., Savant-Bhonsale S., Chopp M. (2008). Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia 56, 1747–1754. 10.1002/glia.20722
    1. Shen L. H., Xin H., Li Y., Zhang R. L., Cui Y., Zhang L., et al. . (2011b). Endogenous tissue plasminogen activator mediates bone marrow stromal cell-induced neurite remodeling after stroke in mice. Stroke 42, 459–464. 10.1161/STROKEAHA.110.593863
    1. Shimbo K., Miyaki S., Ishitobi H., Kato Y., Kubo T., Shimose S., et al. . (2014). Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem. Biophys. Res. Commun. 445, 381–387. 10.1016/j.bbrc.2014.02.007
    1. Smalheiser N. R. (2007). Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol. Direct 2, 35. 10.1186/1745-6150-2-35
    1. Spees J. L., Olson S. D., Ylostalo J., Lynch P. J., Smith J., Perry A., et al. . (2003). Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc. Natl. Acad. Sci. U.S.A. 100, 2397–2402. 10.1073/pnas.0437997100
    1. Stoorvogel W., Kleijmeer M. J., Geuze H. J., Raposo G. (2002). The biogenesis and functions of exosomes. Traffic 3, 321–330. 10.1034/j.1600-0854.2002.30502.x
    1. Tan C. Y., Lai R. C., Wong W., Dan Y. Y., Lim S. K., Ho H. K. (2014). Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res. Ther. 5, 76. 10.1186/scrt465
    1. Thery C., Amigorena S., Raposo G., Clayton A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22. 10.1002/0471143030.cb0322s30
    1. Thery C., Regnault A., Garin J., Wolfers J., Zitvogel L., Ricciardi-Castagnoli P., et al. . (1999). Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610. 10.1083/jcb.147.3.599
    1. Thery C., Zitvogel L., Amigorena S. (2002). Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579. 10.1038/nri855
    1. Timmers L., Lim S. K., Arslan F., Armstrong J. S., Hoefer I. E., Doevendans P. A., et al. . (2007). Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 1, 129–137. 10.1016/j.scr.2008.02.002
    1. Timmers L., Lim S. K., Hoefer I. E., Arslan F., Lai R. C., Van Oorschot A. A., et al. . (2011). Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res. 6, 206–214. 10.1016/j.scr.2011.01.001
    1. Tomasoni S., Longaretti L., Rota C., Morigi M., Conti S., Gotti E., et al. . (2013). Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 22, 772–780. 10.1089/scd.2012.0266
    1. Trams E. G., Lauter C. J., Salem N., Jr., Heine U. (1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63–70. 10.1016/0005-2736(81)90512-5
    1. Turturici G., Tinnirello R., Sconzo G., Geraci F. (2014). Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am. J. Physiol. Cell Physiol. 306, C621–C633. 10.1152/ajpcell.00228.2013
    1. Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J. J., Lotvall J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659. 10.1038/ncb1596
    1. Van Niel G., Porto-Carreiro I., Simoes S., Raposo G. (2006). Exosomes: a common pathway for a specialized function. J. Biochem. 140, 13–21. 10.1093/jb/mvj128
    1. Vassilopoulos G., Wang P. R., Russell D. W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904. 10.1038/nature01539
    1. Viaud S., Ullrich E., Zitvogel L., Chaput N. (2008). Exosomes for the treatment of human malignancies. Horm. Metab. Res. 40, 82–88. 10.1055/s-2007-1022548
    1. Villarroya-Beltri C., Gutierrez-Vazquez C., Sanchez-Cabo F., Perez-Hernandez D., Vazquez J., Martin-Cofreces N., et al. . (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980. 10.1038/ncomms3980
    1. Von Bartheld C. S., Altick A. L. (2011). Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog. Neurobiol. 93, 313–340. 10.1016/j.pneurobio.2011.01.003
    1. Wang J., Hendrix A., Hernot S., Lemaire M., De Bruyne E., Van Valckenborgh E., et al. . (2014). Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood 124, 555–566. 10.1182/blood-2014-03-562439
    1. White R. E., Jakeman L. B. (2008). Don't fence me in: harnessing the beneficial roles of astrocytes for spinal cord repair. Restor. Neurol. Neurosci. 26, 197–214.
    1. Wong R. S. (2011). Mesenchymal stem cells: angels or demons? J. Biomed. Biotechnol. 2011, 459510. 10.1155/2011/459510
    1. Xin H., Chopp M., Shen L. H., Zhang R. L., Zhang L., Zhang Z. G., et al. . (2013a). Multipotent mesenchymal stromal cells decrease transforming growth factor beta1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke. Neurosci. Lett. 542, 81–86. 10.1016/j.neulet.2013.02.046
    1. Xin H., Li Y., Buller B., Katakowski M., Zhang Y., Wang X., et al. . (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30, 1556–1564. 10.1002/stem.1129
    1. Xin H., Li Y., Chen X., Chopp M. (2006). Bone marrow stromal cells induce BMP2/4 production in oxygen-glucose-deprived astrocytes, which promotes an astrocytic phenotype in adult subventricular progenitor cells. J. Neurosci. Res. 83, 1485–1493. 10.1002/jnr.20834
    1. Xin H., Li Y., Cui Y., Yang J. J., Zhang Z. G., Chopp M. (2013b). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 33, 1711–1715. 10.1038/jcbfm.2013.152
    1. Xin H., Li Y., Liu Z., Wang X., Shang X., Cui Y., et al. . (2013c). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31, 2737–2746. 10.1002/stem.1409
    1. Xin H., Li Y., Shen L. H., Liu X., Hozeska-Solgot A., Zhang R. L., et al. . (2011). Multipotent mesenchymal stromal cells increase tPA expression and concomitantly decrease PAI-1 expression in astrocytes through the sonic hedgehog signaling pathway after stroke (in vitro study). J. Cereb. Blood Flow Metab. 31, 2181–2188. 10.1038/jcbfm.2011.116
    1. Xin H., Li Y., Shen L. H., Liu X., Wang X., Zhang J., et al. . (2010). Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS ONE 5:e9027. 10.1371/journal.pone.0009027
    1. Xu J., Liu X., Chen J., Zacharek A., Cui X., Savant-Bhonsale S., et al. . (2010). Cell-cell interaction promotes rat marrow stromal cell differentiation into endothelial cell via activation of TACE/TNF-alpha signaling. Cell Transplant. 19, 43–53. 10.3727/096368909X474339
    1. Yang J. M., Gould S. J. (2013). The cis-acting signals that target proteins to exosomes and microvesicles. Biochem. Soc. Trans. 41, 277–282. 10.1042/BST20120275
    1. Yang X., Weng Z., Mendrick D. L., Shi Q. (2014). Circulating extracellular vesicles as a potential source of new biomarkers of drug-induced liver injury. Toxicol. Lett. 225, 401–406. 10.1016/j.toxlet.2014.01.013
    1. Yellon D. M., Davidson S. M. (2014). Exosomes: nanoparticles involved in cardioprotection? Circ. Res. 114, 325–332. 10.1161/CIRCRESAHA.113.300636
    1. Yeo R. W., Lai R. C., Zhang B., Tan S. S., Yin Y., Teh B. J., et al. . (2013). Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev. 65, 336–341. 10.1016/j.addr.2012.07.001
    1. Yu L., Yang F., Jiang L., Chen Y., Wang K., Xu F., et al. . (2013). Exosomes with membrane-associated TGF-beta1 from gene-modified dendritic cells inhibit murine EAE independently of MHC restriction. Eur. J. Immunol. 43, 2461–2472. 10.1002/eji.201243295
    1. Yu Y. M., Gibbs K. M., Davila J., Campbell N., Sung S., Todorova T. I., et al. . (2011). MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur. J. Neurosci. 33, 1587–1597. 10.1111/j.1460-9568.2011.07643.x
    1. Zacharek A., Chen J., Cui X., Li A., Li Y., Roberts C., et al. . (2007). Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J. Cereb. Blood Flow Metab. 27, 1684–1691. 10.1038/sj.jcbfm.9600475
    1. Zhang B., Pan X., Cobb G. P., Anderson T. A. (2006a). Plant microRNA: a small regulatory molecule with big impact. Dev. Biol. 289, 3–16. 10.1016/j.ydbio.2005.10.036
    1. Zhang B., Wang M., Gong A., Zhang X., Wu X., Zhu Y., et al. . (2014). HucMSC-exosome mediated -Wnt4 signaling is required for cutaneous wound healing. Stem Cells. [Epub ahead of print]. 10.1002/stem.1771
    1. Zhang B., Wang Q., Pan X. (2007). MicroRNAs and their regulatory roles in animals and plants. J. Cell. Physiol. 210, 279–289. 10.1002/jcp.20869
    1. Zhang H. G., Grizzle W. E. (2014). Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am. J. Pathol. 184, 28–41. 10.1016/j.ajpath.2013.09.027
    1. Zhang H., Huang Z., Xu Y., Zhang S. (2006b). Differentiation and neurological benefit of the mesenchymal stem cells transplanted into the rat brain following intracerebral hemorrhage. Neurol. Res. 28, 104–112. 10.1179/016164106X91960
    1. Zhang J., Brodie C., Li Y., Zheng X., Roberts C., Lu M., et al. . (2009). Bone marrow stromal cell therapy reduces proNGF and p75 expression in mice with experimental autoimmune encephalomyelitis. J. Neurol. Sci. 279, 30–38. 10.1016/j.jns.2008.12.033
    1. Zhang J., Chopp M. (2013). Cell-based therapy for ischemic stroke. Expert Opin. Biol. Ther. 10.1517/14712598.2013.804507
    1. Zhang J., Li Y., Lu M., Cui Y., Chen J., Noffsinger L., et al. . (2006c). Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J. Neurosci. Res. 84, 587–595. 10.1002/jnr.20962
    1. Zhang L., Wrana J. L. (2014). The emerging role of exosomes in Wnt secretion and transport. Curr. Opin. Genet. Dev. 27C, 14–19. 10.1016/j.gde.2014.03.006
    1. Zhang Y., Wang Z., Gemeinhart R. A. (2013). Progress in microRNA delivery. J. Control. Release 172, 962–974. 10.1016/j.jconrel.2013.09.015
    1. Zhang Z. G., Chopp M. (2009). Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 8, 491–500. 10.1016/S1474-4422(09)70061-4
    1. Zhou Y., Xu H., Xu W., Wang B., Wu H., Tao Y., et al. . (2013). Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 4, 34. 10.1186/scrt194
    1. Zhu Y. G., Feng X. M., Abbott J., Fang X. H., Hao Q., Monsel A., et al. . (2014). Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32, 116–125. 10.1002/stem.1504
    1. Ziu M., Fletcher L., Rana S., Jimenez D. F., Digicaylioglu M. (2011). Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS ONE 6:e14724. 10.1371/journal.pone.0014724
    1. Zomer A., Vendrig T., Hopmans E. S., Van Eijndhoven M., Middeldorp J. M., Pegtel D. M. (2010). Exosomes: fit to deliver small RNA. Commun. Integr. Biol. 3, 447–450. 10.4161/cib.3.5.12339

Source: PubMed

3
订阅