Effects of water, sanitation, handwashing, and nutritional interventions on telomere length among children in a cluster-randomized controlled trial in rural Bangladesh

Audrie Lin, Benjamin F Arnold, Andrew N Mertens, Jue Lin, Jade Benjamin-Chung, Shahjahan Ali, Alan E Hubbard, Christine P Stewart, Abul K Shoab, Md Ziaur Rahman, Md Saheen Hossen, Palash Mutsuddi, Syeda L Famida, Salma Akther, Mahbubur Rahman, Leanne Unicomb, Firdaus S Dhabhar, Lia C H Fernald, John M Colford Jnr, Stephen P Luby, Audrie Lin, Benjamin F Arnold, Andrew N Mertens, Jue Lin, Jade Benjamin-Chung, Shahjahan Ali, Alan E Hubbard, Christine P Stewart, Abul K Shoab, Md Ziaur Rahman, Md Saheen Hossen, Palash Mutsuddi, Syeda L Famida, Salma Akther, Mahbubur Rahman, Leanne Unicomb, Firdaus S Dhabhar, Lia C H Fernald, John M Colford Jnr, Stephen P Luby

Abstract

Background: Shorter childhood telomere length (TL) and more rapid TL attrition are widely regarded as manifestations of stress. However, the potential effects of health interventions on child TL are unknown. We hypothesized that a water, sanitation, handwashing (WSH), and nutritional intervention would slow TL attrition during the first two years of life.

Methods: In a trial in rural Bangladesh, we randomized geographical clusters of pregnant women into individual water treatment, sanitation, handwashing, nutrition, combined WSH, combined nutrition plus WSH (N + WSH), or control arms. We conducted a substudy enrolling children from the control arm and the N + WSH intervention arm. Participants and outcome assessors were not masked; analyses were masked. Relative TL was measured at 1 and 2 years after intervention, and the change in relative TL was reported. Analysis was intention-to-treat.

Results: Between May 2012 and July 2013, in the overall trial, we randomized 720 geographical clusters of 5551 pregnant women to a control or an intervention arm. In this substudy, after 1 year of intervention, we assessed a total of 662 children (341 intervention and 321 control) and 713 children after 2 years of intervention (383 intervention and 330 control). Children in the intervention arm had significantly shorter relative TL compared with controls after 1 year of intervention (difference −163 base pairs (bp), p=0.001). Between years 1 and 2, TL increased in the intervention arm (+76 bp) and decreased in the controls (−23 bp) (p=0.050). After 2 years, there was no difference between the arms (p=0.305).

Conclusions: Our unexpected finding of increased telomere attrition during the first year of life in the intervention group suggests that rapid telomere attrition during this critical period could reflect the improved growth in the intervention group, rather than accumulated stress.

Funding: Funded by The Bill and Melinda Gates Foundation.

Clinical trial number: NCT01590095.

Keywords: child intervention; epidemiology; global health; human; low-income; nutrition; randomized controlled trial; telomere length; water, sanitation, hygiene.

Conflict of interest statement

No competing interests declared.

Co-founder of Telomere Diagnostics Inc., a telomere measurement company.

Figures

Figure 1.. Flowchart of participants’ progress through…
Figure 1.. Flowchart of participants’ progress through the phases of the trial.
Figure 2.. Kernel density plots summarize the…
Figure 2.. Kernel density plots summarize the distribution of the telomere lengths (T/S ratios) among enrolled children.
In each panel, a dashed orange line illustrates the distribution of T/S ratio among control children and a solid blue line illustrates the distribution of T/S ratio among N+WSH intervention children. Even if a child was not present at Year 1, they were included in the analysis if they provided a sample at Year 2.
Author response image 1.
Author response image 1.

References

    1. Arnold BF, Null C, Luby SP, Unicomb L, Stewart CP, Dewey KG, Ahmed T, Ashraf S, Christensen G, Clasen T, Dentz HN, Fernald LC, Haque R, Hubbard AE, Kariger P, Leontsini E, Lin A, Njenga SM, Pickering AJ, Ram PK, Tofail F, Winch PJ, Colford JM. Cluster-randomised controlled trials of individual and combined water, sanitation, hygiene and nutritional interventions in rural Bangladesh and Kenya: the WASH Benefits study design and rationale. BMJ Open. 2013;3:e003476. doi: 10.1136/bmjopen-2013-003476.
    1. Asghar M, Hasselquist D, Hansson B, Zehtindjiev P, Westerdahl H, Bensch S. Chronic infection. hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science. 2015;347:436–438. doi: 10.1126/science.1261121.
    1. Aviv A. Telomeres and human aging: facts and fibs. Science of Aging Knowledge Environment. 2004;2004:pe43. doi: 10.1126/sageke.2004.51.pe43.
    1. Barker DJ. The origins of the developmental origins theory. Journal of Internal Medicine. 2007;261:412–417. doi: 10.1111/j.1365-2796.2007.01809.x.
    1. Black MM, Walker SP, Fernald LCH, Andersen CT, DiGirolamo AM, Lu C, McCoy DC, Fink G, Shawar YR, Shiffman J, Devercelli AE, Wodon QT, Vargas-Barón E, Grantham-McGregor S, Lancet Early Childhood Development Series Steering Committee Early childhood development coming of age: science through the life course. The Lancet. 2017;389:77–90. doi: 10.1016/S0140-6736(16)31389-7.
    1. Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106:661–673. doi: 10.1016/S0092-8674(01)00492-5.
    1. Blackburn EH, Epel ES, Lin J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–1198. doi: 10.1126/science.aab3389.
    1. Bull C, Fenech M. Genome-health nutrigenomics and nutrigenetics: nutritional requirements or 'nutriomes' for chromosomal stability and telomere maintenance at the individual level. Proceedings of the Nutrition Society. 2008;67:146–156. doi: 10.1017/S0029665108006988.
    1. Cacho NT, Lawrence RM. Innate immunity and breast milk. Frontiers in Immunology. 2017;8:584. doi: 10.3389/fimmu.2017.00584.
    1. Cassidy A, De Vivo I, Liu Y, Han J, Prescott J, Hunter DJ, Rimm EB. Associations between diet, lifestyle factors, and telomere length in women. American Journal of Clinical Nutrition. 2010;91:1273–1280. doi: 10.3945/ajcn.2009.28947.
    1. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Research. 2002;30:e47. doi: 10.1093/nar/30.10.e47.
    1. Cawthon RM, Smith KR, O'Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. The Lancet. 2003;361:393–395. doi: 10.1016/S0140-6736(03)12384-7.
    1. Cohen S, Janicki-Deverts D, Turner RB, Casselbrant ML, Li-Korotky HS, Epel ES, Doyle WJ. Association between telomere length and experimentally induced upper respiratory viral infection in healthy adults. JAMA. 2013;309:699–705. doi: 10.1001/jama.2013.613.
    1. Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, Desai K, Granick M, Aviv A. Telomeres shorten at equivalent rates in somatic tissues of adults. Nature Communications. 2013;4:1597. doi: 10.1038/ncomms2602.
    1. Dlouha D, Maluskova J, Kralova Lesna I, Lanska V, Hubacek JA. Comparison of the relative telomere length measured in leukocytes and eleven different human tissues. Physiological Research. 2014;63:S343–350.
    1. Drury SS, Theall K, Gleason MM, Smyke AT, De Vivo I, Wong JY, Fox NA, Zeanah CH, Nelson CA. Telomere length and early severe social deprivation: linking early adversity and cellular aging. Molecular Psychiatry. 2012;17:719–727. doi: 10.1038/mp.2011.53.
    1. Eisenberg DTA, Borja JB, Hayes MG, Kuzawa CW. Early life infection, but not breastfeeding, predicts adult blood telomere lengths in the Philippines. American Journal of Human Biology. 2017;29:e22962. doi: 10.1002/ajhb.22962.
    1. Elwood N. Telomere biology of human hematopoietic stem cells. Cancer Control. 2004;11:77–85. doi: 10.1177/107327480401100214.
    1. Entringer S, Epel ES, Lin J, Buss C, Shahbaba B, Blackburn EH, Simhan HN, Wadhwa PD. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. American Journal of Obstetrics and Gynecology. 2013;208:134.e1–13134. doi: 10.1016/j.ajog.2012.11.033.
    1. Factor-Litvak P, Susser E, Kezios K, McKeague I, Kark JD, Hoffman M, Kimura M, Wapner R, Aviv A. Leukocyte telomere length in newborns: implications for the role of telomeres in human disease. Pediatrics. 2016;137:e20153927. doi: 10.1542/peds.2015-3927.
    1. Farzaneh-Far R, Lin J, Epel E, Lapham K, Blackburn E, Whooley MA. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS One. 2010;5:e8612. doi: 10.1371/journal.pone.0008612.
    1. Fewtrell L, Kaufmann RB, Kay D, Enanoria W, Haller L, Colford JM. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis. The Lancet Infectious Diseases. 2005;5:42–52. doi: 10.1016/S1473-3099(04)01253-8.
    1. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M, Aviv A. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. American Journal of Epidemiology. 2007;165:14–21. doi: 10.1093/aje/kwj346.
    1. Frenck RW, Blackburn EH, Shannon KM. The rate of telomere sequence loss in human leukocytes varies with age. PNAS. 1998;95:5607–5610. doi: 10.1073/pnas.95.10.5607.
    1. Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, Martin-Ruiz C, Shiels P, Sayer AA, Barbieri M, Bekaert S, Bischoff C, Brooks-Wilson A, Chen W, Cooper C, Christensen K, De Meyer T, Deary I, Der G, Diez Roux A, Fitzpatrick A, Hajat A, Halaschek-Wiener J, Harris S, Hunt SC, Jagger C, Jeon HS, Kaplan R, Kimura M, Lansdorp P, Li C, Maeda T, Mangino M, Nawrot TS, Nilsson P, Nordfjall K, Paolisso G, Ren F, Riabowol K, Robertson T, Roos G, Staessen JA, Spector T, Tang N, Unryn B, van der Harst P, Woo J, Xing C, Yadegarfar ME, Park JY, Young N, Kuh D, von Zglinicki T, Ben-Shlomo Y, Halcyon study team, Halcyon study team Gender and telomere length: systematic review and meta-analysis. Experimental Gerontology. 2014;51:15–27. doi: 10.1016/j.exger.2013.12.004.
    1. Gianesin K, Noguera-Julian A, Zanchetta M, Del Bianco P, Petrara MR, Freguja R, Rampon O, Fortuny C, Camós M, Mozzo E, Giaquinto C, De Rossi A. Premature aging and immune senescence in HIV-infected children. AIDS. 2016;30:1363–1373. doi: 10.1097/QAD.0000000000001093.
    1. Hamad R, Walter S, Rehkopf DH. Telomere length and health outcomes: A two-sample genetic instrumental variables analysis. Experimental Gerontology. 2016;82:88–94. doi: 10.1016/j.exger.2016.06.005.
    1. Hou L, Savage SA, Blaser MJ, Perez-Perez G, Hoxha M, Dioni L, Pegoraro V, Dong LM, Zatonski W, Lissowska J, Chow WH, Baccarelli A. Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiology Biomarkers & Prevention. 2009;18:3103–3109. doi: 10.1158/1055-9965.EPI-09-0347.
    1. Houben JM, Moonen HJ, van Schooten FJ, Hageman GJ. Telomere length assessment: biomarker of chronic oxidative stress? Free Radical Biology and Medicine. 2008;44:235–246. doi: 10.1016/j.freeradbiomed.2007.10.001.
    1. Ilmonen P, Kotrschal A, Penn DJ. Telomere attrition due to infection. PLoS One. 2008;3:e2143. doi: 10.1371/journal.pone.0002143.
    1. Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews. 2010;35:2–16. doi: 10.1016/j.neubiorev.2009.10.002.
    1. Kimura M, Gazitt Y, Cao X, Zhao X, Lansdorp PM, Aviv A. Synchrony of telomere length among hematopoietic cells. Experimental Hematology. 2010;38:854–859. doi: 10.1016/j.exphem.2010.06.010.
    1. Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M, Wolkowitz O, Mellon S, Blackburn E. Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. Journal of Immunological Methods. 2010;352:71–80. doi: 10.1016/j.jim.2009.09.012.
    1. Little RJ, D'Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, Neaton JD, Rotnitzky A, Scharfstein D, Shih WJ, Siegel JP, Stern H. The prevention and treatment of missing data in clinical trials. New England Journal of Medicine. 2012;367:1355–1360. doi: 10.1056/NEJMsr1203730.
    1. Liu JJ, Prescott J, Giovannucci E, Hankinson SE, Rosner B, Han J, De Vivo I. Plasma vitamin D biomarkers and leukocyte telomere length. American Journal of Epidemiology. 2013;177:1411–1417. doi: 10.1093/aje/kws435.
    1. Luby SP, Agboatwalla M, Feikin DR, Painter J, Billhimer W, Altaf A, Hoekstra RM. Effect of handwashing on child health: a randomised controlled trial. The Lancet. 2005;366:225–233. doi: 10.1016/S0140-6736(05)66912-7.
    1. Marchetto NM, Glynn RA, Ferry ML, Ostojic M, Wolff SM, Yao R, Haussmann MF. Prenatal stress and newborn telomere length. American Journal of Obstetrics and Gynecology. 2016;215:94.e1–9494. doi: 10.1016/j.ajog.2016.01.177.
    1. Matos C, Ribeiro M, Guerra A. Breastfeeding: antioxidative properties of breast milk. Journal of Applied Biomedicine. 2015;13:169–180. doi: 10.1016/j.jab.2015.04.003.
    1. GBD 2015 Mortality and Causes of Death Collaborators Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–1544. doi: 10.1016/S0140-6736(16)31012-1.
    1. O'Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW. Regulation of IGF-I function by proinflammatory cytokines: at the interface of immunology and endocrinology. Cellular Immunology. 2008;252:91–110. doi: 10.1016/j.cellimm.2007.09.010.
    1. Paul L, Jacques PF, Aviv A, Vasan RS, D'Agostino RB, Levy D, Selhub J. High plasma folate is negatively associated with leukocyte telomere length in framingham offspring cohort. European Journal of Nutrition. 2015;54:235–241. doi: 10.1007/s00394-014-0704-1.
    1. Price LH, Kao HT, Burgers DE, Carpenter LL, Tyrka AR. Telomeres and early-life stress: an overview. Biological Psychiatry. 2013;73:15–23. doi: 10.1016/j.biopsych.2012.06.025.
    1. Rehkopf DH, Dow WH, Rosero-Bixby L, Lin J, Epel ES, Blackburn EH. Seasonal variation of peripheral blood leukocyte telomere length in costa rica: A population-based observational study. American Journal of Human Biology. 2014;26:367–375. doi: 10.1002/ajhb.22529.
    1. Richards JB, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, Lu X, Surdulescu GL, Swaminathan R, Spector TD, Aviv A. Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. The American Journal of Clinical Nutrition. 2007;86:1420–1425.
    1. Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. The Journal of Experimental Medicine. 1999;190:157–168. doi: 10.1084/jem.190.2.157.
    1. Salpea KD, Talmud PJ, Cooper JA, Maubaret CG, Stephens JW, Abelak K, Humphries SE. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010;209:42–50. doi: 10.1016/j.atherosclerosis.2009.09.070.
    1. Sidorov I, Kimura M, Yashin A, Aviv A. Leukocyte telomere dynamics and human hematopoietic stem cell kinetics during somatic growth. Experimental Hematology. 2009;37:514–524. doi: 10.1016/j.exphem.2008.11.009.
    1. Takubo K, Izumiyama-Shimomura N, Honma N, Sawabe M, Arai T, Kato M, Oshimura M, Nakamura K. Telomere lengths are characteristic in each human individual. Experimental Gerontology. 2002;37:523–531. doi: 10.1016/S0531-5565(01)00218-2.
    1. Theall KP, Brett ZH, Shirtcliff EA, Dunn EC, Drury SS. Neighborhood disorder and telomeres: connecting children's exposure to community level stress and cellular response. Social Science & Medicine. 2013a;85:50–58. doi: 10.1016/j.socscimed.2013.02.030.
    1. Theall KP, McKasson S, Mabile E, Dunaway LF, Drury SS. Early hits and long-term consequences: tracking the lasting impact of prenatal smoke exposure on telomere length in children. American Journal of Public Health. 2013b;103:S133–S135. doi: 10.2105/AJPH.2012.301208.
    1. Thomas P, O' Callaghan NJ, Fenech M. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer's disease. Mechanisms of Ageing and Development. 2008;129:183–190. doi: 10.1016/j.mad.2007.12.004.
    1. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, Sachdev HS, Maternal and Child Undernutrition Study Group Maternal and child undernutrition: consequences for adult health and human capital. The Lancet. 2008;371:340–357. doi: 10.1016/S0140-6736(07)61692-4.
    1. Wojcicki JM, Heyman MB, Elwan D, Lin J, Blackburn E, Epel E. Early exclusive breastfeeding is associated with longer telomeres in Latino preschool children. The American Journal of Clinical Nutrition. 2016a;104:397–405. doi: 10.3945/ajcn.115.115428.
    1. Wojcicki JM, Olveda R, Heyman MB, Elwan D, Lin J, Blackburn E, Epel E. Cord blood telomere length in Latino infants: relation with maternal education and infant sex. Journal of Perinatology. 2016b;36:235–241. doi: 10.1038/jp.2015.178.
    1. Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H. Multivitamin use and telomere length in women. American Journal of Clinical Nutrition. 2009;89:1857–1863. doi: 10.3945/ajcn.2008.26986.
    1. Zanet DL, Thorne A, Singer J, Maan EJ, Sattha B, Le Campion A, Soudeyns H, Pick N, Murray M, Money DM, Côté HC, CIHR Emerging Team Grant on HIV Therapy and Aging: CARMA Association between short leukocyte telomere length and HIV infection in a cohort study: No evidence of a relationship with antiretroviral therapy. Clinical Infectious Diseases. 2014;58:1322–1332. doi: 10.1093/cid/ciu051.
    1. Zeichner SL, Palumbo P, Feng Y, Xiao X, Gee D, Sleasman J, Goodenow M, Biggar R, Dimitrov D. Rapid telomere shortening in children. Blood. 1999;93:2824–2830.
    1. Zhan Y, Song C, Karlsson R, Tillander A, Reynolds CA, Pedersen NL, Hägg S. Telomere length shortening and alzheimer disease--a mendelian randomization study. JAMA Neurology. 2015;72:1202–1203. doi: 10.1001/jamaneurol.2015.1513.

Source: PubMed

3
订阅