Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

Irina Arutyunyan, Andrey Elchaninov, Andrey Makarov, Timur Fatkhudinov, Irina Arutyunyan, Andrey Elchaninov, Andrey Makarov, Timur Fatkhudinov

Abstract

The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria.

Figures

Figure 1
Figure 1
Cross-section of the human umbilical cord. A: artery; V: vein; WJ: Wharton's jelly; UCL: umbilical cord lining; SA, IV, and PV: subamnion, intervascular, and perivascular zones of Wharton's jelly; VW: blood vessel wall. Hematoxylin and eosin staining, scale bar = 200 µm.
Figure 2
Figure 2
The characteristics of cultured cells derived from Wharton's jelly according to minimal criteria to define human MSCs proposed by ISCT. (a) Analysis of immunophenotype with BD Stemflow hMSC Analysis Kit (BD Biosciences). Negative MSC cocktail includes PE CD45, PE CD34, PE CD11b, PE CD19, and PE HLA-DR antibody conjugates. (b) Phase contrast capture of UC-MSCs at the fourth passage. Scale bar: 200 μm. (c) Adipogenic differentiation with StemPro® Adipogenesis Differentiation Kit (Gibco). Lipid droplets are stained with Sudan III. Scale bar: 200 μm. (d) Osteogenic differentiation with StemPro Osteogenesis Differentiation Kit (Gibco). Calcificated nodules are stained with Alizarin red S (pH = 4.1). Scale bar: 200 μm. (e) Chondrogenic differentiation with StemPro Chondrogenesis Differentiation Kit (Gibco). Mucopolysaccharides are stained with Alcian blue (pH = 2.5). Scale bar: 200 μm.
Figure 3
Figure 3
Number of clinical trials for UC-MSCs based therapy (https://ClinicalTrials.gov/).

References

    1. Crisan M., Yap S., Casteilla L., et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–313. doi: 10.1016/j.stem.2008.07.003.
    1. Bongso A., Fong C.-Y. Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: an overview. Stem Cell Reviews and Reports. 2013;9(2):226–240. doi: 10.1007/s12015-012-9418-z.
    1. Benirschke K., Kaufmann P., Baergen R. N., editors. Pathology of the Human Placenta. New York, NY, USA: Springer; 2006. Anatomy and pathology of the umbilical cord; pp. 380–451.
    1. Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood. 1974;43(3):357–361.
    1. McElreavey K. D., Irvine A. I., Ennis K. T., McLean W. H. I. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord. Biochemical Society Transactions. 1991;19(1, article 29S) doi: 10.1042/bst019029s.
    1. Wang H.-S., Hung S.-C., Peng S.-T., et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. STEM CELLS. 2004;22(7):1330–1337. doi: 10.1634/stemcells.2004-0013.
    1. Batsali A. K., Kastrinaki M.-C., Papadaki H. A., Pontikoglou C. Mesenchymal stem cells derived from Wharton's jelly of the umbilical cord: biological properties and emerging clinical applications. Current Stem Cell Research and Therapy. 2013;8(2):144–155. doi: 10.2174/1574888x11308020005.
    1. Can A., Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. STEM CELLS. 2007;25(11):2886–2895. doi: 10.1634/stemcells.2007-0417.
    1. El Omar R., Beroud J., Stoltz J.-F., Menu P., Velot E., Decot V. Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Engineering—Part B: Reviews. 2014;20(5):523–544. doi: 10.1089/ten.teb.2013.0664.
    1. Fong C.-Y., Richards M., Manasi N., Biswas A., Bongso A. Comparative growth behaviour and characterization of stem cells from human Wharton's jelly. Reproductive BioMedicine Online. 2007;15(6):708–718. doi: 10.1016/s1472-6483(10)60539-1.
    1. Nekanti U., Rao V. B., Bahirvani A. G., Jan M., Totey S., Ta M. Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells. Stem Cells and Development. 2010;19(1):117–130. doi: 10.1089/scd.2009.0177.
    1. De Kock J., Najar M., Bolleyn J., et al. Mesoderm-derived stem cells: the link between the transcriptome and their differentiation potential. Stem Cells and Development. 2012;21(18):3309–3323. doi: 10.1089/scd.2011.0723.
    1. Li X., Bai J., Ji X., Li R., Xuan Y., Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. International Journal of Molecular Medicine. 2014;34(3):695–704. doi: 10.3892/ijmm.2014.1821.
    1. Balasubramanian S., Thej C., Venugopal P., et al. Higher propensity of Wharton's jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow. Cell Biology International. 2013;37(5):507–515. doi: 10.1002/cbin.10056.
    1. Datta I., Mishra S., Mohanty L., Pulikkot S., Joshi P. G. Neuronal plasticity of human Wharton's jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells. Cytotherapy. 2011;13(8):918–932. doi: 10.3109/14653249.2011.579957.
    1. Chen M.-Y., Lie P.-C., Li Z.-L., Wei X. Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Experimental Hematology. 2009;37(5):629–640. doi: 10.1016/j.exphem.2009.02.003.
    1. Wu L.-F., Wang N.-N., Liu Y.-S., Wei X. Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Engineering Part A. 2009;15(10):2865–2873. doi: 10.1089/ten.tea.2008.0579.
    1. Liu L., Mao Q., Chu S., et al. Intranasal versus intraperitoneal delivery of human umbilical cord tissue-derived cultured mesenchymal stromal cells in a murine model of neonatal lung injury. American Journal of Pathology. 2014;184(12):3344–3358. doi: 10.1016/j.ajpath.2014.08.010.
    1. El'chaninov A. V., Volodina M. A., Arutyunyan I. V., et al. Effect of multipotent stromal cells on the function of cell mitochondria in regenerating liver. Bulletin of Experimental Biology and Medicine. 2015;158(4):566–572. doi: 10.1007/s10517-015-2808-x.
    1. Choi M., Lee H.-S., Naidansaren P., et al. Proangiogenic features of Wharton's jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. International Journal of Biochemistry and Cell Biology. 2013;45(3):560–570. doi: 10.1016/j.biocel.2012.12.001.
    1. Kadam S. S., Bhonde R. R. Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells. Islets. 2010;2(2):112–120. doi: 10.4161/isl.2.2.11280.
    1. Sabapathy V., Sundaram B., Sreelakshmi V. M., Mankuzhy P., Kumar S. Human Wharton's jelly mesenchymal stem cells plasticity augments scar-free skin wound healing with hair growth. PLoS ONE. 2014;9(4) doi: 10.1371/journal.pone.0093726.e93726
    1. Shohara R., Yamamoto A., Takikawa S., et al. Mesenchymal stromal cells of human umbilical cord Wharton's jelly accelerate wound healing by paracrine mechanisms. Cytotherapy. 2012;14(10):1171–1181. doi: 10.3109/14653249.2012.706705.
    1. Nascimento D. S., Mosqueira D., Sousa L. M., et al. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Research and Therapy. 2014;5(1, article 5) doi: 10.1186/scrt394.
    1. Latifpour M., Nematollahi-Mahani S. N., Deilamy M., et al. Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells. Cardiology. 2011;120(1):9–18. doi: 10.1159/000332581.
    1. Zhang W., Liu X., Yang L., et al. Wharton's jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coronary Artery Disease. 2013;24(7):549–558. doi: 10.1097/mca.0b013e3283640f00.
    1. Wei L., Zhang J., Xiao X.-B., et al. Multiple injections of human umbilical cord-derived mesenchymal stromal cells through the tail vein improve microcirculation and the microenvironment in a rat model of radiation myelopathy. Journal of Translational Medicine. 2014;12(1, article 246) doi: 10.1186/s12967-014-0246-6.
    1. Lin Y., Lin L., Wang Q., et al. Transplantation of human umbilical mesenchymal stem cells attenuates dextran sulfate sodium-induced colitis in mice. Clinical and Experimental Pharmacology and Physiology. 2015;42(1):76–86. doi: 10.1111/1440-1681.12321.
    1. Santos J. M., Bárcia R. N., Simões S. I., et al. The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX®) in the treatment of inflammatory arthritis. Journal of Translational Medicine. 2013;11, article 18 doi: 10.1186/1479-5876-11-18.
    1. Liu A. M., Lu G., Tsang K. S., et al. Umbilical cord-derived mesenchymal stem cells with forced expression of hepatocyte growth factor enhance remyelination and functional recovery in a rat intracerebral hemorrhage model. Neurosurgery. 2010;67(2):357–365. doi: 10.1227/01.NEU.0000371983.06278.B3.
    1. Li J., Zheng C.-Q., Li Y., Yang C., Lin H., Duan H.-G. Hepatocyte growth factor gene-modified mesenchymal stem cells augment sinonasal wound healing. Stem Cells and Development. 2015;24(15):1817–1830. doi: 10.1089/scd.2014.0521.
    1. Hu J., Yu X., Wang Z., et al. Long term effects of the implantation of Wharton's jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal. 2013;60(3):347–357. doi: 10.1507/endocrj.ej12-0343.
    1. Wang D., Feng X., Lu L., et al. A CD8 T cell/indoleamine 2,3-dioxygenase axis is required for mesenchymal stem cell suppression of human systemic lupus erythematosus. Arthritis & Rheumatology. 2014;66(8):2234–2245. doi: 10.1002/art.38674.
    1. Sun L., Wang D., Liang J., et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism. 2010;62(8):2467–2475. doi: 10.1002/art.27548.
    1. Chang Y. S., Ahn S. Y., Yoo H. S., et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. Journal of Pediatrics. 2014;164(5):966–972.e6. doi: 10.1016/j.jpeds.2013.12.011.
    1. Zhang Z., Fu J., Xu X., et al. Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients. AIDS. 2013;27(8):1283–1293. doi: 10.1097/qad.0b013e32835fab77.
    1. Wang L., Li J., Liu H., et al. A pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. Journal of Gastroenterology and Hepatology. 2013;28(supplement 1):85–92. doi: 10.1111/jgh.12029.
    1. Shi M., Zhang Z., Xu R., et al. Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Translational Medicine. 2012;1(10):725–731. doi: 10.5966/sctm.2012-0034.
    1. Gao L. R., Chen Y., Zhang N. K., et al. Intracoronary infusion of Wharton's jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial. BMC Medicine. 2015;13, article 162 doi: 10.1186/s12916-015-0399-z.
    1. Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905.
    1. Wang X.-Y., Lan Y., He W.-Y., et al. Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood. 2008;111(4):2436–2443. doi: 10.1182/blood-2007-07-099333.
    1. Li D.-R., Cai J.-H. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells. Chinese Medical Journal. 2012;125(24):4504–4510. doi: 10.3760/cma.j.issn.0366-6999.2012.24.032.
    1. Trivanović D., Kocić J., Mojsilović S., et al. Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton's Jelly. Srpski Arhiv za Celokupno Lekarstvo. 2013;141(3-4):178–186. doi: 10.2298/SARH1304178T.
    1. Mori Y., Ohshimo J., Shimazu T., et al. Improved explant method to isolate umbilical cord-derived mesenchymal stem cells and their immunosuppressive properties. Tissue Engineering Part C: Methods. 2015;21(4):367–372. doi: 10.1089/ten.tec.2014.0385.
    1. Salehinejad P., Alitheen N. B., Ali A. M., et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton's jelly. In Vitro Cellular and Developmental Biology—Animal. 2012;48(2):75–83. doi: 10.1007/s11626-011-9480-x.
    1. Han Y.-F., Tao R., Sun T.-J., Chai J.-K., Xu G., Liu J. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology. 2013;65(5):819–827. doi: 10.1007/s10616-012-9528-0.
    1. Margossian T., Reppel L., Makdissy N., Stoltz J.-F., Bensoussan D., Huselstein C. Mesenchymal stem cells derived from Wharton's jelly: comparative phenotype analysis between tissue and in vitro expansion. BioMedical Materials and Engineering. 2012;22(4):243–254. doi: 10.3233/bme-2012-0714.
    1. Majore I., Moretti P., Stahl F., Hass R., Kasper C. Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Reviews and Reports. 2011;7(1):17–31. doi: 10.1007/s12015-010-9165-y.
    1. Hua J., Gong J., Meng H., et al. Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow. Cell Biology International. 2014;38(2):198–210. doi: 10.1002/cbin.10188.
    1. Paladino F. V., Peixoto-Cruz J. S., Santacruz-Perez C., Goldberg A. C. Comparison between isolation protocols highlights intrinsic variability of human umbilical cord mesenchymal cells. Cell and Tissue Banking. 2016;17(1):123–136. doi: 10.1007/s10561-015-9525-6.
    1. Hendijani F., Sadeghi-Aliabadi H., Haghjooy Javanmard S. Comparison of human mesenchymal stem cells isolated by explant culture method from entire umbilical cord and Wharton’s jelly matrix. Cell and Tissue Banking. 2014;15(4):555–565. doi: 10.1007/s10561-014-9425-1.
    1. Bieback K., Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: from biology to cell therapy. World Journal of Stem Cells. 2010;2(4):81–92. doi: 10.4252/wjsc.v2.i4.81.
    1. Troyer D. L., Weiss M. L. Concise review: Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26(3):591–599. doi: 10.1634/stemcells.2007-0439.
    1. Vangsness C. T., Jr., Sternberg H., Harris L. Umbilical cord tissue offers the greatest number of harvestable mesenchymal stem cells for research and clinical application: a literature review of different harvest sites. Arthroscopy. 2015;31(9):1836–1843. doi: 10.1016/j.arthro.2015.03.014.
    1. Chatzistamatiou T. K., Papassavas A. C., Michalopoulos E., et al. Optimizing isolation culture and freezing methods to preserve Wharton's jelly's mesenchymal stem cell (MSC) properties: an MSC banking protocol validation for the Hellenic Cord Blood Bank. Transfusion. 2014;54(12):3108–3120. doi: 10.1111/trf.12743.
    1. Badowski M., Muise A., Harris D. T. Mixed effects of long-term frozen storage on cord tissue stem cells. Cytotherapy. 2014;16(9):1313–1321. doi: 10.1016/j.jcyt.2014.05.020.
    1. Lu L.-L., Liu Y.-J., Yang S.-G., et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91(8):1017–1026.
    1. Shaer A., Azarpira N., Aghdaie M. H., Esfandiari E. Isolation and characterization of human mesenchymal stromal cells derived from placental decidua basalis; umbilical cord wharton's jelly and amniotic membrane. Pakistan Journal of Medical Sciences. 2014;30(5):1022–1026. doi: 10.12669/pjms.305.4537.
    1. Wegmeyer H., Bröske A.-M., Leddin M., et al. Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells and Development. 2013;22(19):2606–2618. doi: 10.1089/scd.2013.0016.
    1. Karahuseyinoglu S., Cinar O., Kilic E., et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007;25(2):319–331. doi: 10.1634/stemcells.2006-0286.
    1. Ruan Z.-B., Zhu L., Yin Y.-G., Chen G.-C. Karyotype stability of human umbilical cord-derived mesenchymal stem cells during in vitro culture. Experimental and Therapeutic Medicine. 2014;8(5):1508–1512. doi: 10.3892/etm.2014.1977.
    1. Chen G., Yue A., Ruan Z., et al. Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium. PLoS ONE. 2014;9(6) doi: 10.1371/journal.pone.0098565.e98565
    1. Shi Z., Zhao L., Qiu G., He R., Detamore M. S. The effect of extended passaging on the phenotype and osteogenic potential of human umbilical cord mesenchymal stem cells. Molecular and Cellular Biochemistry. 2015;401(1-2):155–164. doi: 10.1007/s11010-014-2303-0.
    1. Kadam S. S., Tiwari S., Bhonde R. R. Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord. In Vitro Cellular and Developmental Biology—Animal. 2009;45(1-2):23–27. doi: 10.1007/s11626-008-9155-4.
    1. Bakhshi T., Zabriskie R. C., Bodie S., et al. Mesenchymal stem cells from the Wharton's jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion. 2008;48(12):2638–2644. doi: 10.1111/j.1537-2995.2008.01926.x.
    1. Majumdar D., Bhonde R., Datta I. Influence of ischemic microenvironment on human Wharton's Jelly mesenchymal stromal cells. Placenta. 2013;34(8):642–649. doi: 10.1016/j.placenta.2013.04.021.
    1. Tantrawatpan C., Manochantr S., Kheolamai P., U-Pratya Y., Supokawe A., Issaragrisil S. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells. Journal of the Medical Association of Thailand. 2013;96(9):1208–1217.
    1. Drela K., Sarnowska A., Siedlecka P., et al. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy. 2014;16(7):881–892. doi: 10.1016/j.jcyt.2014.02.009.
    1. Amiri F., Halabian R., Harati M. D., et al. Positive selection of wharton’s jelly-derived CD105+ cells by MACS technique and their subsequent cultivation under suspension culture condition: a simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematology. 2015;20(4):208–216. doi: 10.1179/1607845414y.0000000185.
    1. Xu J., Liao W., Gu D., et al. Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord. Cellular Physiology and Biochemistry. 2009;23(4–6):415–424. doi: 10.1159/000218188.
    1. Hsieh J.-Y., Fu Y.-S., Chang S.-J., Tsuang Y.-H., Wang H.-W. Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's Jelly of umbilical cord. Stem Cells and Development. 2010;19(12):1895–1910. doi: 10.1089/scd.2009.0485.
    1. Han Y., Chai J., Sun T., Li D., Tao R. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro. Biochemical and Biophysical Research Communications. 2011;413(4):561–565. doi: 10.1016/j.bbrc.2011.09.001.
    1. Wang H., Zhao T., Xu F., et al. How important is differentiation in the therapeutic effect of mesenchymal stromal cells in liver disease? Cytotherapy. 2014;16(3):309–318. doi: 10.1016/j.jcyt.2013.07.011.
    1. Yang S., Ma K., Feng C., et al. Capacity of human umbilical cord-derived mesenchymal stem cells to differentiate into sweat gland-like cells: A Preclinical Study. Frontiers of Medicine in China. 2013;7(3):345–353. doi: 10.1007/s11684-013-0282-2.
    1. Chen Y., Yu Y., Chen L., et al. Human umbilical cord mesenchymal stem cells: a new therapeutic option for tooth regeneration. Stem Cells International. 2015;2015:11. doi: 10.1155/2015/549432.549432
    1. Li N., Pan S., Zhu H., Mu H., Liu W., Hua J. BMP4 promotes SSEA-1+ hUC-MSC differentiation into male germ-like cells in vitro . Cell Proliferation. 2014;47(4):299–309. doi: 10.1111/cpr.12115.
    1. Latifpour M., Shakiba Y., Amidi F., Mazaheri Z., Sobhani A. Differentiation of human umbilical cord matrix-derived mesenchymal stem cells into germ-like cells. Avicenna Journal of Medical Biotechnology. 2014;6(4):218–227.
    1. Li J.-F., Yin H.-L., Shuboy A., et al. Differentiation of hUC-MSC into dopaminergic-like cells after transduction with hepatocyte growth factor. Molecular and Cellular Biochemistry. 2013;381(1-2):183–190. doi: 10.1007/s11010-013-1701-z.
    1. Wei X., Peng G., Zheng S., Wu X. Differentiation of umbilical cord mesenchymal stem cells into steroidogenic cells in comparison to bone marrow mesenchymal stem cells. Cell Proliferation. 2012;45(2):101–110. doi: 10.1111/j.1365-2184.2012.00809.x.
    1. Joerger-Messerli M., Brühlmann E., Bessire A., et al. Preeclampsia enhances neuroglial marker expression in umbilical cord Wharton's jelly-derived mesenchymal stem cells. Journal of Maternal-Fetal and Neonatal Medicine. 2015;28(4):464–469. doi: 10.3109/14767058.2014.921671.
    1. Messerli M., Wagner A., Sager R., et al. Stem cells from umbilical cord Wharton's jelly from preterm birth have neuroglial differentiation potential. Reproductive Sciences. 2013;20(12):1455–1464. doi: 10.1177/1933719113488443.
    1. Penolazzi L., Vecchiatini R., Bignardi S., et al. Influence of obstetric factors on osteogenic potential of umbilical cord-derived mesenchymal stem cells. Reproductive Biology and Endocrinology. 2009;7, article 106 doi: 10.1186/1477-7827-7-106.
    1. Kim J., Piao Y., Pak Y. K., et al. Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells and Development. 2015;24(5):575–586. doi: 10.1089/scd.2014.0349.
    1. Amable P. R., Teixeira M. V. T., Carias R. B. V., Granjeiro J. M., Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Research and Therapy. 2014;5(2, article 53) doi: 10.1186/scrt442.
    1. Kuchroo P., Dave V., Vijayan A., Viswanathan C., Ghosh D. Paracrine factors secreted by umbilical cord-derived mesenchymal stem cells induce angiogenesis in vitro by a VEGF-independent pathway. Stem Cells and Development. 2015;24(4):437–450. doi: 10.1089/scd.2014.0184.
    1. Amable P. R., Teixeira M. V., Carias R. B., Granjeiro J. M., Borojevic R. Gene expression and protein secretion during human mesenchymal cell differentiation into adipogenic cells. BMC Cell Biology. 2014;15(1, article 46) doi: 10.1186/s12860-014-0046-0.
    1. Balasubramanian S., Venugopal P., Sundarraj S., Zakaria Z., Majumdar A. S., Ta M. Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells. Cytotherapy. 2012;14(1):26–33. doi: 10.3109/14653249.2011.605119.
    1. Friedman R., Betancur M., Boissel L., Tuncer H., Cetrulo C., Klingemann H. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biology of Blood and Marrow Transplantation. 2007;13(12):1477–1486. doi: 10.1016/j.bbmt.2007.08.048.
    1. Weiss M. L., Anderson C., Medicetty S., et al. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells. 2008;26(11):2865–2874. doi: 10.1634/stemcells.2007-1028.
    1. Deng Y., Yi S., Wang G., et al. Umbilical cord-derived mesenchymal stem cells instruct dendritic cells to acquire tolerogenic phenotypes through the IL-6-mediated upregulation of SOCS1. Stem Cells and Development. 2014;23(17):2080–2092. doi: 10.1089/scd.2013.0559.
    1. Chatterjee D., Marquardt N., Tufa D. M., et al. Role of gamma-secretase in human umbilical-cord derived mesenchymal stem cell mediated suppression of NK cell cytotoxicity. Cell Communication and Signaling. 2014;12(1, article 63) doi: 10.1186/s12964-014-0063-9.
    1. Najar M., Raicevic G., Boufker H. I., et al. Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton's Jelly and bone marrow sources. Cellular Immunology. 2010;264(2):171–179. doi: 10.1016/j.cellimm.2010.06.006.
    1. Liu R., Su D., Zhou M., Feng X., Li X., Sun L. Umbilical cord mesenchymal stem cells inhibit the differentiation of circulating T follicular helper cells in patients with primary Sjögren's syndrome through the secretion of indoleamine 2,3-dioxygenase. Rheumatology. 2015;54(2):332–342. doi: 10.1093/rheumatology/keu316.
    1. Prockop D. J. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells. 2013;31(10):2042–2046. doi: 10.1002/stem.1400.
    1. Hartmann I., Hollweck T., Haffner S., et al. Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties. Journal of Immunological Methods. 2010;363(1):80–89. doi: 10.1016/j.jim.2010.10.008.
    1. Spees J. L., Olson S. D., Whitney M. J., Prockop D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(5):1283–1288. doi: 10.1073/pnas.0510511103.
    1. Prockop D. J., Oh J. Y. Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. Journal of Cellular Biochemistry. 2012;113(5):1460–1469. doi: 10.1002/jcb.24046.
    1. Lin H.-Y., Liou C.-W., Chen S.-D., et al. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion. 2015;22:31–44. doi: 10.1016/j.mito.2015.02.006.
    1. Taghizadeh R. R., Cetrulo K. J., Cetrulo C. L. Wharton's Jelly stem cells: future clinical applications. Placenta. 2011;32(supplement 4):S311–S315. doi: 10.1016/j.placenta.2011.06.010.
    1. Fong C.-Y., Chak L.-L., Biswas A., et al. Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews and Reports. 2011;7(1):1–16. doi: 10.1007/s12015-010-9166-x.
    1. Gauthaman K., Fong C.-Y., Suganya C.-A., et al. Extra-embryonic human Wharton's jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reproductive BioMedicine Online. 2012;24(2):235–246. doi: 10.1016/j.rbmo.2011.10.007.
    1. Liang X.-J., Chen X.-J., Yang D.-H., Huang S.-M., Sun G.-D., Chen Y.-P. Differentiation of human umbilical cord mesenchymal stem cells into hepatocyte-like cells by hTERT gene transfection in vitro. Cell Biology International. 2012;36(2):215–221. doi: 10.1042/cbi20110350.
    1. Subramanian A., Shu-Uin G., Ngo K.-S., et al. Human umbilical cord Wharton's jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry. 2012;113(6):1886–1895. doi: 10.1002/jcb.24057.
    1. Donders R., Vanheusden M., Bogie J. F. J., et al. Human Wharton’s jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplantation. 2015;24(10):2077–2098. doi: 10.3727/096368914x685104.
    1. Database of publicly and privately supported clinical studies of human participants,
    1. Planka L., Gal P., Kecova H., et al. Allogeneic and autogenous transplantations of MSCs in treatment of the physeal bone bridge in rabbits. BMC Biotechnology. 2008;8, article 70 doi: 10.1186/1472-6750-8-70.
    1. Kasamon Y. L., Jones R. J., Diehl L. F., et al. Outcomes of autologous and allogeneic blood or marrow transplantation for mantle cell lymphoma. Biology of Blood and Marrow Transplantation. 2005;11(1):39–46. doi: 10.1016/j.bbmt.2004.09.007.
    1. Ashfaq K., Yahaya I., Hyde C., et al. Clinical effectiveness and cost-effectiveness of stem cell transplantation in the management of acute leukaemia: a systematic review. Health Technology Assessment. 2010;14(54):1–172. doi: 10.3310/hta14540.
    1. Liang L., Han Z. C. Regenerative medicine and cell therapy. In: Stoltz J. F., editor. Umbilical Cord Mesenchymal Stem Cells: Biology and Clinical Application. Amsterdam, The Netherlands: IOS Press BV; 2012. pp. 62–70.
    1. Martins J. P., Santos J. M., de Almeida J. M., et al. Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data. Stem Cell Research and Therapy. 2014;5(1, article 9) doi: 10.1186/scrt398.
    1. Cooper K., Viswanathan C. Establishment of a mesenchymal stem cell bank. Stem Cells International. 2011;2011:8. doi: 10.4061/2011/905621.905621
    1. Secco M., Zucconi E., Vieira N. M., et al. Mesenchymal stem cells from umbilical cord: do not discard the cord! Neuromuscular Disorders. 2008;18(1):17–18. doi: 10.1016/j.nmd.2007.11.003.

Source: PubMed

3
订阅