Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa

Juliet R C Pulliam, Cari van Schalkwyk, Nevashan Govender, Anne von Gottberg, Cheryl Cohen, Michelle J Groome, Jonathan Dushoff, Koleka Mlisana, Harry Moultrie, Juliet R C Pulliam, Cari van Schalkwyk, Nevashan Govender, Anne von Gottberg, Cheryl Cohen, Michelle J Groome, Jonathan Dushoff, Koleka Mlisana, Harry Moultrie

Abstract

We provide two methods for monitoring reinfection trends in routine surveillance data to identify signatures of changes in reinfection risk and apply these approaches to data from South Africa's severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic to date. Although we found no evidence of increased reinfection risk associated with circulation of the Beta (B.1.351) or Delta (B.1.617.2) variants, we did find clear, population-level evidence to suggest immune evasion by the Omicron (B.1.1.529) variant in previously infected individuals in South Africa. Reinfections occurring between 1 November 2021 and 31 January 2022 were detected in individuals infected in all three previous waves, and there has been an increase in the risk of having a third infection since mid-November 2021.

Figures

Fig. 1.. Daily numbers of detected primary…
Fig. 1.. Daily numbers of detected primary infections, individuals eligible to be considered for reinfection, and suspected reinfections in South Africa.
(A) Time series of detected primary infections. Black line indicates 7-day moving average; black points are daily values. Colored bands represent wave periods, defined as the period for which the 7-day moving average of cases (detected infections and reinfections) was at least 15% of the corresponding wave peak (purple = wave 1, pink = wave 2, orange = wave 3, turquoise = wave 4). (B) Population at risk for reinfection (individuals who tested positive at least 90 days ago and have not yet had a suspected reinfection). (C) Time series of suspected second infections. Blue line indicates 7-day moving average; blue points are daily values.
Fig. 2.. Time between consecutive infections, based…
Fig. 2.. Time between consecutive infections, based on the time between successive positive tests.
Note that the time since the previous positive test must be at least 90 days to be considered a reinfection. (A) Time in days between the last positive test of the putative first infection and the first positive test of the suspected second infection. (B) Time in days between the last positive test of the putative second infection and the first positive tests of the suspected third infection. Colors represent suspected reinfections diagnosed on or after 01 November 2021. In both panels, bars for these individuals are colored by the wave during which the previous infection occurred (purple = wave 1, pink = wave 2, orange = wave 3, light grey = inter-wave).
Fig. 3.. Timing of infections for individuals…
Fig. 3.. Timing of infections for individuals with multiple suspected reinfections.
Circles represent the first positive test of the first detected infection; triangles represent the first positive test of the suspected second infection; squares represent the first positive test of the suspected third infection; crosses represent the first positive test of the suspected fourth infection. Colored bands represent wave periods, defined as the period for which the 7-day moving average of cases was at least 15% of the corresponding wave peak (purple = wave 1, pink = wave 2, orange = wave 3, turquoise = wave 4).
Fig. 4.. Observed and expected temporal trends…
Fig. 4.. Observed and expected temporal trends in reinfection numbers.
Blue lines (points) represent the 7-day moving average (daily values) of suspected reinfections. Grey lines (bands) represent median predictions (95% projection intervals) from the null model. (A and C) The null model was fit to data on suspected reinfections through 28 February 2021. (B and D) Comparison of data to projections from the null model over the projection period. The divergence observed reinfections from the projection interval in November suggests immune escape. (A) and (B): National. (C) and (D) Gauteng.
Fig. 5.. Estimates of infection and reinfection…
Fig. 5.. Estimates of infection and reinfection hazards.
(A) Estimated time-varying hazard coefficients for primary infection (black) and second infections (blue). Colored bands represent wave periods, defined as the period for which the 7-day moving average of cases was at least 15% of the corresponding wave peak (purple = wave 1, pink = wave 2, orange = wave 3, turquoise = wave 4). (B) Ratio of the estimated hazard for reinfections to the estimated hazard for primary infections.

References

    1. Tegally H., Wilkinson E., Giovanetti M., Iranzadeh A., Fonseca V., Giandhari J., Doolabh D., Pillay S., San E. J., Msomi N., Mlisana K., von Gottberg A., Walaza S., Allam M., Ismail A., Mohale T., Glass A. J., Engelbrecht S., Van Zyl G., Preiser W., Petruccione F., Sigal A., Hardie D., Marais G., Hsiao N. Y., Korsman S., Davies M.-A., Tyers L., Mudau I., York D., Maslo C., Goedhals D., Abrahams S., Laguda-Akingba O., Alisoltani-Dehkordi A., Godzik A., Wibmer C. K., Sewell B. T., Lourenço J., Alcantara L. C. J., Kosakovsky Pond S. L., Weaver S., Martin D., Lessells R. J., Bhiman J. N., Williamson C., de Oliveira T., Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592, 438–443 (2021). 10.1038/s41586-021-03402-9
    1. Shu Y., McCauley J., GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 22, 30494 (2017). 10.2807/1560-7917.ES.2017.22.13.30494
    1. Viana R., Moyo S., Amoako D. G., Tegally H., Scheepers C., Althaus C. L., Anyaneji U. J., Bester P. A., Boni M. F., Chand M., Choga W. T., Colquhoun R., Davids M., Deforche K., Doolabh D., du Plessis L., Engelbrecht S., Everatt J., Giandhari J., Giovanetti M., Hardie D., Hill V., Hsiao N.-Y., Iranzadeh A., Ismail A., Joseph C., Joseph R., Koopile L., Kosakovsky Pond S. L., Kraemer M. U. G., Kuate-Lere L., Laguda-Akingba O., Lesetedi-Mafoko O., Lessells R. J., Lockman S., Lucaci A. G., Maharaj A., Mahlangu B., Maponga T., Mahlakwane K., Makatini Z., Marais G., Maruapula D., Masupu K., Matshaba M., Mayaphi S., Mbhele N., Mbulawa M. B., Mendes A., Mlisana K., Mnguni A., Mohale T., Moir M., Moruisi K., Mosepele M., Motsatsi G., Motswaledi M. S., Mphoyakgosi T., Msomi N., Mwangi P. N., Naidoo Y., Ntuli N., Nyaga M., Olubayo L., Pillay S., Radibe B., Ramphal Y., Ramphal U., San J. E., Scott L., Shapiro R., Singh L., Smith-Lawrence P., Stevens W., Strydom A., Subramoney K., Tebeila N., Tshiabuila D., Tsui J., van Wyk S., Weaver S., Wibmer C. K., Wilkinson E., Wolter N., Zarebski A. E., Zuze B., Goedhals D., Preiser W., Treurnicht F., Venter M., Williamson C., Pybus O. G., Bhiman J., Glass A., Martin D. P., Rambaut A., Gaseitsiwe S., von Gottberg A., de Oliveira T., Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 10.1038/s41586-022-04411-y (2022). 10.1038/s41586-022-04411-y
    1. National Institute for Communicable Diseases, “The daily COVID-19 effective reproductive number (R) in South Africa: Week 47 2021” (National Institute for Communicable Diseases, 2021); .
    1. National Institute for Communicable Diseases, “The daily COVID-19 effective reproductive number (R) in South Africa: Week 51 2021” (National Institute for Communicable Diseases, 2021); .
    1. C. A. B. Pearson, S. P. Silal, M. W. Z. Li, J. Dushoff, B. M. Bolker, S. Abbott, C. van Schalkwyk, N. G. Davies, R. C. Barnard, W. J. Edmunds, J. Bingham, G. Meyer-Rath, L. Jamieson, A. Glass, N. Wolter, N. Govender, W. S. Stevens, L. Scott, K. Mlisana, H. Moultrie, J. R. C. Pulliam, Bounding the levels of transmissibility & immune evasion of the Omicron variant in South Africa. medRxiv 2021.12.19.21268038 [Preprint] (2021); .10.1101/2021.12.19.21268038
    1. Cele S., Gazy I., Jackson L., Hwa S.-H., Tegally H., Lustig G., Giandhari J., Pillay S., Wilkinson E., Naidoo Y., Karim F., Ganga Y., Khan K., Bernstein M., Balazs A. B., Gosnell B. I., Hanekom W., Moosa M. S., Lessells R. J., de Oliveira T., Sigal A.; Network for Genomic Surveillance in South Africa; COMMIT-KZN Team , Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 593, 142–146 (2021). 10.1038/s41586-021-03471-w
    1. Wibmer C. K., Ayres F., Hermanus T., Madzivhandila M., Kgagudi P., Oosthuysen B., Lambson B. E., de Oliveira T., Vermeulen M., van der Berg K., Rossouw T., Boswell M., Ueckermann V., Meiring S., von Gottberg A., Cohen C., Morris L., Bhiman J. N., Moore P. L., SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27, 622–625 (2021). 10.1038/s41591-021-01285-x
    1. Planas D., Veyer D., Baidaliuk A., Staropoli I., Guivel-Benhassine F., Rajah M. M., Planchais C., Porrot F., Robillard N., Puech J., Prot M., Gallais F., Gantner P., Velay A., Le Guen J., Kassis-Chikhani N., Edriss D., Belec L., Seve A., Courtellemont L., Péré H., Hocqueloux L., Fafi-Kremer S., Prazuck T., Mouquet H., Bruel T., Simon-Lorière E., Rey F. A., Schwartz O., Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596, 276–280 (2021). 10.1038/s41586-021-03777-9
    1. Liu C., Ginn H. M., Dejnirattisai W., Supasa P., Wang B., Tuekprakhon A., Nutalai R., Zhou D., Mentzer A. J., Zhao Y., Duyvesteyn H. M. E., López-Camacho C., Slon-Campos J., Walter T. S., Skelly D., Johnson S. A., Ritter T. G., Mason C., Costa Clemens S. A., Gomes Naveca F., Nascimento V., Nascimento F., Fernandes da Costa C., Resende P. C., Pauvolid-Correa A., Siqueira M. M., Dold C., Temperton N., Dong T., Pollard A. J., Knight J. C., Crook D., Lambe T., Clutterbuck E., Bibi S., Flaxman A., Bittaye M., Belij-Rammerstorfer S., Gilbert S. C., Malik T., Carroll M. W., Klenerman P., Barnes E., Dunachie S. J., Baillie V., Serafin N., Ditse Z., Da Silva K., Paterson N. G., Williams M. A., Hall D. R., Madhi S., Nunes M. C., Goulder P., Fry E. E., Mongkolsapaya J., Ren J., Stuart D. I., Screaton G. R., Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 184, 4220–4236.e13 (2021). 10.1016/j.cell.2021.06.020
    1. Rössler A., Riepler L., Bante D., von Laer D., Kimpel J., SARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent persons. N. Engl. J. Med. 386, 698–700 (2022). 10.1056/NEJMc2119236
    1. Planas D., Saunders N., Maes P., Guivel-Benhassine F., Planchais C., Buchrieser J., Bolland W.-H., Porrot F., Staropoli I., Lemoine F., Péré H., Veyer D., Puech J., Rodary J., Baele G., Dellicour S., Raymenants J., Gorissen S., Geenen C., Vanmechelen B., Wawina-Bokalanga T., Martí-Carreras J., Cuypers L., Sève A., Hocqueloux L., Prazuck T., Rey F. A., Simon-Loriere E., Bruel T., Mouquet H., André E., Schwartz O., Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022). 10.1038/s41586-021-04389-z
    1. J. R. C. Pulliam, C. van Schalkwyk, N. Govender, A. von Gottberg, C. Cohen, M. J. Groome, J. Dushoff, K. Mlisana, H. Moultrie, SARS-CoV-2 reinfection trends in South Africa: Analysis of routine surveillance data. medRxiv [Preprint] 2021.11.11.21266068 (2021); .10.1101/2021.11.11.21266068
    1. Altarawneh H. N., Chemaitelly H., Hasan M. R., Ayoub H. H., Qassim S., AlMukdad S., Coyle P., Yassine H. M., Al-Khatib H. A., Benslimane F. M., Al-Kanaani Z., Al-Kuwari E., Jeremijenko A., Kaleeckal A. H., Latif A. N., Shaik R. M., Abdul-Rahim H. F., Nasrallah G. K., Al-Kuwari M. G., Butt A. A., Al-Romaihi H. E., Al-Thani M. H., Al-Khal A., Bertollini R., Tang P., Abu-Raddad L. J., Protection against the Omicron variant from previous SARS-CoV-2 infection. N. Engl. J. Med. 10.1056/NEJMc2200133 (2022). 10.1056/NEJMc2200133
    1. N. Ferguson, A. Ghani, A. Cori, A. Hogan, W. Hinsley, E. Volz, Imperial College COVID-19 Response Team, “Report 49: Growth, population distribution and immune escape of Omicron in England” (WHO Collaborating Centre for Infectious Disease Modelling, MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, 2021); .
    1. UK Health Security Agency, “SARS-CoV-2 variants of concern and variants under investigation in England: Technical briefing 34” (UK Health Security Agency, 2022); .
    1. O Murchu E., Byrne P., Carty P. G., De Gascun C., Keogan M., O’Neill M., Harrington P., Ryan M., Quantifying the risk of SARS-CoV-2 reinfection over time. Rev. Med. Virol. 32, e2260 (2022). 10.1002/rmv.2260
    1. C. Cohen, J. Kleynhans, A. von Gottberg, M. L. McMorrow, N. Wolter, J. N. Bhiman, J. Moyes, M. du Plessis, M. Carrim, A. Buys, N. A. Martinson, K. Kahn, S. Tollman, L. Lebina, F. Wafawanaka, J. du Toit, F. X. Gómez-Olivé, F. S. Dawood, T. Mkhencele, K. Sun, C. Viboud, for the PHIRST group, S. Tempia, SARS-CoV-2 incidence, transmission and reinfection in a rural and an urban setting: Results of the PHIRST-C cohort study, South Africa, 2020-2021. medRxiv [Preprint] 10.1101/2021.07.20.21260855 (2021); .10.1101/2021.07.20.21260855
    1. Hall V. J., Foulkes S., Charlett A., Atti A., Monk E. J. M., Simmons R., Wellington E., Cole M. J., Saei A., Oguti B., Munro K., Wallace S., Kirwan P. D., Shrotri M., Vusirikala A., Rokadiya S., Kall M., Zambon M., Ramsay M., Brooks T., Brown C. S., Chand M. A., Hopkins S., Andrews N., Atti A., Aziz H., Brooks T., Brown C. S., Chand M. A., Hopkins S.; SIREN Study Group , SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: A large, multicentre, prospective cohort study (SIREN). Lancet 397, 1459–1469 (2021). 10.1016/S0140-6736(21)00675-9
    1. Public Health England, “SARS-CoV-2 variants of concern and variants under investigation in England” (Public Health England, 2021); .
    1. Wang P., Nair M. S., Liu L., Iketani S., Luo Y., Guo Y., Wang M., Yu J., Zhang B., Kwong P. D., Graham B. S., Mascola J. R., Chang J. Y., Yin M. T., Sobieszczyk M., Kyratsous C. A., Shapiro L., Sheng Z., Huang Y., Ho D. D., Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130–135 (2021). 10.1038/s41586-021-03398-2
    1. M. Vermeulen, L. Mhlanga, W. Sykes, C. Coleman, N. Pietersen, R. Cable, R. Swanevelder, T. N. Glatt, E. Grebe, A. Welte, K. van den Berg, Prevalence of anti-SARS-CoV-2 antibodies among blood donors in South Africa during the period January-May 2021. Research Square [Preprint] (2021); .10.21203/-690372/v2
    1. Stamatatos L., Czartoski J., Wan Y.-H., Homad L. J., Rubin V., Glantz H., Neradilek M., Seydoux E., Jennewein M. F., MacCamy A. J., Feng J., Mize G., De Rosa S. C., Finzi A., Lemos M. P., Cohen K. W., Moodie Z., McElrath M. J., McGuire A. T., mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 372, 1413–1418 (2021). 10.1126/science.abg9175
    1. Krammer F., Srivastava K., Alshammary H., Amoako A. A., Awawda M. H., Beach K. F., Bermúdez-González M. C., Bielak D. A., Carreño J. M., Chernet R. L., Eaker L. Q., Ferreri E. D., Floda D. L., Gleason C. R., Hamburger J. Z., Jiang K., Kleiner G., Jurczyszak D., Matthews J. C., Mendez W. A., Nabeel I., Mulder L. C. F., Raskin A. J., Russo K. T., Salimbangon A. T., Saksena M., Shin A. S., Singh G., Sominsky L. A., Stadlbauer D., Wajnberg A., Simon V., Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N. Engl. J. Med. 384, 1372–1374 (2021). 10.1056/NEJMc2101667
    1. Saadat S., Rikhtegaran Tehrani Z., Logue J., Newman M., Frieman M. B., Harris A. D., Sajadi M. M., Binding and neutralization antibody titers after a single vaccine dose in health care workers previously infected With SARS-CoV-2. JAMA 325, 1467–1469 (2021). 10.1001/jama.2021.3341
    1. Lustig Y., Nemet I., Kliker L., Zuckerman N., Yishai R., Alroy-Preis S., Mendelson E., Mandelboim M., Neutralizing response against variants after SARS-CoV-2 infection and one dose of BNT162b2. N. Engl. J. Med. 384, 2453–2454 (2021). 10.1056/NEJMc2104036
    1. Department of Health – South Africa, “Update on Covid-19 (09th March 2021)” (Department of Health – South Africa, 2021); ).
    1. South African Government News Agency, “Health Department adds antigen tests to country’s official COVID-19 stats” (South African Government News Agency, 2021); ).
    1. Gelman A., Rubin D. B., Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992). 10.1214/ss/1177011136
    1. J. R. C. Pulliam, C. van Schalkwyk, N. Govender, A. von Gottberg, C. Cohen, M. J. Groome, J. Dushoff, K. Mlisana, H. Moultrie, Data for “Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa,” Zenodo (2022); .10.5281/zenodo.6108448
    1. J. R. C. Pulliam, C. van Schalkwyk, N. Govender, A. von Gottberg, C. Cohen, M. J. Groome, J. Dushoff, K. Mlisana, H. Moultrie, Code for “Increased risk of SARS-CoV-2 reinfection associated with emergence of Omicron in South Africa,” Zenodo (2022); .10.5281/zenodo.5807591
    1. H. Sahai, A. Khurshid, Statistics in Epidemiology: Methods, Techniques and Applications (CRC Press, 1995).
    1. Ulm K., A simple method to calculate the confidence interval of a standardized mortality ratio (SMR). Am. J. Epidemiol. 131, 373–375 (1990). 10.1093/oxfordjournals.aje.a115507

Source: PubMed

3
订阅