Postprandial metabolism of apolipoproteins B48, B100, C-III, and E in humans with APOC3 loss-of-function mutations

Marja-Riitta Taskinen, Elias Björnson, Niina Matikainen, Sanni Söderlund, Joel Rämö, Mari-Mia Ainola, Antti Hakkarainen, Carina Sihlbom, Annika Thorsell, Linda Andersson, Per-Olof Bergh, Marcus Henricsson, Stefano Romeo, Martin Adiels, Samuli Ripatti, Markku Laakso, Chris J Packard, Jan Borén, Marja-Riitta Taskinen, Elias Björnson, Niina Matikainen, Sanni Söderlund, Joel Rämö, Mari-Mia Ainola, Antti Hakkarainen, Carina Sihlbom, Annika Thorsell, Linda Andersson, Per-Olof Bergh, Marcus Henricsson, Stefano Romeo, Martin Adiels, Samuli Ripatti, Markku Laakso, Chris J Packard, Jan Borén

Abstract

BackgroundApolipoprotein C-III (apoC-III) is a regulator of triglyceride (TG) metabolism, and due to its association with risk of cardiovascular disease, is an emergent target for pharmacological intervention. The impact of substantially lowering apoC-III on lipoprotein metabolism is not clear.MethodsWe investigated the kinetics of apolipoproteins B48 and B100 (apoB48 and apoB100) in chylomicrons, VLDL1, VLDL2, IDL, and LDL in patients heterozygous for a loss-of-function (LOF) mutation in the APOC3 gene. Studies were conducted in the postprandial state to provide a more comprehensive view of the influence of this protein on TG transport.ResultsCompared with non-LOF variant participants, a genetically determined decrease in apoC-III resulted in marked acceleration of lipolysis of TG-rich lipoproteins (TRLs), increased removal of VLDL remnants from the bloodstream, and substantial decrease in circulating levels of VLDL1, VLDL2, and IDL particles. Production rates for apoB48-containing chylomicrons and apoB100-containing VLDL1 and VLDL2 were not different between LOF carriers and noncarriers. Likewise, the rate of production of LDL was not affected by the lower apoC-III level, nor were the concentration and clearance rate of LDL-apoB100.ConclusionThese findings indicate that apoC-III lowering will have a marked effect on TRL and remnant metabolism, with possibly significant consequences for cardiovascular disease prevention.Trial registrationClinicalTrials.gov NCT04209816 and NCT01445730.FundingSwedish Heart-Lung Foundation, Swedish Research Council, ALF grant from the Sahlgrenska University Hospital, Novo Nordisk Foundation, Sigrid Juselius Foundation, Helsinki University Hospital Government Research funds, Finnish Heart Foundation, and Finnish Diabetes Research Foundation.

Keywords: Lipoproteins; Metabolism.

Figures

Figure 1. Enrichment curves for VLDL 1…
Figure 1. Enrichment curves for VLDL1, VLDL2, IDL, and LDL apoB100 in patients with APOC3 LOF variants and nonvariant carriers.
Tracer/tracee ratios (data points are means and vertical lines represent standard deviations) are presented for apoB100 in each lipoprotein density range. Time in hours is from tracer administration. Solid line refers to the mean of the model fits.
Figure 2. Postprandial lipemia responses in patients…
Figure 2. Postprandial lipemia responses in patients with APOC3 LOF variants and nonvariant carriers.
Data show the rise in plasma apoB48 and plasma TG after a standard fat-rich meal (data points are mean values and vertical bars present standard deviations). Time in hours is from tracer administration. The standard fat-rich meal was consumed at the 2-hour time point after tracer administration. Turquoise color refers to the nonvariant carrier group, and red color refers to the APOC3 LOF carriers.
Figure 3. Flowchart showing key kinetic parameter…
Figure 3. Flowchart showing key kinetic parameter differences in APOC3 LOF carriers and nonvariant carriers.
Data are mean values for each group of patients. Production rates are given in mg/d and FTRs and FDCRs in pools/d. The plasma pool of each apoB100-containing lipoprotein class (VLDL1, VLDL2, IDL, and LDL) is given (mg) within the appropriate circle. ApoB48 and apoB100 kinetic rate constants are in upright text; kinetic rate constants for TG are in italics. The mean transit time was calculated as the sum of the residence times for VLDL1, VLDL2, and IDL apoB-containing particles. Residence time is the reciprocal of the overall FCR; e.g., for VLDL1 apoB100 in nonvariant carriers the FCR is 13.1 pools/24 hours (Table 2), which gives a residence time of 24/13.1 = 1.83 hours. Asterisks indicate significant differences between APOC3 LOF variants versus nonvariant carriers. P values are from group comparison using Mann-Whitney U test.

References

    1. Borén J, et al. The roles of ApoC-III on the metabolism of triglyceride-rich lipoproteins in humans. Front Endocrinol (Lausanne) 2020;11:474. doi: 10.3389/fendo.2020.00474.
    1. D’Erasmo L, et al. ApoCIII: a multifaceted protein in cardiometabolic disease. Metabolism. 2020;113:154395. doi: 10.1016/j.metabol.2020.154395.
    1. Reeskamp LF, et al. The next generation of triglyceride-lowering drugs: will reducing apolipoprotein C-III or angiopoietin like protein 3 reduce cardiovascular disease? Curr Opin Lipidol. 2020;31(3):140–146. doi: 10.1097/MOL.0000000000000679.
    1. Sacks FM. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol. 2015;26(1):56–63. doi: 10.1097/MOL.0000000000000146.
    1. Saleheen D, et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature. 2017;544(7649):235–239. doi: 10.1038/nature22034.
    1. Lotta LA, et al. Association of genetically enhanced lipoprotein lipase-mediated lipolysis and low-density lipoprotein cholesterol-lowering alleles with risk of coronary disease and type 2 diabetes. JAMA Cardiol. 2018;3(10):957–966. doi: 10.1001/jamacardio.2018.2866.
    1. Jorgensen AB, et al. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41. doi: 10.1056/NEJMoa1308027.
    1. TG and HDL Working Group of the Exome Sequencing Project. et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31. doi: 10.1056/NEJMoa1307095.
    1. Gaudet D, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373(5):438–447. doi: 10.1056/NEJMoa1400283.
    1. Ginsberg HN, et al. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest. 1986;78(5):1287–1295. doi: 10.1172/JCI112713.
    1. Aalto-Setala K, et al. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest. 1992;90(5):1889–1900. doi: 10.1172/JCI116066.
    1. Jong MC, et al. Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol. 1999;19(3):472–484. doi: 10.1161/01.ATV.19.3.472.
    1. Zheng C, et al. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation. 2010;121(15):1722–1734. doi: 10.1161/CIRCULATIONAHA.109.875807.
    1. Varbo A, et al. Extreme nonfasting remnant cholesterol vs extreme LDL cholesterol as contributors to cardiovascular disease and all-cause mortality in 90000 individuals from the general population. Clin Chem. 2015;61(3):533–543. doi: 10.1373/clinchem.2014.234146.
    1. Taskinen MR, et al. Emerging evidence that apoc-iii inhibitors provide novel options to reduce the residual CVD. Curr Atheroscler Rep. 2019;21(8):27. doi: 10.1007/s11883-019-0791-9.
    1. Wu SA, et al. Lipoprotein lipase and its regulators: an unfolding story. Trends Endocrinol Metab. 2021;32(1):48–61. doi: 10.1016/j.tem.2020.11.005.
    1. Ginsberg HN, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42(47):4791–4806. doi: 10.1093/eurheartj/ehab551.
    1. Packard CJ, et al. Causes and consequences of hypertriglyceridemia. Front Endocrinol (Lausanne) 2020;11:252. doi: 10.3389/fendo.2020.00252.
    1. Chait A, et al. Remnants of the triglyceride-rich lipoproteins, diabetes, and cardiovascular disease. Diabetes. 2020;69(4):508–516. doi: 10.2337/dbi19-0007.
    1. Duran EK, Pradhan AD. Triglyceride-rich lipoprotein remnants and cardiovascular disease. Clin Chem. 2021;67(1):183–196. doi: 10.1093/clinchem/hvaa296.
    1. Salinas CAA, Chapman MJ. Remnant lipoproteins: are they equal to or more atherogenic than LDL? Curr Opin Lipidol. 2020;31(3):132–139. doi: 10.1097/MOL.0000000000000682.
    1. Balling M, et al. A third of nonfasting plasma cholesterol is in remnant lipoproteins: lipoprotein subclass profiling in 9293 individuals. Atherosclerosis. 2019;286:97–104. doi: 10.1016/j.atherosclerosis.2019.05.011.
    1. Ramms B, Gordts P. Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol. 2018;29(3):171–179. doi: 10.1097/MOL.0000000000000502.
    1. Cohn JS, et al. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab. 2004;89(8):3949–3955. doi: 10.1210/jc.2003-032056.
    1. Ginsberg HN, et al. Regulation of the production and catabolism of plasma low density lipoproteins in hypertriglyceridemic subjects. Effect of weight loss. J Clin Invest. 1985;75(2):614–623. doi: 10.1172/JCI111739.
    1. Chan DC, et al. Plasma apolipoprotein C-III transport in centrally obese men: associations with very low-density lipoprotein apolipoprotein B and high-density lipoprotein apolipoprotein A-I metabolism. J Clin Endocrinol Metab. 2008;93(2):557–564. doi: 10.1210/jc.2006-2676.
    1. Adiels M, et al. Role of apolipoprotein C-III overproduction in diabetic dyslipidaemia. Diabetes Obes Metab. 2019;21(8):1861–1870. doi: 10.1111/dom.13744.
    1. Sundaram M, Yao Z. Intrahepatic role of exchangeable apolipoproteins in lipoprotein assembly and secretion. Arterioscler Thromb Vasc Biol. 2012;32(5):1073–1078. doi: 10.1161/ATVBAHA.111.241455.
    1. Pollin TI, et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 2008;322(5908):1702–1705. doi: 10.1126/science.1161524.
    1. Timpson NJ, et al. A rare variant in APOC3 is associated with plasma triglyceride and VLDL levels in Europeans. Nat Commun. 2014;5:4871. doi: 10.1038/ncomms5871.
    1. Reyes-Soffer G, et al. Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2019;39(1):63–72. doi: 10.1161/ATVBAHA.118.311476.
    1. Tardif JC, et al. Apolipoprotein C-III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. Eur Heart J. 2022; 6(14):1401–1412.
    1. Tall AR. Increasing lipolysis and reducing atherosclerosis. N Engl J Med. 2017;377(3):280–283. doi: 10.1056/NEJMe1706907.
    1. Johannesen CDL, et al. Apolipoprotein B and non-HDL cholesterol better reflect residual risk than LDL cholesterol in statin-treated patients. J Am Coll Cardiol. 2021;77(11):1439–1450. doi: 10.1016/j.jacc.2021.01.027.
    1. Quispe R, et al. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J. 2021;7(42):4324–4332.
    1. Boren J, Packard CJ. Keeping remnants in perspective. Eur Heart J. 2021;42(42):4333–4335. doi: 10.1093/eurheartj/ehab531.
    1. Rosenson RS, et al. New therapies for lowering triglyceride-rich lipoproteins: JACC focus seminar 3/4. J Am Coll Cardiol. 2021;78(18):1817–1830. doi: 10.1016/j.jacc.2021.08.051.
    1. Goyal S, et al. APOC3 genetic variation, serum triglycerides, and risk of coronary artery disease in Asian Indians, Europeans, and other ethnic groups. Lipids Health Dis. 2021;20(1):113. doi: 10.1186/s12944-021-01531-8.
    1. Dib I, et al. Apolipoprotein C-III and cardiovascular diseases: when genetics meet molecular pathologies. Mol Biol Rep. 2021;48(1):875–886. doi: 10.1007/s11033-020-06071-5.
    1. Norata GD, et al. Apolipoprotein C-III: from pathophysiology to pharmacology. Trends Pharmacol Sci. 2015;36(10):675–687. doi: 10.1016/j.tips.2015.07.001.
    1. Hiukka A, et al. ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes. 2009;58(9):2018–2026. doi: 10.2337/db09-0206.
    1. Boren J, et al. Kinetic and related determinants of plasma triglyceride concentration in abdominal obesity: multicenter tracer kinetic study. Arterioscler Thromb Vasc Biol. 2015;35(10):2218–2224. doi: 10.1161/ATVBAHA.115.305614.
    1. Taskinen MR, et al. Adverse effects of fructose on cardiometabolic risk factors and hepatic lipid metabolism in subjects with abdominal obesity. J Intern Med. 2017;282(2):187–201. doi: 10.1111/joim.12632.
    1. Bjornson E, et al. Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics. J Intern Med. 2019;285(5):562–577. doi: 10.1111/joim.12877.
    1. Bjornson E, et al. Apolipoprotein B48 metabolism in chylomicrons and very low-density lipoproteins and its role in triglyceride transport in normo- and hypertriglyceridemic human subjects. J Intern Med. 2020;288(4):422–438. doi: 10.1111/joim.13017.
    1. Taskinen MR, et al. Effects of evolocumab on the postprandial kinetics of apo (Apolipoprotein) B100- and B48-containing lipoproteins in subjects with type 2 diabetes. Arterioscler Thromb Vasc Biol. 2021;41(2):962–975. doi: 10.1161/ATVBAHA.120.315446.
    1. Barrett PH, et al. SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies. Metabolism. 1998;47(4):484–492. doi: 10.1016/S0026-0495(98)90064-6.
    1. Matikainen N, et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia. 2006;49(9):2049–2057. doi: 10.1007/s00125-006-0340-2.
    1. Lofgren L, et al. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53(8):1690–1700. doi: 10.1194/jlr.D023036.
    1. McAnoy AM, et al. Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap. J Am Soc Mass Spectrom. 2005;16(9):1498–1509. doi: 10.1016/j.jasms.2005.04.017.
    1. Ejsing CS, et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A. 2009;106(7):2136–2141. doi: 10.1073/pnas.0811700106.
    1. Huttunen JK, et al. An immunochemical method for the selective measurement of two triglyceride lipases in human postheparin plasma. Clin Chim Acta. 1975;63(3):335–347. doi: 10.1016/0009-8981(75)90055-8.
    1. Ryysy L, et al. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes. 2000;49(5):749–758. doi: 10.2337/diabetes.49.5.749.

Source: PubMed

3
订阅