DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types

Vera Constâncio, Sandra P Nunes, Rui Henrique, Carmen Jerónimo, Vera Constâncio, Sandra P Nunes, Rui Henrique, Carmen Jerónimo

Abstract

Lung, breast, colorectal, and prostate cancers are the most incident worldwide. Optimal population-based cancer screening methods remain an unmet need, since cancer detection at early stages increases the prospects of successful and curative treatment, leading to a lower incidence of recurrences. Moreover, the current parameters for cancer patients' stratification have been associated with divergent outcomes. Therefore, new biomarkers that could aid in cancer detection and prognosis, preferably detected by minimally invasive methods are of major importance. Aberrant DNA methylation is an early event in cancer development and may be detected in circulating cell-free DNA (ccfDNA), constituting a valuable cancer biomarker. Furthermore, DNA methylation is a stable alteration that can be easily and rapidly quantified by methylation-specific PCR methods. Thus, the main goal of this review is to provide an overview of the most important studies that report methylation biomarkers for the detection and prognosis of the four major cancers after a critical analysis of the available literature. DNA methylation-based biomarkers show promise for cancer detection and management, with some studies describing a "PanCancer" detection approach for the simultaneous detection of several cancer types. Nonetheless, DNA methylation biomarkers still lack large-scale validation, precluding implementation in clinical practice.

Keywords: DNA methylation; biomarker; breast cancer; cell-free DNA; colorectal cancer; detection; liquid biopsy; lung cancer; prognosis; prostate cancer.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Blood-based liquid biopsy. Circulating tumor cells (CTC), circulating cell-free DNA (ccfDNA) [including circulating tumor DNA (ctDNA)], circulating cell-free RNA (ccfRNA) and exosomes are released from tumor cells to the bloodstream. Hence, blood can be collected and analyzed in the context of a liquid biopsy.
Figure 2
Figure 2
Flow diagram of Pubmed available studies’ selection procedure using the key words “Lung Cancer/Breast Cancer/Colorectal Cancer/Lung Cancer”, “DNA methylation”, “Diagnosis/Detection/Prognosis” and “Serum/Plasma”.
Figure 3
Figure 3
Major studied epigenetic mechanisms involved in gene expression regulation. DNA methylation consists in the addition of a methyl group to a cytosine present in a cytosine-phosphate-guanine (CpG). Histone post-translational modifications refer to the addition of biochemical modifications on histone tails, such as methylation, acetylation, phosphorylation, ubiquitylation and SUMOylation that regulate gene expression. Histone variants differ a few amino acids from canonical histones and regulate chromatin remodeling and histone post-translational modifications. Chromatin remodeling complexes regulate the nucleosome structure by removing, relocate and shifting histones.
Figure 4
Figure 4
DNA methylation within a gene promoter region. Unmethylated CpG islands enable gene transcription. When CpG island is methylated, gene transcription is repressed.
Figure 5
Figure 5
Circulating cell-free DNA methylation-based biomarkers described in the literature for cancer detection common to at least two cancer types [Breast Cancer (pink box), Lung Cancer (blue box), Prostate Cancer (yellow box), Colorectal Cancer (orange box)].

References

    1. Goossens N., Nakagawa S., Sun X., Hoshida Y. Cancer biomarker discovery and validation. Transl. Cancer Res. 2015;4:256–269. doi: 10.3978/j.issn.2218-676X.2015.06.04.
    1. Duffy M.J. Tumor markers in clinical practice: A review focusing on common solid cancers. Med. Princ. Pr. 2013;22:4–11. doi: 10.1159/000338393.
    1. Costa-Pinheiro P., Montezuma D., Henrique R., Jeronimo C. Diagnostic and prognostic epigenetic biomarkers in cancer. Epigenomics. 2015;7:1003–1015. doi: 10.2217/epi.15.56.
    1. Marrugo-Ramirez J., Mir M., Samitier J. Blood-Based Cancer Biomarkers in Liquid Biopsy: A Promising Non-Invasive Alternative to Tissue Biopsy. Int. J. Mol. Sci. 2018;19:2877. doi: 10.3390/ijms19102877.
    1. Cheng F., Su L., Qian C. Circulating tumor DNA: A promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016;7:48832–48841. doi: 10.18632/oncotarget.9453.
    1. Constancio V., Barros-Silva D., Jeronimo C., Henrique R. Known epigenetic biomarkers for prostate cancer detection and management: Exploring the potential of blood-based liquid biopsies. Expert Rev. Mol. Diagn. 2019 doi: 10.1080/14737159.2019.1604224.
    1. Poulet G., Massias J., Taly V. Liquid Biopsy: General Concepts. Acta. Cytol. 2019 doi: 10.1159/000499337.
    1. Han X., Wang J., Sun Y. Circulating Tumor DNA as Biomarkers for Cancer Detection. Genom. Proteom. Bioinf. 2017;15:59–72. doi: 10.1016/j.gpb.2016.12.004.
    1. Neumann M.H.D., Bender S., Krahn T., Schlange T. ctDNA and CTCs in Liquid Biopsy—Current Status and Where We Need to Progress. Comput Struct Biotechnol. J. 2018;16:190–195. doi: 10.1016/j.csbj.2018.05.002.
    1. Di Meo A., Bartlett J., Cheng Y., Pasic M.D., Yousef G.M. Liquid biopsy: A step forward towards precision medicine in urologic malignancies. Mol. Cancer. 2017;16:80. doi: 10.1186/s12943-017-0644-5.
    1. Nie K., Jia Y., Zhang X. Cell-free circulating tumor DNA in plasma/serum of non-small cell lung cancer. Tumour Biol. 2015;36:7–19. doi: 10.1007/s13277-014-2758-3.
    1. Chan K.C., Jiang P., Chan C.W., Sun K., Wong J., Hui E.P., Chan S.L., Chan W.C., Hui D.S., Ng S.S., et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl. Acad. Sci. USA. 2013;110:18761–18768. doi: 10.1073/pnas.1313995110.
    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 doi: 10.3322/caac.21492.
    1. Mandel P., Metais P. Les acides nucléiques du plasma sanguin chez l’homme. C R Seances Soc. Biol. Fil. 1948;142:241–243.
    1. Elazezy M., Joosse S.A. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Comput Struct Biotechnol. J. 2018;16:370–378. doi: 10.1016/j.csbj.2018.10.002.
    1. Schwarzenbach H., Hoon D.S., Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer. 2011;11:426–437. doi: 10.1038/nrc3066.
    1. Berdasco M., Esteller M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet. 2019;20:109–127. doi: 10.1038/s41576-018-0074-2.
    1. Warton K., Samimi G. Methylation of cell-free circulating DNA in the diagnosis of cancer. Front. Mol. Biosci. 2015;2:13. doi: 10.3389/fmolb.2015.00013.
    1. Jeronimo C., Henrique R. Epigenetic biomarkers in urological tumors: A systematic review. Cancer Lett. 2014;342:264–274. doi: 10.1016/j.canlet.2011.12.026.
    1. Sharma S., Kelly T.K., Jones P.A. Epigenetics in cancer. Carcinogenesis. 2010;31:27–36. doi: 10.1093/carcin/bgp220.
    1. Feinberg A.P., Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301:89–92. doi: 10.1038/301089a0.
    1. Jeronimo C., Bastian P.J., Bjartell A., Carbone G.M., Catto J.W., Clark S.J., Henrique R., Nelson W.G., Shariat S.F. Epigenetics in prostate cancer: Biologic and clinical relevance. Eur. Urol. 2011;60:753–766. doi: 10.1016/j.eururo.2011.06.035.
    1. Kulis M., Esteller M. DNA methylation and cancer. Adv. Genet. 2010;70:27–56. doi: 10.1016/B978-0-12-380866-0.60002-2.
    1. Goldberg A.D., Allis C.D., Bernstein E. Epigenetics: A landscape takes shape. Cell. 2007;128:635–638. doi: 10.1016/j.cell.2007.02.006.
    1. Sweet T.J., Ting A.H. WOMEN IN CANCER THEMATIC REVIEW: Diverse functions of DNA methylation: Implications for prostate cancer and beyond. Endocr Relat. Cancer. 2016;23:T169–T178. doi: 10.1530/ERC-16-0306.
    1. Baylin S.B., Jones P.A. Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol. 2016:8. doi: 10.1101/cshperspect.a019505.
    1. Zane L., Sharma V., Misteli T. Common features of chromatin in aging and cancer: Cause or coincidence? Trends Cell Biol. 2014;24:686–694. doi: 10.1016/j.tcb.2014.07.001.
    1. Prosch H., Schaefer-Prokop C. Screening for lung cancer. Curr. Opin. Oncol. 2014;26:131–137. doi: 10.1097/CCO.0000000000000055.
    1. Wu G.X., Raz D.J. Lung Cancer Screening. Cancer Treat. Res. 2016;170:1–23. doi: 10.1007/978-3-319-40389-2_1.
    1. Oudkerk M., Devaraj A., Vliegenthart R., Henzler T., Prosch H., Heussel C.P., Bastarrika G., Sverzellati N., Mascalchi M., Delorme S., et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18:e754–e766. doi: 10.1016/S1470-2045(17)30861-6.
    1. National Lung Screening Trial Research T., Aberle D.R., Adams A.M., Berg C.D., Black W.C., Clapp J.D., Fagerstrom R.M., Gareen I.F., Gatsonis C., Marcus P.M., et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011;365:395–409. doi: 10.1056/NEJMoa1102873.
    1. Osarogiagbon R.U., Veronesi G., Fang W., Ekman S., Suda K., Aerts J.G., Donington J. Early-Stage NSCLC: Advances in Thoracic Oncology 2018. J. Thorac. Oncol. 2019;14:968–978. doi: 10.1016/j.jtho.2019.02.029.
    1. Usadel H., Brabender J., Danenberg K.D., Jeronimo C., Harden S., Engles J., Danenberg P.V., Yang S., Sidransky D. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res. 2002;62:371–375.
    1. Bearzatto A., Conte D., Frattini M., Zaffaroni N., Andriani F., Balestra D., Tavecchio L., Daidone M.G., Sozzi G. p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clin. Cancer Res. 2002;8:3782–3787.
    1. Ponomaryova A.A., Rykova E.Y., Cherdyntseva N.V., Skvortsova T.E., Dobrodeev A.Y., Zav’yalov A.A., Bryzgalov L.O., Tuzikov S.A., Vlassov V.V., Laktionov P.P. Potentialities of aberrantly methylated circulating DNA for diagnostics and post-treatment follow-up of lung cancer patients. Lung Cancer. 2013;81:397–403. doi: 10.1016/j.lungcan.2013.05.016.
    1. Nunes S.P., Moreira-Barbosa C., Salta S., Palma de Sousa S., Pousa I., Oliveira J., Soares M., Rego L., Dias T., Rodrigues J., et al. Cell-Free DNA Methylation of Selected Genes Allows for Early Detection of the Major Cancers in Women. Cancers. 2018;10:357. doi: 10.3390/cancers10100357.
    1. Kneip C., Schmidt B., Seegebarth A., Weickmann S., Fleischhacker M., Liebenberg V., Field J.K., Dietrich D. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J. Thorac. Oncol. 2011;6:1632–1638. doi: 10.1097/JTO.0b013e318220ef9a.
    1. Konecny M., Markus J., Waczulikova I., Dolesova L., Kozlova R., Repiska V., Novosadova H., Majer I. The value of SHOX2 methylation test in peripheral blood samples used for the differential diagnosis of lung cancer and other lung disorders. Neoplasma. 2016;63:246–253. doi: 10.4149/210_150419N208.
    1. Weiss G., Schlegel A., Kottwitz D., Konig T., Tetzner R. Validation of the SHOX2/PTGER4 DNA Methylation Marker Panel for Plasma-Based Discrimination between Patients with Malignant and Nonmalignant Lung Disease. J. Thorac. Oncol. 2017;12:77–84. doi: 10.1016/j.jtho.2016.08.123.
    1. Beltran-Garcia J., Osca-Verdegal R., Mena-Molla S., Garcia-Gimenez J.L. Epigenetic IVD Tests for Personalized Precision Medicine in Cancer. Front. Genet. 2019;10:621. doi: 10.3389/fgene.2019.00621.
    1. AG E. Epi proLung®–Liquid Biopsy Test for Lung Cancer Detection. [(accessed on 10 July 2019)]; Available online:
    1. Powrozek T., Krawczyk P., Nicos M., Kuznar-Kaminska B., Batura-Gabryel H., Milanowski J. Methylation of the DCLK1 promoter region in circulating free DNA and its prognostic value in lung cancer patients. Clin. Trans. Oncol. 2016;18:398–404. doi: 10.1007/s12094-015-1382-z.
    1. Powrozek T., Krawczyk P., Kucharczyk T., Milanowski J. Septin 9 promoter region methylation in free circulating DNA-potential role in noninvasive diagnosis of lung cancer: Preliminary report. Med. Oncol. 2014;31:917. doi: 10.1007/s12032-014-0917-4.
    1. Ooki A., Maleki Z., Tsay J.J., Goparaju C., Brait M., Turaga N., Nam H.S., Rom W.N., Pass H.I., Sidransky D., et al. A Panel of Novel Detection and Prognostic Methylated DNA Markers in Primary Non-Small Cell Lung Cancer and Serum DNA. Clin. Cancer Res. 2017;23:7141–7152. doi: 10.1158/1078-0432.CCR-17-1222.
    1. Nunes S.P., Diniz F., Moreira-Barbosa C., Constâncio V., Silva A.V., Oliveira J., Soares M., Paulino S., Cunha A.L., Rodrigues J., et al. Subtyping Lung Cancer Using DNA Methylation in Liquid Biopsies. J. Clin. Med. 2019;8:1500. doi: 10.3390/jcm8091500.
    1. Constâncio V., Nunes S.P., Moreira-Barbosa C., Freitas R., Oliveira J., Pousa I., Oliveira J., Soares M., Dias C.G., Dias T., et al. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin. Epigenetics. 2019;11:175. doi: 10.1186/s13148-019-0779-x.
    1. Fujiwara K., Fujimoto N., Tabata M., Nishii K., Matsuo K., Hotta K., Kozuki T., Aoe M., Kiura K., Ueoka H., et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin. Cancer Res. 2005;11:1219–1225.
    1. Ulivi P., Zoli W., Calistri D., Fabbri F., Tesei A., Rosetti M., Mengozzi M., Amadori D. p16INK4A and CDH13 hypermethylation in tumor and serum of non-small cell lung cancer patients. J. Cell Physiol. 2006;206:611–615. doi: 10.1002/jcp.20503.
    1. Wang Y., Yu Z., Wang T., Zhang J., Hong L., Chen L. Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer. 2007;56:289–294. doi: 10.1016/j.lungcan.2006.12.007.
    1. Hsu H.S., Chen T.P., Hung C.H., Wen C.K., Lin R.K., Lee H.C., Wang Y.C. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer. 2007;110:2019–2026. doi: 10.1002/cncr.23001.
    1. Zhang Y., Song H., Miao Y., Wang R., Chen L. Frequent transcriptional inactivation of Kallikrein 10 gene by CpG island hypermethylation in non-small cell lung cancer. Cancer Sci. 2010;101:934–940. doi: 10.1111/j.1349-7006.2009.01486.x.
    1. Zhang Y.W., Miao Y.F., Yi J., Geng J., Wang R., Chen L.B. Transcriptional inactivation of secreted frizzled-related protein 1 by promoter hypermethylation as a potential biomarker for non-small cell lung cancer. Neoplasma. 2010;57:228–233. doi: 10.4149/neo_2010_03_228.
    1. Zhang Y., Miao Y., Yi J., Wang R., Chen L. Frequent epigenetic inactivation of deleted in lung and esophageal cancer 1 gene by promoter methylation in non-small-cell lung cancer. Clin. Lung Cancer. 2010;11:264–270. doi: 10.3816/CLC.2010.n.034.
    1. Ostrow K.L., Hoque M.O., Loyo M., Brait M., Greenberg A., Siegfried J.M., Grandis J.R., Gaither Davis A., Bigbee W.L., Rom W., et al. Molecular analysis of plasma DNA for the early detection of lung cancer by quantitative methylation-specific PCR. Clin. Cancer Res. 2010;16:3463–3472. doi: 10.1158/1078-0432.CCR-09-3304.
    1. Zhang Y., Wang R., Song H., Huang G., Yi J., Zheng Y., Wang J., Chen L. Methylation of multiple genes as a candidate biomarker in non-small cell lung cancer. Cancer Lett. 2011;303:21–28. doi: 10.1016/j.canlet.2010.12.011.
    1. Begum S., Brait M., Dasgupta S., Ostrow K.L., Zahurak M., Carvalho A.L., Califano J.A., Goodman S.N., Westra W.H., Hoque M.O., et al. An epigenetic marker panel for detection of lung cancer using cell-free serum DNA. Clin. Cancer Res. 2011;17:4494–4503. doi: 10.1158/1078-0432.CCR-10-3436.
    1. Lee S.M., Park J.Y., Kim D.S. Methylation of TMEFF2 gene in tissue and serum DNA from patients with non-small cell lung cancer. Mol. Cells. 2012;34:171–176. doi: 10.1007/s10059-012-0083-5.
    1. Li L., Shen Y., Wang M., Tang D., Luo Y., Jiao W., Wang Z., Yang R., Tian K. Identification of the methylation of p14ARF promoter as a novel non-invasive biomarker for early detection of lung cancer. Clin. Transl. Oncol. 2014;16:581–589. doi: 10.1007/s12094-013-1122-1.
    1. Balgkouranidou I., Chimonidou M., Milaki G., Tsaroucha E., Kakolyris S., Georgoulias V., Lianidou E. SOX17 promoter methylation in plasma circulating tumor DNA of patients with non-small cell lung cancer. Clin. Chem Lab. Med. 2016;54:1385–1393. doi: 10.1515/cclm-2015-0776.
    1. Hulbert A., Jusue-Torres I., Stark A., Chen C., Rodgers K., Lee B., Griffin C., Yang A., Huang P., Wrangle J., et al. Early Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma and Sputum. Clin. Cancer Res. 2017;23:1998–2005. doi: 10.1158/1078-0432.CCR-16-1371.
    1. Feng X., Xie X., Zheng B., Peng C., Zhou H., Qin J. The more potential performance of nidogen 2 methylation by tissue or plasma DNA over brichoalveolar lavage DNA in diagnosis of nonsmall cell lung cancer. J. Cancer Res. 2018;14:S341–S346. doi: 10.4103/0973-1482.235352.
    1. Yang Z., Qi W., Sun L., Zhou H., Zhou B., Hu Y. DNA methylation analysis of selected genes for the detection of early-stage lung cancer using circulating cell-free DNA. Adv. Clin. Exp. Med. 2019;28:355–360. doi: 10.17219/acem/84935.
    1. Woodard G.A., Jones K.D., Jablons D.M. Lung Cancer Staging and Prognosis. Cancer Treat. Res. 2016;170:47–75. doi: 10.1007/978-3-319-40389-2_3.
    1. Amin M.B., Edge S., Greene F., Byrd D.R., Brookland R.K., Washington M.K., Gershenwald J.E., Compton C.C., Hess K.R., Sullivan D.C., et al. AJCC Cancer Staging Manual. 8th ed. Springer International Publishing; Chicago, IL, USA: American Joint Commission on Cancer; Chicago, IL, USA: 2017. pp. 276–726.
    1. Vinayanuwattikun C., Sriuranpong V., Tanasanvimon S., Chantranuwat P., Mutirangura A. Epithelial-specific methylation marker: A potential plasma biomarker in advanced non-small cell lung cancer. J. Thorac. Oncol. 2011;6:1818–1825. doi: 10.1097/JTO.0b013e318226b46f.
    1. Balgkouranidou I., Chimonidou M., Milaki G., Tsarouxa E.G., Kakolyris S., Welch D.R., Georgoulias V., Lianidou E.S. Breast cancer metastasis suppressor-1 promoter methylation in cell-free DNA provides prognostic information in non-small cell lung cancer. Br. J. Cancer. 2014;110:2054–2062. doi: 10.1038/bjc.2014.104.
    1. Wang H., Zhang B., Chen D., Xia W., Zhang J., Wang F., Xu J., Zhang Y., Zhang M., Zhang L., et al. Real-time monitoring efficiency and toxicity of chemotherapy in patients with advanced lung cancer. Clin. Epigenetics. 2015;7:119. doi: 10.1186/s13148-015-0150-9.
    1. Schmidt B., Beyer J., Dietrich D., Bork I., Liebenberg V., Fleischhacker M. Quantification of cell-free mSHOX2 Plasma DNA for therapy monitoring in advanced stage non-small cell (NSCLC) and small-cell lung cancer (SCLC) patients. PLoS ONE. 2015;10:e0118195. doi: 10.1371/journal.pone.0118195.
    1. Peng X., Liu X., Xu L., Li Y., Wang H., Song L., Xiao W. The mSHOX2 is capable of assessing the therapeutic effect and predicting the prognosis of stage IV lung cancer. J. Thorac. Dis. 2019;11:2458–2469. doi: 10.21037/jtd.2019.05.81.
    1. Ramirez J.L., Rosell R., Taron M., Sanchez-Ronco M., Alberola V., de Las Penas R., Sanchez J.M., Moran T., Camps C., Massuti B., et al. 14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: The Spanish Lung Cancer Group. J. Clin. Oncol. 2005;23:9105–9112. doi: 10.1200/JCO.2005.02.2905.
    1. Salazar F., Molina M.A., Sanchez-Ronco M., Moran T., Ramirez J.L., Sanchez J.M., Stahel R., Garrido P., Cobo M., Isla D., et al. First-line therapy and methylation status of CHFR in serum influence outcome to chemotherapy versus EGFR tyrosine kinase inhibitors as second-line therapy in stage IV non-small-cell lung cancer patients. Lung Cancer. 2011;72:84–91. doi: 10.1016/j.lungcan.2010.07.008.
    1. Senkus E., Kyriakides S., Ohno S., Penault-Llorca F., Poortmans P., Rutgers E., Zackrisson S., Cardoso F. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015;26 doi: 10.1093/annonc/mdv298.
    1. Kemp Jacobsen K., O’Meara E.S., Key D., Buist D.S.M., Kerlikowske K., Vejborg I., Sprague B.L., Lynge E., von Euler-Chelpin M. Comparing sensitivity and specificity of screening mammography in the United States and Denmark. Int. J. Cancer. 2015;137:2198–2207. doi: 10.1002/ijc.29593.
    1. Holland R., Mravunac M., Hendriks J.H., Bekker B.V. So-called interval cancers of the breast. Pathologic and radiologic analysis of sixty-four cases. Cancer. 1982;49:2527–2533. doi: 10.1002/1097-0142(19820615)49:12<2527::AID-CNCR2820491220>;2-E.
    1. The benefits and harms of breast cancer screening: An independent review. Lancet. 2012;380:1778–1786. doi: 10.1016/S0140-6736(12)61611-0.
    1. Shapiro S., Strax P., Venet L. Periodic breast cancer screening in reducing mortality from breast cancer. Jama. 1971;215:1777–1785. doi: 10.1001/jama.1971.03180240027005.
    1. Hoque M.O., Feng Q., Toure P., Dem A., Critchlow C.W., Hawes S.E., Wood T., Jeronimo C., Rosenbaum E., Stern J., et al. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J. Clin. Oncol. 2006;24:4262–4269. doi: 10.1200/JCO.2005.01.3516.
    1. Kim J.H., Shin M.H., Kweon S.S., Park M.H., Yoon J.H., Lee J.S., Choi C., Fackler M.J., Sukumar S. Evaluation of promoter hypermethylation detection in serum as a diagnostic tool for breast carcinoma in Korean women. Gynecol. Oncol. 2010;118:176–181. doi: 10.1016/j.ygyno.2010.04.016.
    1. Kloten V., Becker B., Winner K., Schrauder M.G., Fasching P.A., Anzeneder T., Veeck J., Hartmann A., Knüchel R., Dahl E. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res. 2013;15:R4. doi: 10.1186/bcr3375.
    1. Martinez-Galan J., Torres B., Del Moral R., Munoz-Gamez J.A., Martin-Oliva D., Villalobos M., Nunez M.I., Luna Jde D., Oliver F.J., Ruiz de Almodovar J.M. Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biol. 2008;7:958–965. doi: 10.4161/cbt.7.6.5966.
    1. Ahmed I.A., Pusch C.M., Hamed T., Rashad H., Idris A., El-Fadle A.A., Blin N. Epigenetic alterations by methylation of RASSF1A and DAPK1 promoter sequences in mammary carcinoma detected in extracellular tumor DNA. Cancer Genet. Cytogenet. 2010;199:96–100. doi: 10.1016/j.cancergencyto.2010.02.007.
    1. Salta S., Nunes P., Fontes-Sousa M., Lopes P., Freitas M., Caldas M., Antunes L., Castro F., Antunes P., Palma de Sousa S., et al. A DNA Methylation-Based Test for Breast Cancer Detection in Circulating Cell-Free DNA. J. Clin. Med. 2018;7:420. doi: 10.3390/jcm7110420.
    1. Dulaimi E., Hillinck J., Ibanez de Caceres I., Al-Saleem T., Cairns P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin. Cancer Res. 2004;10:6189–6193. doi: 10.1158/1078-0432.CCR-04-0597.
    1. Papadopoulou E., Davilas E., Sotiriou V., Georgakopoulos E., Georgakopoulou S., Koliopanos A., Aggelakis F., Dardoufas K., Agnanti N.J., Karydas I., et al. Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Ann. N. Y. Acad. Sci. 2006;1075:235–243. doi: 10.1196/annals.1368.032.
    1. Skvortsova T.E., Rykova E.Y., Tamkovich S.N., Bryzgunova O.E., Starikov A.V., Kuznetsova N.P., Vlassov V.V., Laktionov P.P. Cell-free and cell-bound circulating DNA in breast tumours: DNA quantification and analysis of tumour-related gene methylation. Br. J. Cancer. 2006;94:1492–1495. doi: 10.1038/sj.bjc.6603117.
    1. Van der Auwera I., Elst H.J., Van Laere S.J., Maes H., Huget P., van Dam P., Van Marck E.A., Vermeulen P.B., Dirix L.Y. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br. J. Cancer. 2009;100:1277–1286. doi: 10.1038/sj.bjc.6605013.
    1. Shan M., Yin H., Li J., Li X., Wang D., Su Y., Niu M., Zhong Z., Wang J., Zhang X., et al. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer. Oncotarget. 2016;7:18485–18494. doi: 10.18632/oncotarget.7608.
    1. Yazici H., Terry M.B., Cho Y.H., Senie R.T., Liao Y., Andrulis I., Santella R.M. Aberrant methylation of RASSF1A in plasma DNA before breast cancer diagnosis in the Breast Cancer Family Registry. Cancer Epidemiol. Biomark. Prev. 2009;18:2723–2725. doi: 10.1158/1055-9965.EPI-08-1237.
    1. Radpour R., Barekati Z., Kohler C., Lv Q., Bürki N., Diesch C., Bitzer J., Zheng H., Schmid S., Zhong X.Y. Hypermethylation of Tumor Suppressor Genes Involved in Critical Regulatory Pathways for Developing a Blood-Based Test in Breast Cancer. PLoS ONE. 2011;6:e16080. doi: 10.1371/journal.pone.0016080.
    1. Yamamoto N., Nakayama T., Kajita M., Miyake T., Iwamoto T., Kim S.J., Sakai A., Ishihara H., Tamaki Y., Noguchi S. Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARbeta2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay. Breast Cancer Res. Treat. 2012;132:165–173. doi: 10.1007/s10549-011-1575-2.
    1. Chimonidou M., Strati A., Malamos N., Georgoulias V., Lianidou E.S. SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin. Chem. 2013;59:270–279. doi: 10.1373/clinchem.2012.191551.
    1. Swellam M., Abdelmaksoud M.D., Sayed Mahmoud M., Ramadan A., Abdel-Moneem W., Hefny M.M. Aberrant methylation of APC and RARbeta2 genes in breast cancer patients. Iubmb Life. 2015;67:61–68. doi: 10.1002/iub.1346.
    1. Nandi K., Yadav P., Mir R., Khurana N., Agarwal P., Saxena A. The Clinical Significance of Rassf1a and Cdh1 Hypermethylation in Breast Cancer Patients. Int. J. Sci. Res. 2008 doi: 10.36106/ijsr.
    1. Li D., Li P., Wu J., Yi J., Dou Y., Guo X., Yin Y., Wang D., Ma C., Qiu L. Methylation of NBPF1 as a novel marker for the detection of plasma cell-free DNA of breast cancer patients. Clin. Chim. Acta. 2018;484:81–86. doi: 10.1016/j.cca.2018.05.030.
    1. Mijnes J., Tiedemann J., Eschenbruch J., Gasthaus J., Bringezu S., Bauerschlag D., Maass N., Arnold N., Weimer J., Anzeneder T., et al. SNiPER: A novel hypermethylation biomarker panel for liquid biopsy based early breast cancer detection. Oncotarget. 2019;10:6494–6508. doi: 10.18632/oncotarget.27303.
    1. WHO . Classification of Tumours of the Breast. 4th ed. International Agency for Research on Cancer; Lyon, France: 2012.
    1. Dai X., Xiang L., Li T., Bai Z. Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes. J. Cancer. 2016;7:1281–1294. doi: 10.7150/jca.13141.
    1. Verma A., Kaur J., Mehta K. Molecular oncology update: Breast cancer gene expression profiling. Asian J. Oncol. 2015;1:65. doi: 10.4103/2454-6798.173282.
    1. Chimonidou M., Tzitzira A., Strati A., Sotiropoulou G., Sfikas C., Malamos N., Georgoulias V., Lianidou E. CST6 promoter methylation in circulating cell-free DNA of breast cancer patients. Clin. Biochem. 2013;46:235–240. doi: 10.1016/j.clinbiochem.2012.09.015.
    1. Gobel G., Auer D., Gaugg I., Schneitter A., Lesche R., Muller-Holzner E., Marth C., Daxenbichler G. Prognostic significance of methylated RASSF1A and PITX2 genes in blood- and bone marrow plasma of breast cancer patients. Breast Cancer Res. Treat. 2011;130:109–117. doi: 10.1007/s10549-010-1335-8.
    1. Panagopoulou M., Karaglani M., Balgkouranidou I., Biziota E., Koukaki T., Karamitrousis E., Nena E., Tsamardinos I., Kolios G., Lianidou E., et al. Circulating cell-free DNA in breast cancer: Size profiling, levels, and methylation patterns lead to prognostic and predictive classifiers. Oncogene. 2019;38:3387–3401. doi: 10.1038/s41388-018-0660-y.
    1. Fu D., Ren C., Tan H., Wei J., Zhu Y., He C., Shao W., Zhang J. Sox17 promoter methylation in plasma DNA is associated with poor survival and can be used as a prognostic factor in breast cancer. Medicine. 2015;94:e637. doi: 10.1097/MD.0000000000000637.
    1. Visvanathan K., Fackler M.S., Zhang Z., Lopez-Bujanda Z.A., Jeter S.C., Sokoll L.J., Garrett-Mayer E., Cope L.M., Umbricht C.B., Euhus D.M., et al. Monitoring of Serum DNA Methylation as an Early Independent Marker of Response and Survival in Metastatic Breast Cancer: TBCRC 005 Prospective Biomarker Study. J. Clin. Oncol. 2017;35:751–758. doi: 10.1200/JCO.2015.66.2080.
    1. Zurita M., Lara P.C., del Moral R., Torres B., Linares-Fernandez J.L., Arrabal S.R., Martinez-Galan J., Oliver F.J., Ruiz de Almodovar J.M. Hypermethylated 14-3-3-sigma and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer. 2010;10:217. doi: 10.1186/1471-2407-10-217.
    1. Muller H.M., Widschwendter A., Fiegl H., Ivarsson L., Goebel G., Perkmann E., Marth C., Widschwendter M. DNA methylation in serum of breast cancer patients: An independent prognostic marker. Cancer Res. 2003;63:7641–7645.
    1. Rawson J.B., Bapat B. Epigenetic biomarkers in colorectal cancer diagnostics. Expert Rev. Mol. Diagn. 2012;12:499–509. doi: 10.1586/erm.12.39.
    1. Payne S.R. From discovery to the clinic: The novel DNA methylation biomarker (m)SEPT9 for the detection of colorectal cancer in blood. Epigenomics. 2010;2:575–585. doi: 10.2217/epi.10.35.
    1. Issa I.A., Noureddine M. Colorectal cancer screening: An updated review of the available options. World J. Gastroenterol. 2017;23:5086–5096. doi: 10.3748/wjg.v23.i28.5086.
    1. Brenner H., Kloor M., Pox C.P. Colorectal cancer. Lancet. 2014;383:1490–1502. doi: 10.1016/S0140-6736(13)61649-9.
    1. Simon K. Colorectal cancer development and advances in screening. Clin. Interv. Aging. 2016;11:967–976. doi: 10.2147/CIA.S109285.
    1. Molnar B., Toth K., Bartak B.K., Tulassay Z. Plasma methylated septin 9: A colorectal cancer screening marker. Expert Rev. Mol. Diagn. 2015;15:171–184. doi: 10.1586/14737159.2015.975212.
    1. Lamb Y.N., Dhillon S. Epi proColon((R)) 2.0 CE: A Blood-Based Screening Test for Colorectal Cancer. Mol. Diagn. 2017;21:225–232. doi: 10.1007/s40291-017-0259-y.
    1. Song L., Jia J., Peng X., Xiao W., Li Y. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis. Sci. Rep. 2017;7:3032. doi: 10.1038/s41598-017-03321-8.
    1. Church T.R., Wandell M., Lofton-Day C., Mongin S.J., Burger M., Payne S.R., Castanos-Velez E., Blumenstein B.A., Rosch T., Osborn N., et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63:317–325. doi: 10.1136/gutjnl-2012-304149.
    1. Ahlquist D.A., Taylor W.R., Mahoney D.W., Zou H., Domanico M., Thibodeau S.N., Boardman L.A., Berger B.M., Lidgard G.P. The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin. Gastroenterol. Hepatol. 2012;10:272–277.e271. doi: 10.1016/j.cgh.2011.10.008.
    1. Toth K., Wasserkort R., Sipos F., Kalmar A., Wichmann B., Leiszter K., Valcz G., Juhasz M., Miheller P., Patai A.V., et al. Detection of methylated septin 9 in tissue and plasma of colorectal patients with neoplasia and the relationship to the amount of circulating cell-free DNA. PLoS ONE. 2014;9:e115415. doi: 10.1371/journal.pone.0115415.
    1. Suehiro Y., Hashimoto S., Higaki S., Fujii I., Suzuki C., Hoshida T., Matsumoto T., Yamaoka Y., Takami T., Sakaida I., et al. Blood free-circulating DNA testing by highly sensitive methylation assay to diagnose colorectal neoplasias. Oncotarget. 2018;9:16974–16987. doi: 10.18632/oncotarget.24768.
    1. Lee B.B., Lee E.J., Jung E.H., Chun H.K., Chang D.K., Song S.Y., Park J., Kim D.H. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin. Cancer Res. 2009;15:6185–6191. doi: 10.1158/1078-0432.CCR-09-0111.
    1. Bartak B.K., Kalmar A., Peterfia B., Patai A.V., Galamb O., Valcz G., Spisak S., Wichmann B., Nagy Z.B., Toth K., et al. Colorectal adenoma and cancer detection based on altered methylation pattern of SFRP1, SFRP2, SDC2, and PRIMA1 in plasma samples. Epigenetics. 2017;12:751–763. doi: 10.1080/15592294.2017.1356957.
    1. Pedersen S.K., Symonds E.L., Baker R.T., Murray D.H., McEvoy A., Van Doorn S.C., Mundt M.W., Cole S.R., Gopalsamy G., Mangira D., et al. Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia. BMC Cancer. 2015;15:654. doi: 10.1186/s12885-015-1674-2.
    1. Symonds E.L., Pedersen S.K., Baker R.T., Murray D.H., Gaur S., Cole S.R., Gopalsamy G., Mangira D., LaPointe L.C., Young G.P. A Blood Test for Methylated BCAT1 and IKZF1 vs. a Fecal Immunochemical Test for Detection of Colorectal Neoplasia. Clin. Transl. Gastroenterol. 2016;7:e137. doi: 10.1038/ctg.2015.67.
    1. Zou H.Z., Yu B.M., Wang Z.W., Sun J.Y., Cang H., Gao F., Li D.H., Zhao R., Feng G.G., Yi J. Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clin. Cancer Res. 2002;8:188–191.
    1. Leung W.K., To K.F., Man E.P., Chan M.W., Bai A.H., Hui A.J., Chan F.K., Sung J.J. Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. Am. J. Gastroenterol. 2005;100:2274–2279. doi: 10.1111/j.1572-0241.2005.50412.x.
    1. Ebert M.P., Model F., Mooney S., Hale K., Lograsso J., Tonnes-Priddy L., Hoffmann J., Csepregi A., Rocken C., Molnar B., et al. Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology. 2006;131:1418–1430. doi: 10.1053/j.gastro.2006.08.034.
    1. Wallner M., Herbst A., Behrens A., Crispin A., Stieber P., Goke B., Lamerz R., Kolligs F.T. Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin. Cancer Res. 2006;12:7347–7352. doi: 10.1158/1078-0432.CCR-06-1264.
    1. Lofton-Day C., Model F., Devos T., Tetzner R., Distler J., Schuster M., Song X., Lesche R., Liebenberg V., Ebert M., et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin. Chem. 2008;54:414–423. doi: 10.1373/clinchem.2007.095992.
    1. Wang Y.C., Yu Z.H., Liu C., Xu L.Z., Yu W., Lu J., Zhu R.M., Li G.L., Xia X.Y., Wei X.W., et al. Detection of RASSF1A promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. World J. Gastroenterol. 2008;14:3074–3080. doi: 10.3748/wjg.14.3074.
    1. Li M., Chen W.D., Papadopoulos N., Goodman S.N., Bjerregaard N.C., Laurberg S., Levin B., Juhl H., Arber N., Moinova H., et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 2009;27:858–863. doi: 10.1038/nbt.1559.
    1. He Q., Chen H.Y., Bai E.Q., Luo Y.X., Fu R.J., He Y.S., Jiang J., Wang H.Q. Development of a multiplex MethyLight assay for the detection of multigene methylation in human colorectal cancer. Cancer Genet. Cytogenet. 2010;202:1–10. doi: 10.1016/j.cancergencyto.2010.05.018.
    1. Herbst A., Rahmig K., Stieber P., Philipp A., Jung A., Ofner A., Crispin A., Neumann J., Lamerz R., Kolligs F.T. Methylation of NEUROG1 in serum is a sensitive marker for the detection of early colorectal cancer. Am. J. Gastroenterol. 2011;106:1110–1118. doi: 10.1038/ajg.2011.6.
    1. Hibi K., Goto T., Shirahata A., Saito M., Kigawa G., Nemoto H., Sanada Y. Detection of TFPI2 methylation in the serum of colorectal cancer patients. Cancer Lett. 2011;311:96–100. doi: 10.1016/j.canlet.2011.07.006.
    1. Wu P.P., Zou J.H., Tang R.N., Yao Y., You C.Z. Detection and Clinical Significance of DLC1 Gene Methylation in Serum DNA from Colorectal Cancer Patients. Chin. J. Cancer Res. 2011;23:283–287. doi: 10.1007/s11670-011-0283-0.
    1. Cassinotti E., Melson J., Liggett T., Melnikov A., Yi Q., Replogle C., Mobarhan S., Boni L., Segato S., Levenson V. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int. J. Cancer. 2012;131:1153–1157. doi: 10.1002/ijc.26484.
    1. Pack S.C., Kim H.R., Lim S.W., Kim H.Y., Ko J.Y., Lee K.S., Hwang D., Park S.I., Kang H., Park S.W., et al. Usefulness of plasma epigenetic changes of five major genes involved in the pathogenesis of colorectal cancer. Int. J. Colorectal. Dis. 2013;28:139–147. doi: 10.1007/s00384-012-1566-8.
    1. Oh T., Kim N., Moon Y., Kim M.S., Hoehn B.D., Park C.H., Kim T.S., Kim N.K., Chung H.C., An S. Genome-wide identification and validation of a novel methylation biomarker, SDC2, for blood-based detection of colorectal cancer. J. Mol. Diagn. 2013;15:498–507. doi: 10.1016/j.jmoldx.2013.03.004.
    1. Liu Y., Tham C.K., Ong S.Y., Ho K.S., Lim J.F., Chew M.H., Lim C.K., Zhao Y., Tang C.L., Eu K.W. Serum methylation levels of TAC1. SEPT9 and EYA4 as diagnostic markers for early colorectal cancers: A pilot study. Biomarkers. 2013;18:399–405. doi: 10.3109/1354750X.2013.798745.
    1. Roperch J.P., Incitti R., Forbin S., Bard F., Mansour H., Mesli F., Baumgaertner I., Brunetti F., Sobhani I. Aberrant methylation of NPY, PENK, and WIF1 as a promising marker for blood-based diagnosis of colorectal cancer. BMC Cancer. 2013;13:566. doi: 10.1186/1471-2407-13-566.
    1. Pedersen S.K., Mitchell S.M., Graham L.D., McEvoy A., Thomas M.L., Baker R.T., Ross J.P., Xu Z.Z., Ho T., LaPointe L.C., et al. CAHM, a long non-coding RNA gene hypermethylated in colorectal neoplasia. Epigenetics. 2014;9:1071–1082. doi: 10.4161/epi.29046.
    1. Takane K., Midorikawa Y., Yagi K., Sakai A., Aburatani H., Takayama T., Kaneda A. Aberrant promoter methylation of PPP1R3C and EFHD1 in plasma of colorectal cancer patients. Cancer Med. 2014;3:1235–1245. doi: 10.1002/cam4.273.
    1. Melotte V., Yi J.M., Lentjes M.H., Smits K.M., Van Neste L., Niessen H.E., Wouters K.A., Louwagie J., Schuebel K.E., Herman J.G., et al. Spectrin repeat containing nuclear envelope 1 and forkhead box protein E1 are promising markers for the detection of colorectal cancer in blood. Cancer Prev Res. (Phila) 2015;8:157–164. doi: 10.1158/1940-6207.CAPR-14-0198.
    1. Zhang X., Song Y.F., Lu H.N., Wang D.P., Zhang X.S., Huang S.L., Sun B.L., Huang Z.G. Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas. World J. Gastroenterol. 2015;21:2629–2637. doi: 10.3748/wjg.v21.i9.2629.
    1. Pedersen S.K., Baker R.T., McEvoy A., Murray D.H., Thomas M., Molloy P.L., Mitchell S., Lockett T., Young G.P., LaPointe L.C. A two-gene blood test for methylated DNA sensitive for colorectal cancer. PLoS ONE. 2015;10:e0125041. doi: 10.1371/journal.pone.0125041.
    1. Salehi R., Atapour N., Vatandoust N., Farahani N., Ahangari F., Salehi A.R. Methylation pattern of ALX4 gene promoter as a potential biomarker for blood-based early detection of colorectal cancer. Adv. Biomed. Res. 2015;4:252. doi: 10.4103/2277-9175.170677.
    1. Mitchell S.M., Ho T., Brown G.S., Baker R.T., Thomas M.L., McEvoy A., Xu Z.Z., Ross J.P., Lockett T.J., Young G.P., et al. Evaluation of Methylation Biomarkers for Detection of Circulating Tumor DNA and Application to Colorectal Cancer. Genes. 2016;7:125. doi: 10.3390/genes7120125.
    1. Rezvani N., Alibakhshi R., Vaisi-Raygani A., Bashiri H., Saidijam M. Detection of SPG20 gene promoter-methylated DNA, as a novel epigenetic biomarker, in plasma for colorectal cancer diagnosis using the MethyLight method. Oncol. Lett. 2017;13:3277–3284. doi: 10.3892/ol.2017.5815.
    1. Rasmussen S.L., Krarup H.B., Sunesen K.G., Johansen M.B., Stender M.T., Pedersen I.S., Madsen P.H., Thorlacius-Ussing O. Hypermethylated DNA, a circulating biomarker for colorectal cancer detection. PLoS ONE. 2017;12:e0180809. doi: 10.1371/journal.pone.0180809.
    1. Rokni P., Shariatpanahi A.M., Sakhinia E., Kerachian M.A. BMP3 promoter hypermethylation in plasma-derived cell-free DNA in colorectal cancer patients. Genes Genom. 2018;40:423–428. doi: 10.1007/s13258-017-0644-2.
    1. Li H., Wang Z., Zhao G., Ma Y., Chen Y., Xue Q., Zheng M., Fei S. Performance of a MethyLight assay for methylated SFRP2 DNA detection in colorectal cancer tissue and serum. Int. J. Biol. Markers. 2019;34:54–59. doi: 10.1177/1724600818820536.
    1. Zhao G., Li H., Yang Z., Wang Z., Xu M., Xiong S., Li S., Wu X., Liu X., Wang Z., et al. Multiplex methylated DNA testing in plasma with high sensitivity and specificity for colorectal cancer screening. Cancer Med. 2019;8:5619–5628. doi: 10.1002/cam4.2475.
    1. Jensen S.Ø., Øgaard N., Ørntoft M.-B.W., Rasmussen M.H., Bramsen J.B., Kristensen H., Mouritzen P., Madsen M.R., Madsen A.H., Sunesen K.G., et al. Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer-a clinical biomarker discovery and validation study. Clin. Epigenetics. 2019;11:158. doi: 10.1186/s13148-019-0757-3.
    1. Nishio M., Sakakura C., Nagata T., Komiyama S., Miyashita A., Hamada T., Kuryu Y., Ikoma H., Kubota T., Kimura A., et al. RUNX3 promoter methylation in colorectal cancer: Its relationship with microsatellite instability and its suitability as a novel serum tumor marker. Anticancer Res. 2010;30:2673–2682.
    1. Tang D., Liu J., Wang D.R., Yu H.F., Li Y.K., Zhang J.Q. Diagnostic and prognostic value of the methylation status of secreted frizzled-related protein 2 in colorectal cancer. Clin. Investig. Med. 2011;34:E88–E95. doi: 10.25011/cim.v34i1.15105.
    1. Liu Y., Chew M.H., Tham C.K., Tang C.L., Ong S.Y., Zhao Y. Methylation of serum SST gene is an independent prognostic marker in colorectal cancer. Am. J. Cancer Res. 2016;6:2098–2108.
    1. Nakayama G., Kodera Y., Ohashi N., Koike M., Fujiwara M., Nakao A. p16INK4a methylation in serum as a follow-up marker for recurrence of colorectal cancer. Anticancer Res. 2011;31:1643–1646.
    1. Tham C., Chew M., Soong R., Lim J., Ang M., Tang C., Zhao Y., Ong S.Y., Liu Y. Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer. Cancer. 2014;120:3131–3141. doi: 10.1002/cncr.28802.
    1. Bergheim J., Semaan A., Gevensleben H., Groening S., Knoblich A., Dietrich J., Weber J., Kalff J.C., Bootz F., Kristiansen G., et al. Potential of quantitative SEPT9 and SHOX2 methylation in plasmatic circulating cell-free DNA as auxiliary staging parameter in colorectal cancer: A prospective observational cohort study. Br. J. Cancer. 2018;118:1217–1228. doi: 10.1038/s41416-018-0035-8.
    1. Philipp A.B., Stieber P., Nagel D., Neumann J., Spelsberg F., Jung A., Lamerz R., Herbst A., Kolligs F.T. Prognostic role of methylated free circulating DNA in colorectal cancer. Int. J. Cancer. 2012;131:2308–2319. doi: 10.1002/ijc.27505.
    1. Herbst A., Wallner M., Rahmig K., Stieber P., Crispin A., Lamerz R., Kolligs F.T. Methylation of helicase-like transcription factor in serum of patients with colorectal cancer is an independent predictor of disease recurrence. Eur. J. Gastroenterol. Hepatol. 2009;21:565–569. doi: 10.1097/MEG.0b013e328318ecf2.
    1. Herbst A., Vdovin N., Gacesa S., Ofner A., Philipp A., Nagel D., Holdt L.M., Op den Winkel M., Heinemann V., Stieber P., et al. Methylated free-circulating HPP1 DNA is an early response marker in patients with metastatic colorectal cancer. Int. J. Cancer. 2017;140:2134–2144. doi: 10.1002/ijc.30625.
    1. Barault L., Amatu A., Siravegna G., Ponzetti A., Moran S., Cassingena A., Mussolin B., Falcomata C., Binder A.M., Cristiano C., et al. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer. Gut. 2018;67:1995–2005. doi: 10.1136/gutjnl-2016-313372.
    1. Amatu A., Schirripa M., Tosi F., Lonardi S., Bencardino K., Bonazzina E., Palmeri L., Patanè D.A., Pizzutilo E.G., Mussolin B., et al. High Circulating Methylated DNA Is a Negative Predictive and Prognostic Marker in Metastatic Colorectal Cancer Patients Treated With Regorafenib. Front. Oncol. 2019;9:622. doi: 10.3389/fonc.2019.00622.
    1. COLVERA: Because the Truth Matters. [(accessed on 20 July 2019)]; Available online: .
    1. Symonds E.L., Pedersen S.K., Murray D.H., Jedi M., Byrne S.E., Rabbitt P., Baker R.T., Bastin D., Young G.P. Circulating tumour DNA for monitoring colorectal cancer-a prospective cohort study to assess relationship to tissue methylation, cancer characteristics and surgical resection. Clin. Epigenetics. 2018;10:63. doi: 10.1186/s13148-018-0500-5.
    1. Young G.P., Pedersen S.K., Mansfield S., Murray D.H., Baker R.T., Rabbitt P., Byrne S., Bambacas L., Hollington P., Symonds E.L. A cross-sectional study comparing a blood test for methylated BCAT1 and IKZF1 tumor-derived DNA with CEA for detection of recurrent colorectal cancer. Cancer Med. 2016;5:2763–2772. doi: 10.1002/cam4.868.
    1. Murray D.H., Symonds E.L., Young G.P., Byrne S., Rabbitt P., Roy A., Cornthwaite K., Karapetis C.S., Pedersen S.K. Relationship between post-surgery detection of methylated circulating tumor DNA with risk of residual disease and recurrence-free survival. J. Cancer Res. Clin. Oncol. 2018;144:1741–1750. doi: 10.1007/s00432-018-2701-x.
    1. Hammerich K.H., Ayala G.E., Wheeler T.M. Anatomy of the prostate gland and surgical pathology of prostate cancer. Camb. Univ. Camb. 2009:1–10.
    1. Roobol M.J., Carlsson S.V. Risk stratification in prostate cancer screening. Nat. Rev. Urol. 2013;10:38–48. doi: 10.1038/nrurol.2012.225.
    1. Hoffman R.M. Clinical practice. Screening for prostate cancer. N. Engl. J. Med. 2011;365:2013–2019. doi: 10.1056/NEJMcp1103642.
    1. Etzioni R., Penson D.F., Legler J.M., di Tommaso D., Boer R., Gann P.H., Feuer E.J. Overdiagnosis due to prostate-specific antigen screening: Lessons from U.S. prostate cancer incidence trends. J. Natl. Cancer Inst. 2002;94:981–990. doi: 10.1093/jnci/94.13.981.
    1. Rice M.A., Stoyanova T. Prostatectomy. IntechOpen; London, UK: 2018. Biomarkers for Diagnosis and Prognosis of Prostate Cancer.
    1. Larsen L.K., Lind G.E., Guldberg P., Dahl C. DNA-Methylation-Based Detection of Urological Cancer in Urine: Overview of Biomarkers and Considerations on Biomarker Design, Source of DNA, and Detection Technologies. Int. J. Mol. Sci. 2019;20:2657. doi: 10.3390/ijms20112657.
    1. Ellinger J., Haan K., Heukamp L.C., Kahl P., Buttner R., Muller S.C., von Ruecker A., Bastian P.J. CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate. 2008;68:42–49. doi: 10.1002/pros.20651.
    1. Sunami E., Shinozaki M., Higano C.S., Wollman R., Dorff T.B., Tucker S.J., Martinez S.R., Mizuno R., Singer F.R., Hoon D.S. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin. Chem. 2009;55:559–567. doi: 10.1373/clinchem.2008.108498.
    1. Wu T., Giovannucci E., Welge J., Mallick P., Tang W.Y., Ho S.M. Measurement of GSTP1 promoter methylation in body fluids may complement PSA screening: A meta-analysis. Br. J. Cancer. 2011;105:65–73. doi: 10.1038/bjc.2011.143.
    1. Payne S.R., Serth J., Schostak M., Kamradt J., Strauss A., Thelen P., Model F., Day J.K., Liebenberg V., Morotti A., et al. DNA methylation biomarkers of prostate cancer: Confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate. 2009;69:1257–1269. doi: 10.1002/pros.20967.
    1. Dumache R., Puiu M., Motoc M., Vernic C., Dumitrascu V. Prostate cancer molecular detection in plasma samples by glutathione S-transferase P1 (GSTP1) methylation analysis. Clin. Lab. 2014;60:847–852. doi: 10.7754/Clin.Lab.2013.130701.
    1. Brait M., Banerjee M., Maldonado L., Ooki A., Loyo M., Guida E., Izumchenko E., Mangold L., Humphreys E., Rosenbaum E., et al. Promoter methylation of MCAM, ERalpha and ERbeta in serum of early stage prostate cancer patients. Oncotarget. 2017;8:15431–15440. doi: 10.18632/oncotarget.14873.
    1. Haldrup C., Pedersen A.L., Ogaard N., Strand S.H., Hoyer S., Borre M., Orntoft T.F., Sorensen K.D. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. Mol. Oncol. 2018;12:545–560. doi: 10.1002/1878-0261.12183.
    1. Sanchez B.E., Aguayo A., Martinez B., Rodriguez F., Marmolejo M., Svyryd Y., Luna L., Munoz L.A., Jimenez M.A., Sotomayor M., et al. Using Genetic and Epigenetic Markers to Improve Differential Diagnosis of Prostate Cancer and Benign Prostatic Hyperplasia by Noninvasive Methods in Mexican Patients. Clin. Genitourin Cancer. 2018;16:e867–e877. doi: 10.1016/j.clgc.2018.02.004.
    1. Reis I.M., Ramachandran K., Speer C., Gordian E., Singal R. Serum GADD45a methylation is a useful biomarker to distinguish benign vs malignant prostate disease. Br. J. Cancer. 2015;113:460–468. doi: 10.1038/bjc.2015.240.
    1. Bastian P.J., Palapattu G.S., Yegnasubramanian S., Rogers C.G., Lin X., Mangold L.A., Trock B., Eisenberger M.A., Partin A.W., Nelson W.G. CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J. Urol. 2008;179:529–534; discussion 534–535. doi: 10.1016/j.juro.2007.09.038.
    1. Dumache R., Puiu M., Minciu R., Bardan R., David D., Tudor A., Bumbacila B. Retinoic acid receptor beta2 (RARbeta2): Nonivasive biomarker for distinguishing malignant versus benign prostate lesions from bodily fluids. Chirurgia (Bucur) 2012;107:780–784.
    1. Wang L., Lin Y.L., Li B., Wang Y.Z., Li W.P., Ma J.G. Aberrant promoter methylation of the cadherin 13 gene in serum and its relationship with clinicopathological features of prostate cancer. J. Int. Med. Res. 2014;42:1085–1092. doi: 10.1177/0300060514540631.
    1. Garzotto M. Prostate Cancer. Cambridge University Press; Cambridge, UK: 2008. The natural and treated history of prostate cancer.
    1. Fine S.W. Evolution in Prostate Cancer Staging: Pathology Updates From AJCC 8th Edition and Opportunities That Remain. Adv. Anat. Pathol. 2018;25:327–332. doi: 10.1097/PAP.0000000000000200.
    1. Mottet N., Bellmunt J., Bolla M., Briers E., Cumberbatch M.G., De Santis M., Fossati N., Gross T., Henry A.M., Joniau S., et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017;71:618–629. doi: 10.1016/j.eururo.2016.08.003.
    1. Gordetsky J., Epstein J. Grading of prostatic adenocarcinoma: Current state and prognostic implications. Diagn. Pathol. 2016;11:25. doi: 10.1186/s13000-016-0478-2.
    1. van den Bergh R.C., van Casteren N.J., van den Broeck T., Fordyce E.R., Gietzmann W.K., Stewart F., MacLennan S., Dabestani S., Bellmunt J., Bolla M., et al. Role of Hormonal Treatment in Prostate Cancer Patients with Nonmetastatic Disease Recurrence After Local Curative Treatment: A Systematic Review. Eur. Urol. 2016;69:802–820. doi: 10.1016/j.eururo.2015.11.023.
    1. Shapiro D., Tareen B. Current and emerging treatments in the management of castration-resistant prostate cancer. Expert Rev. Anticancer. 2012;12:951–964. doi: 10.1586/era.12.59.
    1. Reibenwein J., Pils D., Horak P., Tomicek B., Goldner G., Worel N., Elandt K., Krainer M. Promoter hypermethylation of GSTP1, AR, and 14-3-3sigma in serum of prostate cancer patients and its clinical relevance. Prostate. 2007;67:427–432. doi: 10.1002/pros.20533.
    1. Hendriks R.J., Dijkstra S., Smit F.P., Vandersmissen J., Van de Voorde H., Mulders P.F.A., van Oort I.M., Van Criekinge W., Schalken J.A. Epigenetic markers in circulating cell-free DNA as prognostic markers for survival of castration-resistant prostate cancer patients. Prostate. 2018;78:336–342. doi: 10.1002/pros.23477.
    1. Bastian P.J., Palapattu G.S., Lin X., Yegnasubramanian S., Mangold L.A., Trock B., Eisenberger M.A., Partin A.W., Nelson W.G. Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin. Cancer Res. 2005;11:4037–4043. doi: 10.1158/1078-0432.CCR-04-2446.
    1. Lin Y.L., Deng Q.K., Wang Y.H., Fu X.L., Ma J.G., Li W.P. Aberrant Protocadherin17 (PCDH17) Methylation in Serum is a Potential Predictor for Recurrence of Early-Stage Prostate Cancer Patients After Radical Prostatectomy. Med. Sci. Monit. 2015;21:3955–3960. doi: 10.12659/MSM.896763.
    1. Deng Q.K., Lei Y.G., Lin Y.L., Ma J.G., Li W.P. Prognostic Value of Protocadherin10 (PCDH10) Methylation in Serum of Prostate Cancer Patients. Med. Sci. Monit. 2016;22:516–521. doi: 10.12659/MSM.897179.
    1. Lin Y.L., Li Y.L., Ma J.G. Aberrant Promoter Methylation of Protocadherin8 (PCDH8) in Serum is a Potential Prognostic Marker for Low Gleason Score Prostate Cancer. Med. Sci. Monit. 2017;23:4895–4900. doi: 10.12659/MSM.904366.
    1. Mahon K.L., Qu W., Lin H.M., Spielman C., Cain D., Jacobs C., Stockler M.R., Higano C.S., de Bono J.S., Chi K.N., et al. Serum Free Methylated Glutathione S-transferase 1 DNA Levels, Survival, and Response to Docetaxel in Metastatic, Castration-resistant Prostate Cancer: Post Hoc Analyses of Data from a Phase 3 Trial. Eur. Urol. 2018 doi: 10.1016/j.eururo.2018.11.001.
    1. Adler A., Geiger S., Keil A., Bias H., Schatz P., deVos T., Dhein J., Zimmermann M., Tauber R., Wiedenmann B. Improving compliance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany. BMC Gastroenterol. 2014;14:183. doi: 10.1186/1471-230X-14-183.
    1. Tan S.H., Ida H., Lau Q.C., Goh B.C., Chieng W.S., Loh M., Ito Y. Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncol. Rep. 2007;18:1225–1230. doi: 10.3892/or.18.5.1225.
    1. Liu L., Toung J.M., Jassowicz A.F., Vijayaraghavan R., Kang H., Zhang R., Kruglyak K.M., Huang H.J., Hinoue T., Shen H., et al. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification. Ann. Oncol. 2018;29:1445–1453. doi: 10.1093/annonc/mdy119.
    1. Li W., Li Q., Kang S., Same M., Zhou Y., Sun C., Liu C.C., Matsuoka L., Sher L., Wong W.H., et al. CancerDetector: Ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data. Nucleic Acids Res. 2018;46:e89. doi: 10.1093/nar/gky423.
    1. Kang S., Li Q., Chen Q., Zhou Y., Park S., Lee G., Grimes B., Krysan K., Yu M., Wang W., et al. CancerLocator: Non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biol. 2017;18:53. doi: 10.1186/s13059-017-1191-5.
    1. Moss J., Magenheim J., Neiman D., Zemmour H., Loyfer N., Korach A., Samet Y., Maoz M., Druid H., Arner P., et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 2018;9:5068. doi: 10.1038/s41467-018-07466-6.
    1. IvyGene Diagnostics: Early Cancer Confirmation Test. [(accessed on 21 July 2019)]; Available online:
    1. Hao X., Luo H., Krawczyk M., Wei W., Wang W., Wang J., Flagg K., Hou J., Zhang H., Yi S., et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA. 2017;114:7414–7419. doi: 10.1073/pnas.1703577114.
    1. Daber R., Sukhadia S., Morrissette J.J. Understanding the limitations of next generation sequencing informatics, an approach to clinical pipeline validation using artificial data sets. Cancer Genet. 2013;206:441–448. doi: 10.1016/j.cancergen.2013.11.005.
    1. Soto J., Rodriguez-Antolin C., Vallespin E., de Castro Carpeno J., Ibanez de Caceres I. The impact of next-generation sequencing on the DNA methylation-based translational cancer research. Transl. Res. 2016;169:1–18.e11. doi: 10.1016/j.trsl.2015.11.003.
    1. Sigalotti L., Covre A., Colizzi F., Fratta E. Quantitative Methylation-Specific PCR: A Simple Method for Studying Epigenetic Modifications of Cell-Free DNA. Methods Mol. Biol. 2019;1909:137–162. doi: 10.1007/978-1-4939-8973-7_11.

Source: PubMed

3
订阅