Effects of Olive Oil on Markers of Inflammation and Endothelial Function-A Systematic Review and Meta-Analysis

Lukas Schwingshackl, Marina Christoph, Georg Hoffmann, Lukas Schwingshackl, Marina Christoph, Georg Hoffmann

Abstract

The aim of the present systematic review was to synthesize data from randomized controlled trials investigating the effects of olive oil on markers of inflammation or endothelial function. Literature search in electronic databases Cochrane Trial Register, EMBASE, and MEDLINE was performed. Thirty studies enrolling 3106 participants fulfilled the selection criteria. Pooled effects of different interventions were assessed as mean difference using a random effects model. Olive oil interventions (with daily consumption ranging approximately between 1 mg and 50 mg) resulted in a significantly more pronounced decrease in C-reactive protein (mean difference: -0.64 mg/L, (95% confidence interval (CI) -0.96 to -0.31), p < 0.0001, n = 15 trials) and interleukin-6 (mean difference: -0.29 (95% CI -0.7 to -0.02), p < 0.04, n = 7 trials) as compared to controls, respectively. Values of flow-mediated dilatation (given as absolute percentage) were significantly more increased in individuals subjected to olive oil interventions (mean difference: 0.76% (95% CI 0.27 to 1.24), p < 0.002, n = 8 trials). These results provide evidence that olive oil might exert beneficial effects on endothelial function as well as markers of inflammation and endothelial function, thus representing a key ingredient contributing to the cardiovascular-protective effects of a Mediterranean diet. However, due to the heterogeneous study designs (e.g., olive oil given as a supplement or as part of dietary pattern, variations in control diets), a conservative interpretation of the results is necessary.

Keywords: C-reactive protein; Mediterranean diet; cardiovascular disease; flow-mediated dilatation; interleukin-6.

Figures

Figure 1
Figure 1
Flow diagram.
Figure 2
Figure 2
Risk of bias assessment tool. (A) Across trials, information is either from trials at low risk of bias (green), or from trials at unclear risk of bias (yellow), or from trials at high risk of bias (red). (B) For each study, every bias domain will be checked, the given summary represents an assessment of bias risk across studies. For each bias domain, low risk of bias means that information is from studies at low risk of bias (green), high risk of bias indicates the proportion of information from studies at high risk of bias which might be sufficient to affect the interpretation of the results (red), and unclear risk of bias refers to information from studies at low or unclear risk of bias (yellow).
Figure 2
Figure 2
Risk of bias assessment tool. (A) Across trials, information is either from trials at low risk of bias (green), or from trials at unclear risk of bias (yellow), or from trials at high risk of bias (red). (B) For each study, every bias domain will be checked, the given summary represents an assessment of bias risk across studies. For each bias domain, low risk of bias means that information is from studies at low risk of bias (green), high risk of bias indicates the proportion of information from studies at high risk of bias which might be sufficient to affect the interpretation of the results (red), and unclear risk of bias refers to information from studies at low or unclear risk of bias (yellow).
Figure 3
Figure 3
Effects of olive oil on C-reactive protein (mg/L). Forest plot showing pooled mean differences with 95% confidence intervals (CI) for 14 randomized controlled diets. For each study, the shaded square represents the point estimate of the intervention effect. The horizontal line joins the lower and upper limits of the 95% CI of these effects. The area of the shaded square reflects the relative weight of the study in the respective meta-analysis. The diamond at the bottom of the graph represents the pooled MD with the 95% CI for all study groups. MedD = Mediterranean diet.
Figure 4
Figure 4
Effects of olive oil on interleukin-6 (pg/mL). Forest plot showing pooled mean differences with 95% confidence intervals (CI) for seven randomized controlled diets. For each study, the shaded square represents the point estimate of the intervention effect. The horizontal line joins the lower and upper limits of the 95% CI of these effects. The area of the shaded square reflects the relative weight of the study in the respective meta-analysis. The diamond at the bottom of the graph represents the pooled MD with the 95% CI for all study groups. MedD = Mediterranean diet.
Figure 5
Figure 5
Effects of olive oil on flow-mediated dilatation (%, absolute percentage). Forest plot showing pooled mean differences with 95% confidence intervals (CI) for eight randomized controlled diets. For each study, the shaded square represents the point estimate of the intervention effect. The horizontal line joins the lower and upper limits of the 95% CI of these effects. The area of the shaded square reflects the relative weight of the study in the respective meta-analysis. The diamond at the bottom of the graph represents the pooled MD with the 95% CI for all study groups. Please note that the labeling of the X-axis has been switched as compared to Figure 3 and Figure 4, respectively, since for flow-mediated dilatation an increase is considered to be favorable. MedD = Mediterranean diet.
Figure 6
Figure 6
Funnel plot showing study precision against the mean differences effect estimate with 95% confidence intervals for C-reactive protein. SE = Standard error.

References

    1. Lim S.S., Vos T., Flaxman A.D., Danaei G., Shibuya K., Adair-Rohani H., Amann M., Anderson H.R., Andrews K.G., Aryee M., et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2224–2260. doi: 10.1016/S0140-6736(12)61766-8.
    1. Perez-Martinez P., Lopez-Miranda J., Blanco-Colio L., Bellido C., Jimenez Y., Moreno J.A., Delgado-Lista J., Egido J., Perez-Jimenez F. The chronic intake of a mediterranean diet enriched in virgin olive oil, decreases nuclear transcription factor κB activation in peripheral blood mononuclear cells from healthy men. Atherosclerosis. 2007;194:e141–e146. doi: 10.1016/j.atherosclerosis.2006.11.033.
    1. Sanchez-Fidalgo S., Sanchez de Ibarguen L., Cardeno A., Alarcon de la Lastra C. Influence of extra virgin olive oil diet enriched with hydroxytyrosol in a chronic dss colitis model. Eur. J. Nutr. 2012;51:497–506. doi: 10.1007/s00394-011-0235-y.
    1. Moreno-Luna R., Muñoz-Hernandez R., Miranda M.L., Costa A.F., Jimenez-Jimenez L., Vallejo-Vaz A.J., Muriana F.J., Villar J., Stiefel P. Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am. J. Hypertens. 2012;25:1299–1304. doi: 10.1038/ajh.2012.128.
    1. Schwingshackl L., Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular disease: Synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients. 2012;4:1989–2007. doi: 10.3390/nu4121989.
    1. Cook-Mills J.M., Marchese M.E., Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: Regulation by reactive oxygen species and antioxidants. Antioxid. Redox Signal. 2011;15:1607–1638. doi: 10.1089/ars.2010.3522.
    1. Roos M.W., Sperber G.O. A diffusion model of cerebral microischemia. Exp. Neurol. 1997;147:142–150. doi: 10.1006/exnr.1997.6572.
    1. Inaba Y., Chen J.A., Bergmann S.R. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: A meta-analysis. Int. J. Cardiovasc. Imaging. 2010;26:631–640. doi: 10.1007/s10554-010-9616-1.
    1. Schwingshackl L., Hoffmann G. Monounsaturated fatty acids, olive oil and health status: A systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13:154. doi: 10.1186/1476-511X-13-154.
    1. Chrysohoou C., Panagiotakos D.B., Pitsavos C., Das U.N., Stefanadis C. Adherence to the mediterranean diet attenuates inflammation and coagulation process in healthy adults: The Attica study. J. Am. Coll. Cardiol. 2004;44:152–158. doi: 10.1016/j.jacc.2004.03.039.
    1. Fung T.T., McCullough M.L., Newby P.K., Manson J.E., Meigs J.B., Rifai N., Willett W.C., Hu F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005;82:163–173.
    1. Salas-Salvado J., Garcia-Arellano A., Estruch R., Marquez-Sandoval F., Corella D., Fiol M., Gomez-Gracia E., Vinoles E., Aros F., Herrera C., et al. Components of the mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease. Eur. J. Clin. Nutr. 2008;62:651–659. doi: 10.1038/sj.ejcn.1602762.
    1. Martin M.A., Ramos S., Granado-Serrano A.B., Rodriguez-Ramiro I., Trujillo M., Bravo L., Goya L. Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Mol. Nutr. Food Res. 2010;54:956–966. doi: 10.1002/mnfr.200900159.
    1. International Prospective Register of Systematic Reviews. [(accessed on 7 September 2015)]. Available online:
    1. Higgins J.P., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savovic J., Schulz K.F., Weeks L., Sterne J.A., et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. The Cochrane Collaboration. [(accessed on 7 September 2015)]. Avalaible online: .
    1. Damasceno N.R., Perez-Heras A., Serra M., Cofan M., Sala-Vila A., Salas-Salvado J., Ros E. Crossover study of diets enriched with virgin olive oil, walnuts or almonds. Effects on lipids and other cardiovascular risk markers. Nutr. Metab. Cardiovasc. Dis. 2011;21(Suppl. S1):S14–S20. doi: 10.1016/j.numecd.2010.12.006.
    1. Sanders T.A., Hall W.L., Maniou Z., Lewis F., Seed P.T., Chowienczyk P.J. Effect of low doses of long-chain n-3 PUFAs on endothelial function and arterial stiffness: A randomized controlled trial. Am. J. Clin. Nutr. 2011;94:973–980. doi: 10.3945/ajcn.111.018036.
    1. Casas R., Sacanella E., Urpi-Sarda M., Chiva-Blanch G., Ros E., Martinez-Gonzalez M.A., Covas M.I., Rosa Ma L.R., Salas-Salvado J., Fiol M., et al. The effects of the mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS ONE. 2014;9:e100084. doi: 10.1371/journal.pone.0100084.
    1. Ceriello A., Esposito K., La Sala L., Pujadas G., De Nigris V., Testa R., Bucciarelli L., Rondinelli M., Genovese S. The protective effect of the mediterranean diet on endothelial resistance to GLP-1 in type 2 diabetes: A preliminary report. Cardiovasc. Diabetol. 2014;13:140. doi: 10.1186/s12933-014-0140-9.
    1. Damsgaard C.T., Frøkiaer H., Andersen A.D., Lauritzen L. Fish oil in combination with high or low intakes of linoleic acid lowers plasma triacylglycerols but does not affect other cardiovascular risk markers in healthy men. J. Nutr. 2008;138:1061–1066.
    1. Damsgaard C.T., Lauritzen L., Calder P.C., Kjaer T.R., Frøkiaer H. Reduced ex vivo interleukin-6 production by dietary fish oil is not modified by linoleic acid intake in healthy men. J. Nutr. 2009;139:1410–1414. doi: 10.3945/jn.108.102269.
    1. Eschen O., Christensen J.H., de Caterina R., Schmidt E.B. Soluble adhesion molecules in healthy subjects: A dose-response study using n-3 fatty acids. Nutr. Metab. Cardiovasc. Dis. 2004;14:180–185. doi: 10.1016/S0939-4753(04)80002-4.
    1. Eschen O., Christensen J.H., LA Rovere M.T., Romano P., Sala P., Schmidt E.B. Effects of marine n-3 fatty acids on circulating levels of soluble adhesion molecules in patients with chronic heart failure. Cell. Mol. Biol. 2010;56:45–51.
    1. Esposito K., Marfella R., Ciotola M., di Palo C., Giugliano F., Giugliano G., D’Armiento M., D’Andrea F., Giugliano D. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA. 2004;292:1440–1446. doi: 10.1001/jama.292.12.1440.
    1. Esposito K., Maiorino M.I., Ciotola M., di Palo C., Scognamiglio P., Gicchino M., Petrizzo M., Saccomanno F., Beneduce F., Ceriello A., et al. Effects of a mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: A randomized trial. Ann. Intern. Med. 2009;151:306–314. doi: 10.7326/0003-4819-151-5-200909010-00004.
    1. Flynn M.M., Reinert S.E. Comparing an olive oil-enriched diet to a standard lower-fat diet for weight loss in breast cancer survivors: A pilot study. J. Women’s Health. 2010;19:1155–1161. doi: 10.1089/jwh.2009.1759.
    1. Fuentes F., Lopez-Miranda J., Perez-Martinez P., Jimenez Y., Marin C., Gomez P., Fernandez J.M., Caballero J., Delgado-Lista J., Perez-Jimenez F. Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with α-linolenic acid on postprandial endothelial function in healthy men. Br. J. Nutr. 2008;100:159–165. doi: 10.1017/S0007114508888708.
    1. Gammelmark A., Madsen T., Varming K., Lundbye-Christensen S., Schmidt E.B. Low-dose fish oil supplementation increases serum adiponectin without affecting inflammatory markers in overweight subjects. Nutr. Res. 2012;32:15–23. doi: 10.1016/j.nutres.2011.12.007.
    1. Konstantinidou V., Covas M.I., Munoz-Aguayo D., Khymenets O., de la Torre R., Saez G., Tormos Mdel C., Toledo E., Marti A., Ruiz-Gutierrez V., et al. In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the mediterranean diet: A randomized controlled trial. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010;24:2546–2557.
    1. Kontogianni M.D., Vlassopoulos A., Gatzieva A., Farmaki A.E., Katsiougiannis S., Panagiotakos D.B., Kalogeropoulos N., Skopouli F.N. Flaxseed oil does not affect inflammatory markers and lipid profile compared to olive oil, in young, healthy, normal weight adults. Metab. Clin. Exp. 2013;62:686–693. doi: 10.1016/j.metabol.2012.11.007.
    1. Maki K.C., Reeves M.S., Farmer M., Griinari M., Berge K., Vik H., Hubacher R., Rains T.M. Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women. Nutr. Res. 2009;29:609–615. doi: 10.1016/j.nutres.2009.09.004.
    1. Mena M.P., Sacanella E., Vazquez-Agell M., Morales M., Fito M., Escoda R., Serrano-Martinez M., Salas-Salvado J., Benages N., Casas R., et al. Inhibition of circulating immune cell activation: A molecular antiinflammatory effect of the mediterranean diet. Am. J. Clin. Nutr. 2009;89:248–256. doi: 10.3945/ajcn.2008.26094.
    1. Mori T.A., Woodman R.J., Burke V., Puddey I.B., Croft K.D., Beilin L.J. Effect of eicosapentaenoic acid and docosahexaenoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic subjects. Free Radic. Biol. Med. 2003;35:772–781. doi: 10.1016/S0891-5849(03)00407-6.
    1. Pfeuffer M., Fielitz K., Laue C., Winkler P., Rubin D., Helwig U., Giller K., Kammann J., Schwedhelm E., Böger R.H., et al. Cla does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects. J. Am. Coll. Nutr. 2011;30:19–28. doi: 10.1080/07315724.2011.10719940.
    1. Singhal A., Lanigan J., Storry C., Low S., Birbara T., Lucas A., Deanfield J. Docosahexaenoic acid supplementation, vascular function and risk factors for cardiovascular disease: A randomized controlled trial in young adults. J. Am.Heart Assoc. 2013;2:e000283. doi: 10.1161/JAHA.113.000283.
    1. Sofi F., Giangrandi I., Cesari F., Corsani I., Abbate R., Gensini G.F., Casini A. Effects of a 1-year dietary intervention with n-3 polyunsaturated fatty acid-enriched olive oil on non-alcoholic fatty liver disease patients: A preliminary study. Int. J. Food Sci. Nutr. 2010;61:792–802. doi: 10.3109/09637486.2010.487480.
    1. Stirban A., Nandrean S., Götting C., Tamler R., Pop A., Negrean M., Gawlowski T., Stratmann B., Tschoepe D. Effects of n-3 fatty acids on macro- and microvascular function in subjects with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2010;91:808–813. doi: 10.3945/ajcn.2009.28374.
    1. Taylor J.S., Williams S.R., Rhys R., James P., Frenneaux M.P. Conjugated linoleic acid impairs endothelial function. Arterioscler. Thromb. Vasc. Biol. 2006;26:307–312. doi: 10.1161/.
    1. Theobald H.E., Goodall A.H., Sattar N., Talbot D.C., Chowienczyk P.J., Sanders T.A. Low-dose docosahexaenoic acid lowers diastolic blood pressure in middle-aged men and women. J. Nutr. 2007;137:973–978.
    1. Tholstrup T., Raff M., Straarup E.M., Lund P., Basu S., Bruun J.M. An oil mixture with trans-10, cis-12 conjugated linoleic acid increases markers of inflammation and in vivo lipid peroxidation compared with cis-9, trans-11 conjugated linoleic acid in postmenopausal women. J. Nutr. 2008;138:1445–1451.
    1. Thomazella M.C., Goes M.F., Andrade C.R., Debbas V., Barbeiro D.F., Correia R.L., Marie S.K., Cardounel A.J., daLuz P.L., Laurindo F.R. Effects of high adherence to mediterranean or low-fat diets in medicated secondary prevention patients. Am. J. Cardiol. 2011;108:1523–1529. doi: 10.1016/j.amjcard.2011.07.008.
    1. Urpi-Sarda M., Casas R., Chiva-Blanch G., Romero-Mamani E.S., Valderas-Martinez P., Salas-Salvado J., Covas M.I., Toledo E., Andres-Lacueva C., Llorach R., et al. The mediterranean diet pattern and its main components are associated with lower plasma concentrations of tumor necrosis factor receptor 60 in patients at high risk for cardiovascular disease. J. Nutr. 2012;142:1019–1025. doi: 10.3945/jn.111.148726.
    1. Voon P.T., Ng T.K., Lee V.K., Nesaretnam K. Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults. Am. J. Clin. Nutr. 2011;94:1451–1457. doi: 10.3945/ajcn.111.020107.
    1. Wong C.Y., Yiu K.H., Li S.W., Lee S., Tam S., Lau C.P., Tse H.F. Fish-oil supplement has neutral effects on vascular and metabolic function but improves renal function in patients with type 2 diabetes mellitus. Diabet. Med. J. Br. Diabet. Assoc. 2010;27:54–60. doi: 10.1111/j.1464-5491.2009.02869.x.
    1. Woodman R.J., Mori T.A., Burke V., Puddey I.B., Barden A., Watts G.F., Beilin L.J. Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive type 2 diabetic patients. Atherosclerosis. 2003;166:85–93. doi: 10.1016/S0021-9150(02)00307-6.
    1. Danesh J., Wheeler J.G., Hirschfield G.M., Eda S., Eiriksdottir G., Rumley A., Lowe G.D., Pepys M.B., Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 2004;350:1387–1397. doi: 10.1056/NEJMoa032804.
    1. Shah T., Casas J.P., Cooper J.A., Tzoulaki I., Sofat R., McCormack V., Smeeth L., Deanfield J.E., Lowe G.D., Rumley A., et al. Critical appraisal of crp measurement for the prediction of coronary heart disease events: New data and systematic review of 31 prospective cohorts. Int. J. Epidemiol. 2009;38:217–231. doi: 10.1093/ije/dyn217.
    1. Buckley D.I., Fu R., Freeman M., Rogers K., Helfand M. C-reactive protein as a risk factor for coronary heart disease: A systematic review and meta-analyses for the U.S. Preventive services task force. Ann. Intern. Med. 2009;151:483–495. doi: 10.7326/0003-4819-151-7-200910060-00009.
    1. Morrow D.A., Ridker P.M. C-reactive protein, inflammation, and coronary risk. Med. Clin. N. Am. 2000;84:149–161. doi: 10.1016/S0025-7125(05)70211-X.
    1. Bataille R., Klein B. C-reactive protein levels as a direct indicator of interleukin-6 levels in humans in vivo. Arthritis Rheum. 1992;35:982–984. doi: 10.1002/art.1780350824.
    1. Heinrich P.C., Castell J.V., Andus T. Interleukin-6 and the acute phase response. Biochem. J. 1990;265:621–636. doi: 10.1042/bj2650621.
    1. Danesh J., Kaptoge S., Mann A.G., Sarwar N., Wood A., Angleman S.B., Wensley F., Higgins J.P., Lennon L., Eiriksdottir G., et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: Two new prospective studies and a systematic review. PLoS Med. 2008;5:e78. doi: 10.1371/journal.pmed.0050078.
    1. Blake G.J., Ridker P.M. Inflammatory bio-markers and cardiovascular risk prediction. J. Intern. Med. 2002;252:283–294. doi: 10.1046/j.1365-2796.2002.01019.x.
    1. Kritchevsky S.B., Cesari M., Pahor M. Inflammatory markers and cardiovascular health in older adults. Cardiovascul. Res. 2005;66:265–275. doi: 10.1016/j.cardiores.2004.12.026.
    1. Hao G., Li W., Guo R., Yang J.G., Wang Y., Tian Y., Liu M.Y., Peng Y.G., Wang Z.W. Serum total adiponectin level and the risk of cardiovascular disease in general population: A meta-analysis of 17 prospective studies. Atherosclerosis. 2013;228:29–35. doi: 10.1016/j.atherosclerosis.2013.02.018.
    1. Kanhai D.A., Kranendonk M.E., Uiterwaal C.S., van der Graaf Y., Kappelle L.J., Visseren F.L. Adiponectin and incident coronary heart disease and stroke. A systematic review and meta-analysis of prospective studies. Obes. Rev. 2013;14:555–567. doi: 10.1111/obr.12027.
    1. Sook Lee E., Park S.S., Kim E., Sook Yoon Y., Ahn H.Y., Park C.Y., Ho Yun Y., Woo Oh S. Association between adiponectin levels and coronary heart disease and mortality: A systematic review and meta-analysis. Int. J. Epidemiol. 2013;42:1029–1039. doi: 10.1093/ije/dyt087.
    1. Tan K.C., Xu A., Chow W.S., Lam M.C., Ai V.H., Tam S.C., Lam K.S. Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. J. Clin. Endocrinol. Metab. 2004;89:765–769. doi: 10.1210/jc.2003-031012.
    1. Celermajer D.S., Sorensen K.E., Gooch V.M., Spiegelhalter D.J., Miller O.I., Sullivan I.D., Lloyd J.K., Deanfield J.E. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111–1115. doi: 10.1016/0140-6736(92)93147-F.
    1. Schroeder S., Enderle M.D., Ossen R., Meisner C., Baumbach A., Pfohl M., Herdeg C., Oberhoff M., Haering H.U., Karsch K.R. Noninvasive determination of endothelium-mediated vasodilation as a screening test for coronary artery disease: Pilot study to assess the predictive value in comparison with angina pectoris, exercise electrocardiography, and myocardial perfusion imaging. Am. Heart J. 1999;138:731–739. doi: 10.1016/S0002-8703(99)70189-4.
    1. Chan S.Y., Mancini G.B., Kuramoto L., Schulzer M., Frohlich J., Ignaszewski A. The prognostic importance of endothelial dysfunction and carotid atheroma burden in patients with coronary artery disease. J. Am. Coll. Cardiol. 2003;42:1037–1043. doi: 10.1016/S0735-1097(03)00927-6.
    1. Gokce N., Keaney J.F., Hunter L.M., Watkins M.T., Nedeljkovic Z.S., Menzoian J.O., Vita J.A. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J. Am. Coll. Cardiol. 2003;41:1769–1775. doi: 10.1016/S0735-1097(03)00333-4.
    1. Yeboah J., Folsom A.R., Burke G.L., Johnson C., Polak J.F., Post W., Lima J.A., Crouse J.R., Herrington D.M. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: The multi-ethnic study of atherosclerosis. Circulation. 2009;120:502–509. doi: 10.1161/CIRCULATIONAHA.109.864801.
    1. Siemiatkowski A., Rogowski F., Wereszczyńska-Siemiatkowska U., Malinowska L., Borkowski J. Soluble selectin profiles associated with severe trauma. Arch. Immunol. Ther. Exp. (Warsz.) 2001;49:317–324.
    1. Cherian P., Hankey G.J., Eikelboom J.W., Thom J., Baker R.I., McQuillan A., Staton J., Yi Q. Endothelial and platelet activation in acute ischemic stroke and its etiological subtypes. Stroke. 2003;34:2132–2137. doi: 10.1161/01.STR.0000086466.32421.F4.
    1. Prugger C., Luc G., Haas B., Morange P.E., Ferrieres J., Amouyel P., Kee F., Ducimetiere P., Empana J.P., Group P.S. Multiple biomarkers for the prediction of ischemic stroke: The prime study. Arterioscler. Thromb. Vasc. Biol. 2013;33:659–666. doi: 10.1161/ATVBAHA.112.300109.
    1. Karatzi K.N., Papamichael C.M., Karatzis E.N., Papaioannou T.G., Aznaouridis K.A., Katsichti P.P., Stamatelopoulos K.S., Zampelas A., Lekakis J.P., Mavrikakis M.E. Red wine acutely induces favorable effects on wave reflections and central pressures in coronary artery disease patients. Am. J. Hypertens. 2005;18:1161–1167. doi: 10.1016/j.amjhyper.2005.03.744.
    1. Hertog M.G., Kromhout D., Aravanis C., Blackburn H., Buzina R., Fidanza F., Giampaoli S., Jansen A., Menotti A., Nedeljkovic S. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med. 1995;155:381–386. doi: 10.1001/archinte.1995.00430040053006.
    1. Zern T.L., Fernandez M.L. Cardioprotective effects of dietary polyphenols. J. Nutr. 2005;135:2291–2294.
    1. Ruano J., Lopez-Miranda J., Fuentes F., Moreno J.A., Bellido C., Perez-Martinez P., Lozano A., Gómez P., Jiménez Y., Pérez Jiménez F. Phenolic content of virgin olive oil improves ischemic reactive hyperemia in hypercholesterolemic patients. J. Am. Coll. Cardiol. 2005;46:1864–1868. doi: 10.1016/j.jacc.2005.06.078.
    1. Bermudez B., Lopez S., Ortega A., Varela L.M., Pacheco Y.M., Abia R., Muriana F.J. Oleic acid in olive oil: From a metabolic framework toward a clinical perspective. Curr. Pharm. Des. 2011;17:831–843. doi: 10.2174/138161211795428957.
    1. Martinez-Gonzalez M.A., Dominguez L.J., Delgado-Rodriguez M. Olive oil consumption and risk of CHD and/or stroke: A meta-analysis of case-control, cohort and intervention studies. Br. J. Nutr. 2014;112:248–259. doi: 10.1017/S0007114514000713.

Source: PubMed

3
订阅