Relationship between muscarinic M1 receptor binding and cognition in medication-free subjects with psychosis

Geor Bakker, Claudia Vingerhoets, Daphne Boucherie, Matthan Caan, Oswald Bloemen, Jos Eersels, Jan Booij, Thérèse van Amelsvoort, Geor Bakker, Claudia Vingerhoets, Daphne Boucherie, Matthan Caan, Oswald Bloemen, Jos Eersels, Jan Booij, Thérèse van Amelsvoort

Abstract

Background: It is still unclear which underlying mechanisms are involved in cognitive deficits of psychotic disorders. Pro-cognitive effects of muscarinic M1 receptor agonists suggest alterations in M1 receptor functioning may modulate these symptoms. Post mortem studies in patients with schizophrenia have shown significantly reduced M1 receptor expression rates in the dorsolateral prefrontal cortex (DLPFC) compared to controls. To date no in-vivo examinations of M1 receptor binding in relation to cognitive impairments have been done. As cognitive deficits have similar course and prognostic relevance across psychotic disorders, the current study assessed M1 receptor binding in the DLPFC and hippocampus in relation to cognitive functioning.

Methods: Muscarinic M1 receptor binding potential (BPND) was measured using 123I-IDEX, single photon emission computed tomography (SPECT) in 30 medication-free subjects diagnosed with a psychotic disorder. A computerized neuropsychological test battery was used to assess cognition, and the positive and negative syndrome scale (PANSS) to assess severity of psychotic symptoms.

Results: Assessment of cognitive domains showed that lower M1 BPND in the DLPFC was related to overall lower performance in verbal learning and memory. In addition, lower M1 BPND in the DLPFC was related to greater negative symptom severity. Lastly, lower M1 BPND in the hippocampus was related to worse delayed recognition of verbal memory.

Conclusion: This is the first study to show that variation in M1 receptors in the DLPFC is related to cognitive and negative symptom outcome in psychotic disorders. The M1 receptor may be an important biomarker in biological stratification of patients with psychotic disorders.

Figures

Fig. 1
Fig. 1
Panel A. shows gray matter segmentation image derived from the T1 structural MRI image used for co-registration of the 123I-IDEX SPECT scan. Panel B. 123I-IDEX SPECT scan of the same subject showing high cortical binding with no binding in white matter and cerebrospinal fluid. Panel C. 123I-IDEX SPECT scan co-registered to subject's own T1 structural MRI image; darker areas are over white matter tracts, ventricles, and cerebellum showing no 123I-IDEX binding. Panel D. In blue masks created from a segmented FreeSurfer image of the dorsolateral prefrontal cortex (DLPFC) (region of interest Bs), used for the assessment of M1 binding, and cerebellar gray matter (Bn), overlaid over the SPECT scan in pseudo colors. Panel E. In blue, masks used for the assessment of M1 binding (Bs) in the hippocampus, caudate nucleus and putamen.
Fig. 2
Fig. 2
Lower M1 receptor binding potential (BPND) in the dorsolateral prefrontal cortex (DLPFC) was related to lower verbal learning and memory capacity. r = Pearson's correlation coefficient; R2 = goodness of fit.
Fig. 3
Fig. 3
Decreased hippocampal M1 BPND was associated with worse delayed recognition of verbal information. r = Pearson's correlation coefficient, R2 = goodness of fit.
Fig. 4
Fig. 4
Low M1 BPND in the DLPFC was significantly related to increased severity and presence of negative symptoms measured by the positive and negative syndrome scale (PANSS) at time of scanning. No significant correlation was found between M1 BPND and positive symptoms or general psychiatry at time of scanning. r = Pearson's correlation coefficient R2 = goodness of fit.

References

    1. Abi-Dargham A., Mawlawi O., Lombardo I., Gil R., Martinez D., Huang Y. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci. 2002;22:3708–3719.
    1. Andreasen N.C., Health M., City I., Hubbard W., Mcnamara C., Meller J. 2000. Comprehensive Assessment of Symptoms and History; p. 1987.
    1. Bakker G., Vingerhoets W.A.M., van Wieringen J.-P., de Bruin K., Eersels J., de Jong J. 123I-iododexetimide preferentially binds to the muscarinic receptor subtype M1 in vivo. J. Nucl. Med. 2015;56:317–322.
    1. Beck A.T., Ward C.H., Mendelson M., Mock J., Erbaugh J. An inventory for measuring depression. Arch. Gen. Psychiatry. 1961;4:561–571.
    1. Birchwood M., Smith J., Cochrane R., Wetton S., Copestake S. The social functioning scale. The development and validation of a new scale of social adjustment for use in family intervention programmes with schizophrenic patients. Br. J. Psychiatry. 1990;157:853–859.
    1. Boundy K.L., Barnden L.R., Rowe C.C., Reid M., Kassiou M., Katsifis a G. Human dosimetry and biodistribution of iodine-123-iododexetimide: a SPECT imaging agent for cholinergic muscarinic neuroreceptors. J. Nucl. Med. 1995;36:1332–1338.
    1. Bymaster F.P., Calligaro D.O., Falcone J.F., Marsh R.D., Moore N.A., Tye N.C. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology. 1996;14:87–96.
    1. Cambridge Cognition . U.K; 2006. Neuropsychological Test Automated Battery (CANTAB eclipse) Manual.
    1. Collingridge G.L., Volianskis A., Bannister N., France G., Hanna L., Mercier M. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology. 2013;64:13–26.
    1. Cortes R., Probst A., Palacios J.M. Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: forebrain. Neuroscience. 1987;20:65–107.
    1. Dean B., Crook J.M., Pavey G., Opeskin K., Copolov D.L. Muscarinic1 and 2 receptor mRNA in the human caudate-putamen: no change in m1 mRNA in schizophrenia. Mol. Psychiatry. 2000;5:203–207.
    1. Dean B., Hopper S., Conn P.J., Scarr E. Changes in BQCA allosteric modulation of [3H]NMS binding to human cortex within schizophrenia and by divalent cations. Neuropsychopharmacology. 2016;41:1620–1628.
    1. Desikan R.S., Ségonne F., Fischl B., Quinn B.T., Dickerson B.C., Blacker D. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006;31:968–980.
    1. Dudai Y., Karni A., Born J. The consolidation and transformation of memory. Neuron. 2015;88:20–32.
    1. Everitt B.J., Robbins T.W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 1997;48:649–684.
    1. Fischl B. FreeSurfer. NeuroImage. 2012;62:774–781.
    1. Fischl B., Salat D.H., Busa E., Albert M., Dieterich M., Haselgrove C. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–355.
    1. Green M.F., Kern R.S., Heaton R.K. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr. Res. 2004;72:41–51.
    1. Haring L., Mõttus R., Koch K., Trei M., Maron E. Factorial validity, measurement equivalence and cognitive performance of the Cambridge neuropsychological test automated battery (CANTAB) between patients with first-episode psychosis and healthy volunteers. Psychol. Med. 2014;45:1–11.
    1. Harvey P.D., Koren D., Reichenberg A., Bowie C.R. Negative symptoms and cognitive deficits: what is the nature of their relationship? Schizophr. Bull. 2006;32:250–258.
    1. Hasselmo M.E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 2006;16:710–715.
    1. Hayes A.F. PROCESS: a versatile computational tool for observed variable mediation, moderation, and conditional process modeling. White Pap. 2012:1–39. (doi:978-1-60918-230-4)
    1. Hietala J., Syvälahti E., Vuorio K., Räkköläinen V., Bergman J., Haaparanta M. Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet (London, England) 1995;346:1130–1131.
    1. Innis R.B., Cunningham V.J., Delforge J., Fujita M., Gjedde A., Gunn R.N. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J. Cereb. Blood Flow Metab. 2007;27:1533–1539.
    1. Jackson D., Kirkbride J., Croudace T., Morgan C., Boydell J., Errazuriz A. Meta-analytic approaches to determine gender differences in the age-incidence characteristics of schizophrenia and related psychoses. Int. J. Methods Psychiatr. Res. 2013;22:36–45.
    1. Kahn R.S., Keefe R.S.E. Schizophrenia Is a Cognitive Illness. JAMA Psychiat. 2013;70:1107.
    1. Kapur S., Phillips A.G., Insel T.R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry. 2012;17:1174–1179.
    1. Kay S.R., Fiszbein A., Opler L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987;13:261–276.
    1. Kim E., Howes O.D., Veronese M., Beck K., Seo S., Park J.W. Presynaptic dopamine capacity in patients with treatment resistant schizophrenia taking clozapine: An [18F]DOPA PET study. Neuropsychopharmacology. 2016:1–36.
    1. Klauschen F., Goldman A., Barra V., Meyer-Lindenberg A., Lundervold A. Evaluation of automated brain MR image segmentation and volumetry methods. Hum. Brain Mapp. 2009;30:1310–1327.
    1. Lavalaye J., Booij J., Linszen D.H., Reneman L., van Royen E.A. Higher occupancy of muscarinic receptors by olanzapine than risperidone in patients with schizophrenia. A[123I]-IDEX SPECT study. Psychopharmacology. 2001;156:53–57.
    1. Levey A.I., Kitt C.A., Simonds W.F., Price D.L., Brann M.R. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 1991;11:3218–3226.
    1. Miller A., Kavoussi R., Breier A. Xanomeline plus tropsium: a novel strategy to enhance pro-muscarinic efficacy and mitigate peripheral side effects. Neuropsychopharmacology. 2016;41:S230.
    1. Motulsky H.J., Brown R.E. Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinf. 2006;7:123.
    1. Muller-gartner H.W., Wilson A.A., Dannals R.F., Wagner H.N., Frost J. 1992. Imaging Muscarinic Cholinergic Receptors in Human Brain In Vivo With SPECT, [e231] 4-Lododexetimide, and [1231] 4 _ Lodolevetimide; pp. 562–570.
    1. Newcomer J., Farber N.B., Jevtovic-Todorovic V., Selke G., Melson A.K., Hershey T. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology. 1999;20:106–118.
    1. Raedler T.J. Comparison of the in-vivo muscarinic cholinergic receptor availability in patients treated with clozapine and olanzapine. Int. J. Neuropsychopharmacol. 2007;10:275–280.
    1. Raedler T., Knable M.B., Jones D.W., Lafargue T., Urbina R.A., Egan M.F. In vivo olanzapine occupancy of muscarinic acetylcholine receptors in patients with schizophrenia. Neuropsychopharmacology. 2000;23:56–68.
    1. Raedler T.J., Knable M.B., Jones D.W., Urbina R.A., Gorey J.G., Lee K.S. In vivo determination of muscarinic acetylcholine receptor availability in schizophrenia. Am. J. Psychiatry. 2003;160:118–127.
    1. Rodríguez-Jiménez R., Bagney A., Moreno-Ortega M., García-Navarro C., Aparicio A.I., López-Antón R. Cognitive deficit in schizophrenia: MATRICS consensus cognitive battery. Rev. Neurol. 2012;55:549–555.
    1. Salah-Uddin H., Scarr E., Pavey G., Harris K., Hagan J.J., Dean B. Altered M1 muscarinic acetylcholine receptor (CHRM1)-Gαq/11 coupling in a schizophrenia endophenotype. Neuropsychopharmacology. 2009;34:2156–2166.
    1. Scarr E., Sundram S., Keriakous D., Dean B. Altered hippocampal muscarinic M4, but not M1, receptor expression from subjects with schizophrenia. Biol. Psychiatry. 2007;61:1161–1170.
    1. Scarr E., Cowie T.F., Kanellakis S., Sundram S., Pantelis C., Dean B. Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol. Psychiatry. 2009;14:1017–1023.
    1. Scarr E., Millan M.J., Bahn S., Bertolino A., Turck C.W., Kapur S. Biomarkers for Psychiatry: The Journey from Fantasy to Fact, a Report of the 2013 CINP Think Tank. Int. J. Neuropsychopharmacol. 2015;18
    1. Shekhar A., Potter W.Z., Lightfoot J., Lienemann J., Dubé S., Mallinckrodt C. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am. J. Psychiatry. 2008;165:1033–1039.
    1. Nathan P.J, Watson J., Lund J., Davies C.H, Peters G., Dodds C.M. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int. J. Neuropharmacol. 2013;16:721–731.
    1. Van Harten P.N., Bakker P.R., Mentzel C.L., Tijssen M.A., Tenback D.E. Movement disorders and psychosis, a complex marriage. Front Psychiatry. 2015;6:190.
    1. Veselinović T., Vernaleken I., Janouschek H., Kellermann T., Paulzen M., Cumming P. Effects of anticholinergic challenge on psychopathology and cognition in drug-free patients with schizophrenia and healthy volunteers. Psychopharmacology. 2015;232:1607–1617.
    1. Vingerhoets W.A.M., Bloemen O.J.N., Bakker G., van Amelsvoort T.A.M.J. Pharmacological interventions for the MATRICS cognitive domains in schizophrenia: what's the evidence? Front Psychiatry. 2013;4:157.
    1. Vingerhoets C., Bakker G., van Dijk J., Bloemen O.J.N., Wang Y., Chan R.C.K. The effect of the muscarinic M 1 receptor antagonist biperiden on cognition in medication free subjects with psychosis. Eur. Neuropsychopharmacol. 2017
    1. Wechsler D. Fourth edition. 2008. Wechsler Adult Intelligence Scale; pp. 1–3.
    1. Weiner D.M., Meltzer H.Y., Veinbergs I., Donohue E.M., Spalding T.A., Smith T.T. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacology. 2004;177:207–216.
    1. Woodberry K.A., Giuliano A.J., Seidman L.J. Premorbid IQ in schizophrenia: a meta-analytic review. Am. J. Psychiatry. 2008;165:579–587.
    1. Xiang Z., Thompson A.D., Jones C.K., Lindsley C.W., Conn P.J. Roles of the M1 muscarinic acetylcholine receptor subtype in the regulation of basal ganglia function and implications for the treatment of Parkinson's disease. J. Pharmacol. Exp. Ther. 2012;340:595–603.

Source: PubMed

3
订阅