Systematic Evaluation of the T30 Neurostimulator Treatment for Tinnitus: A Double-Blind Randomised Placebo-Controlled Trial with Open-Label Extension

Deborah Ann Hall, Robert Henryk Pierzycki, Holly Thomas, David Greenberg, Magdalena Sereda, Derek James Hoare, Deborah Ann Hall, Robert Henryk Pierzycki, Holly Thomas, David Greenberg, Magdalena Sereda, Derek James Hoare

Abstract

Tinnitus is often triggered by cochlear damage and has been linked with aberrant patterns of neuronal activity. Acoustic Coordinated Reset (CR®) Neuromodulation is a sound therapy hypothesised to reduce tinnitus symptoms by desynchronising pathological brain activity using a portable acoustic device (the T30 neurostimulator). We report results of a pivotal trial to test the efficacy of this intervention. This two-centre, double-blind randomised controlled trial with long-term open-label extension, was undertaken between February 2012 and February 2014 in the UK. Participants were 100 adults with tinnitus as a primary complaint, recruited through hearing clinics and media advertisements. Intervention was the device programmed either with the proprietary sound sequence or placebo algorithm, fit by one of five trained audiologists. Minimisation software provided group allocation (1:1 randomisation), with groups matched for age, gender, hearing loss and tinnitus severity. Allocation was masked from participants and assessors during the trial. The primary measure of efficacy was change in tinnitus symptom severity between groups, measured using the Tinnitus Handicap Questionnaire at 12 weeks. Secondary outcomes were other measures of tinnitus symptom severity, health-related quality of life, and perceptual characteristics (pitch, loudness, bandwidth) at 12 weeks, and Tinnitus Handicap Questionnaire at 36 weeks (open-label extension). A statistician blinded to the allocation conducted an intention-to-treat analysis that employed linear regressions on minimisation variables, trial centre and intervention group, with multiple imputations for missing data. The study was registered on clinicaltrials.gov (NCT01541969). We screened 391 individuals and assigned interventions to 100 eligible participants. The primary outcome was not statistically significant between groups (mean group = -0.45, 95% CI -5.25 to 4.35; p = 0.85), nor were any of the secondary outcomes. Four adverse events occurred during the trial. Analysis of tinnitus symptom severity data collected across the 24-week open-label extension showed no statistically significant within-group changes after 12, 24, or 36 weeks treatment with the proprietary sound sequence. While individual participants may benefit from sound therapy, Acoustic CR® Neuromodulation did not lead to group-mean reductions on tinnitus symptom severity or other measures compared to placebo, or over time.

Keywords: acoustic CR neuromodulation; neural synchrony; neuromodulation; quality of life; sound therapy; tinnitus disorder.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the T30 neurostimulator device fitting protocol used by the trial audiologists. A central tinnitus refers to a unified percept that is experienced in the head (not in the ear). In this case, only one ear needs to be assessed.
Figure 2
Figure 2
Flow chart for the RESET2 clinical trial. RCT phase is denoted by the thicker outlined boxes.

References

    1. McCormack A., Edmondson-Jones M., Somerset S., Hall D. A systematic review of the reporting of tinnitus prevalence and severity. Hear. Res. 2016;337:70–79. doi: 10.1016/j.heares.2016.05.009.
    1. Rosing S.N., Schmidt J.H., Wedderkopp N., Baguley D.M. Prevalence of tinnitus and hyperacusis in children and adolescents: A systematic review. BMJ Open. 2016;6:e010596. doi: 10.1136/bmjopen-2015-010596.
    1. De Ridder D., Schlee W., Vanneste S., Londero A., Weisz N., Kleinjung T., Shekhawat G.S., Elgoyhen A.B., Song J., Andersson G., et al. Progress in Brain Research. Elsevier BV; Amsterdam, The Netherlands: 2021. Tinnitus and tinnitus disorder: Theoretical and operational definitions (an international multidisciplinary proposal) pp. 1–25.
    1. Watts E.J., Fackrell K., Smith S., Sheldrake J., Haider H., Hoare D.J. Why is tinnitus a problem? A qualitative analysis of problems reported by tinnitus patients. Trends Hear. 2018;22:2331216518812250. doi: 10.1177/2331216518812250.
    1. Sereda M., Xia J., El Refaie A., Hall D.A., Hoare D.J. Sound therapy (using amplification devices and/or sound generators) for tinnitus. Cochrane Database Syst. Rev. 2018;12:CD013094. doi: 10.1002/14651858.CD013094.pub2.
    1. Fuller T., Cima R., Langguth B., Mazurek B., Vlaeyen J.W., Hoare D.J. Cognitive behavioural therapy for tinnitus. Cochrane Database Syst. Rev. 2020;1:1–55. doi: 10.1002/14651858.CD012614.pub2.
    1. Nondahl D.M., Cruickshanks K.J., Huang G.H., Klein B.E.K., Klein R., Javier Nieto F., Tweed T.S. Tinnitus and its risk factors in the Beaver Dam Offspring Study. Int. J. Audiol. 2011;50:313–320. doi: 10.3109/14992027.2010.551220.
    1. Gopinath B., McMahon C.M., Rochtchina E., Karpa M.J., Mitchell P. Risk factors and impacts of incident tinnitus in older adults. Ann. Epidemiol. 2010;20:129–135. doi: 10.1016/j.annepidem.2009.09.002.
    1. Baguley D., McFerran D., Hall D. Tinnitus. Lancet. 2013;382:1600–1607. doi: 10.1016/S0140-6736(13)60142-7.
    1. Eggermont J.J. Tinnitus: Neurobiological substrates. Drug Discov. Today. 2005;10:1283–1290. doi: 10.1016/S1359-6446(05)03542-7.
    1. Schaette R., Kempter R. Predicting tinnitus pitch from patients’ audiograms with a computational model for the development of neuronal hyperactivity. J. Neurophysiol. 2009;101:3042–3052. doi: 10.1152/jn.91256.2008.
    1. Schaette R., McAlpine D. Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. J. Neurosci. 2011;31:13452–13457. doi: 10.1523/JNEUROSCI.2156-11.2011.
    1. Roberts L.E. Neural Synchrony and Neural Plasticity in Tinnitus. Textbook of Tinnitus. Springer; Berlin/Heidelberg, Germany: 2011. pp. 103–112.
    1. Tass P.A., Popovych O.V. Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: Theoretical concept and modelling. Biol. Cybern. 2012;106:27–36. doi: 10.1007/s00422-012-0479-5.
    1. Tass P.A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 2003;89:81–88. doi: 10.1007/s00422-003-0425-7.
    1. Lysyansky B., Popovych O.V., Tass P.A. Desynchronizing anti-resonance effect of m: N ON-OFF coordinated reset stimulation. J. Neural Eng. 2011;8:036019. doi: 10.1088/1741-2560/8/3/036019.
    1. Tass P.A., Majtanik M. Long-term anti-kindling effects of desynchronizing brain stimulation: A theoretical study. Biol. Cybern. 2006;94:58–66. doi: 10.1007/s00422-005-0028-6.
    1. Tass P.A., Qin L., Hauptmann C., Dovero S., Bezard E., Boraud T., Meissner W.G. Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann. Neurol. 2012;72:816–820. doi: 10.1002/ana.23663.
    1. Tass P.A., Adamchic I., Freund H.J., von Stackelberg T., Hauptmann C. Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor. Neurol. Neurosci. 2012;30:137–159. doi: 10.3233/RNN-2012-110218.
    1. Goebel G., Hiller W. The tinnitus questionnaire. A standard instrument for grading the degree of tinnitus. Results of a multicenter study with the tinnitus questionnaire. HNO. 1994;42:166–172.
    1. Wegger M., Ovesen T., Larsen D.G. Acoustic coordinated reset neuromodulation: A systematic review of a novel therapy for tinnitus. Front. Neurol. 2017;8:36. doi: 10.3389/fneur.2017.00036.
    1. Williams M., Hauptmann C., Patel N. Acoustic CR neuromodulation therapy for subjective tonal tinnitus: A review of clinical outcomes in an independent audiology practice setting. Front. Neurol. 2015;6:54. doi: 10.3389/fneur.2015.00054.
    1. Hauptmann C., Ströbel A., Williams M., Patel N., Wurzer H., von Stackelberg T., Brinkmann U., Langguth B., Tass P.A. Acoustic Coordinated Reset Neuromodulation in a real-life patient population with chronic tonal tinnitus. BioMed Res. Int. 2015;8:569052. doi: 10.1155/2015/569052.
    1. Theodoroff S.M., McMillan G.P., Schmidt C.J., Dann S.M., Hauptmann C., Goodworth M.C., Leibowitz R.Q., Random C., Henry J.A. Randomised controlled trial of interventions for bothersome tinnitus: DesyncraTM versus cognitive behavioural therapy. Int. J. Audiol. 2021:1–10. doi: 10.1080/14992027.2021.2004325.
    1. Boutron I., Moher D., Altman D.G., Schulz K.F., Ravaud P. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: Explanation and elaboration. Ann. Intern. Med. 2008;148:295–309. doi: 10.7326/0003-4819-148-4-200802190-00008.
    1. Hoare D.J., Pierzycki R.H., Thomas H., McAlpine D., Hall D.A. Evaluation of the acoustic coordinated reset (CR®) neuromodulation therapy for tinnitus: Study protocol for a double-blind randomized placebo-controlled trial. Trials. 2013;14:207. doi: 10.1186/1745-6215-14-207.
    1. Langguth B., Goodey R., Azevedo A., Bjorne A., Cacace A., Crocetti A., del Bo L., de Ridder D., Diges I., Elbert T., et al. Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Prog. Brain Res. 2007;166:525–536.
    1. Newman C.W., Jacobson G.P., Spitzer J.B. Development of the Tinnitus Handicap Inventory. Arch. Otolaryngol. Head Neck Surg. 1996;122:143–148. doi: 10.1001/archotol.1996.01890140029007.
    1. Roberts L.E., Moffat G., Baumann M., Ward L.M., Bosnyak D.J. Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. JARO. 2008;9:417–435. doi: 10.1007/s10162-008-0136-9.
    1. Roberts L.E., Moffat G., Bosnyak D.J. Residual inhibition functions in relation to tinnitus spectra and auditory threshold shift. Acta Oto-Laryngol. 2006;126:27–33. doi: 10.1080/03655230600895358.
    1. Beck A.T., Steer R.A., Ball R., Ciervo C.A., Kabat M. Use of the Beck Anxiety and Depression Inventories for Primary Care with medical outpatients. Assessment. 1997;4:211–219. doi: 10.1177/107319119700400301.
    1. Kuk F.K., Tyler R.S., Russell D., Jordan H. The psychometric properties of a tinnitus handicap questionnaire. Ear Hear. 1990;11:434–445. doi: 10.1097/00003446-199012000-00005.
    1. Fackrell K., Hall D.A., Barry J., Hoare D.J. Tools for Tinnitus Measurement: Development and Validity of Questionnaires to Assess Handicap and Treatment Effects. In: Signorelli F., Turjman F., editors. Tinnitus: Causes, Treatment and Short & Long-Term Health Effects. Nova Science Publishers Inc.; New York, NY, USA: 2014. pp. 13–60.
    1. Pierzycki R.H., McNamara A.J., Hoare D.J., Hall D.A. Whole scalp resting state EEG of oscillatory brain activity shows no parametric relationship with psychoacoustic and psychosocial assessment of tinnitus: A repeated measures study. Hear. Res. 2016;331:101–108. doi: 10.1016/j.heares.2015.11.003.
    1. Meikle M.B., Henry J.A., Griest S.E., Stewart B.J., Abrams H.B., McArdle R., Myers P.J., Newman C.W., Sandridge S., Turk D.C., et al. The Tinnitus Functional Index: Development of a new clinical measure for chronic, intrusive tinnitus. Ear Hear. 2012;33:153–176. doi: 10.1097/AUD.0b013e31822f67c0.
    1. Hoare D.J., Gander P.E., Collins L., Smith S., Hall D.A. Management of tinnitus in English NHS audiology departments: An evaluation of current practice. J. Eval. Clin. Pract. 2012;18:326–334. doi: 10.1111/j.1365-2753.2010.01566.x.
    1. THE WHOQOL GROUP Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychol. Med. 1998;28:551–558. doi: 10.1017/S0033291798006667.
    1. Sereda M., Hall D.A., Bosnyak D.J., Edmondson-Jones M., Roberts L.E., Adjamian P., Palmer A.R. Re-examining the relationship between audiometric profile and tinnitus pitch. Int. J. Audiol. 2011;50:303–312. doi: 10.3109/14992027.2010.551221.
    1. Henry J.A., Schechter M.A., Zaugg T.L., Griest S., Jastreboff P.J., Vernon J.A., Laelin C., Meikle M.B., Stewart B.J. Clinical trial to compare tinnitus masking and tinnitus retraining therapy. Acta Oto-Laryngol. Supp. 2006;126:64–69. doi: 10.1080/03655230600895556.
    1. R Core Team . R: A Language and Environment for Statistical Computing 2013. R Foundation for Statistical Computing; Vienna, Austria: 2013.
    1. Altman D.G., Bland J.M. Treatment allocation by minimisation. BMJ. 2005;330:843. doi: 10.1136/bmj.330.7495.843.
    1. McCombe A., Baguley D., Coles R., McKenna L., McKinney C., Windle-Taylor P. Guidelines for the grading of tinnitus severity: The results of a working group commissioned by the British Association of Otolaryngologists, Head and Neck Surgeons, 1999. Clin. Otolaryngol. 2001;26:388–393. doi: 10.1046/j.1365-2273.2001.00490.x.
    1. Action on Hearing Loss. [(accessed on 25 February 2022)]. Available online: .
    1. IBM Corp . IBM SPSS Statistics for Windows. IBM Corp; Armonk, NY, USA: 2012. Version 21.0.
    1. van Buuren S., Groothuis-Oudshoorn K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Soware. 2011;45:1–67. doi: 10.18637/jss.v045.i03.
    1. Rubin D.B. Multiple Imputation for Nonresponse in Surveys. Wiley; New York, NY, USA: 1987.
    1. Tyler R., Coelho C., Tao P., Ji H., Noble W., Gehringer A., Gogel S. Identifying tinnitus subgroups with cluster analysis. Am. J. Audiol. 2008;17:S176–S184. doi: 10.1044/1059-0889(2008/07-0044).
    1. Terwee C.B., Bot S.D.M., de Boer M.R., van der Windt D.A.W.M., Knol D.L., Dekker J., Bouter L.M., de Wet H.C.W. Quality criteria were proposed for measurement properties of health stats questionnaires. J. Clin. Epidemiol. 2007;60:34–42. doi: 10.1016/j.jclinepi.2006.03.012.
    1. Hall D.A., Pierzycki R.H., Thomas H., Hoare D.J. Designing and conducting a double-blind randomized placebo-controlled trial of a novel sound therapy for tinnitus: A commentary on medical device trials in ENT and Audiology. Ann. Otolaryngol. Rhinol. 2016;3:1101.
    1. Cima R.F., Maes I.H., Joore M.A., Scheyen D.J., El Refaie A., Baguley D.M., Anteunis L.J.C., Breukelen G.J.P., Vlaeyen J.W. Specialised treatment based on cognitive behaviour therapy versus usual care for tinnitus: A randomised controlled trial. Lancet. 2012;379:1951–1959. doi: 10.1016/S0140-6736(12)60469-3.
    1. Hall D.A., Ray J., Watson J., Sharman A., Hutchison J., Harris P., Daniel M., Millar B., Large C.H. A balanced randomised placebo controlled blinded phase IIa multi-centre study to investigate the efficacy and safety of AUT00063 versus placebo in subjective tinnitus: The QUIET-1 trial. Hear. Res. 2019;377:153–166. doi: 10.1016/j.heares.2019.03.018.
    1. Conlon B., Langguth B., Hamilton C., Hughes S., Meade E., Connor C.O., Schecklmann M., Hall D.A., Leong S.L. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci. Transl. Med. 2020;12:564. doi: 10.1126/scitranslmed.abb2830.
    1. Hall D.A., Smith H., Hibbert A., Colley V., Haider H.F., Horobin A., Core Outcome Measures in Tinnitus (COMiT) initiative The COMiT’ID study: Developing core outcome domains sets for clinical trials of sound-, psychology-, and pharmacology-based interventions for chronic subjective tinnitus in adults. Trends Hear. 2018;22:2331216518814384. doi: 10.1177/2331216518814384.
    1. Thompson D.M., Hall D.A., Walker D.M., Hoare D.J. Psychological therapy for people with tinnitus: A scoping review of treatment components. Ear Hear. 2017;38:149. doi: 10.1097/AUD.0000000000000363.

Source: PubMed

3
订阅