A study of the effect of caudal epidural block on bispectral index targeted propofol requirement in children: A comparative study

Abhishek Banerjee, Bibhukalyani Das, Dipankar Mukherjee, Moushumi Khanra, Abhishek Banerjee, Bibhukalyani Das, Dipankar Mukherjee, Moushumi Khanra

Abstract

Caudal epidural block is one of the most commonly performed neuraxial block techniques with reliable peri-operative and post-operative analgesia in pediatric patients. In our randomized, prospective, double-blinded, open level, parallel group study, we have established the effect of caudal epidural block on maintenance requirement of intravenous (IV) propofol in targeted bispectral (BIS) monitored patients.

Context: Neuraxial anesthesia exhibits sedative properties that may reduce the requirement for general anesthesia. TIVA with propofol has been administered as an established method of maintaining general anesthesia in children. Caudal analgesia being a type of neuraxial block, also seems to reduce the requirement of sedative hypnotics in pediatric patients. Numerous studies show that for patients, administered with caudal epidural block, they require reduced intra-operative volatile inhalation anesthetics. In the present study, we have established the anesthetic sparing effect of Caudal Epidural Analgesia in children undergoing infra-umbilical surgical procedure and calculated the efficacy of propofol-infusion in maintaining adequate depth of anesthesia.

Aims: (1) To study and compare the dose requirements of propofol using caudal epidural analgesia. (2) To calculate the efficacy of propofol as maintenance anesthetic agent in both groups and to compare hemodynamic stability of patients in both the techniques.

Settings and design: In our study, after administering general anesthesia to pediatric patients, we have administered caudal analgesia and IV analgesia to monitor the requirement of intra-operative propofol infusion using BIS monitor with a target value of 40-60 in both groups.

Materials and methods: 82 patients (aged between 3 and 6 years) have been selected undergoing infra-umbilical surgery and randomly allocated into two groups containing 41 patients in each group. Both the groups group B and group A then intubated with glycopyrrolate, 2 mg/kg injection fentanyl, propofol till loss of verbal contact and atracurium at the rate of 0.5 mg/kg and group B has been administered caudal epidural blockade with 1 ml/kg 0.2% ropivacaine. Propofol infusion at the rate of 10 mg/kg/h is given as maintenance. BIS value has been recorded throughout and propofol requirement at the end of surgery has been calculated.

Statistical analysis used: Numerical variables between groups have been analyzed using the Student's t-test and the Mann-Whitney U-test as applicable. Categorical variables have been analyzed using the Pearson's Chi-square test. P < 0.05 is considered statistically significant.

Results: Consumption of propofol at the start of operation in the group A is 2.9 ± 0.17 and group B is 2.91 ± 0.17, which is not statistically significant (P > 0.05), whereas at the end of the operation in the group A is 11.33 ± 0.17 and group B is 7.83 ± 0.63, which is statistically significant (P < 0.05). Incidence of adverse effects is statistically insignificant between the two groups. The time for administration of rescue analgesic is 2.1 ± 0.88 in group A and 6.5 ± 0.17 in group B, which is statistically significant due to caudal analgesia.

Conclusions: We conclude that in BIS-monitored patients (3-6 years) with infra-umbilical surgeries have shown a reduction in consumption of IV propofol due to caudal epidural blockade.

Keywords: Anesthesia; bispectral index monitor; caudal; propofol.

Conflict of interest statement

Conflict of Interest: None declared.

Figures

Figure 1
Figure 1
Distribution of propofol consumption during the intraoperative period maintaining bispectral between 40 and 60 in the bar diagram

References

    1. Grundmann U, Uth M, Eichner A, Wilhelm W, Larsen R. Total intravenous anaesthesia with propofol and remifentanil in paediatric patients: A comparison with a desflurane-nitrous oxide inhalation anaesthesia. Acta Anaesthesiol Scand. 1998;42:845–50.
    1. Tverskoy M, Shagal M, Finger J, Kissin I. Subarachnoid bupivacaine blockade decreases midazolam and thiopental hypnotic requirements. J Clin Anesth. 1994;6:487–90.
    1. Song JH, Lee HS, Kim BG, Lim HK, Shinn HK, Jung SM. Caudal block reduces demand of sevoflurane for adequate depth of anesthesia in children. Korean J Anesthesiol. 2007;52:29–33.
    1. Kim JS, Park WK, Lee MH, Hwang KH, Kim HS, Lee JR. Caudal analgesia reduces the sevoflurane requirement for LMA removal in anesthetized children. Korean J Anesthesiol. 2010;58:527–31.
    1. Hodgson PS, Liu SS. Epidural lidocaine decreases sevoflurane requirement for adequate depth of anesthesia as measured by the Bispectral Index monitor. Anesthesiology. 2001;94:799–803.
    1. Davidson AJ, Ironfield CM, Skinner AV, Frawley GP. The effects of caudal local anesthesia blockade on the Bispectral Index during general anesthesia in children. Paediatr Anaesth. 2006;16:828–33.
    1. Tverskoy M, Shifrin V, Finger J, Fleyshman G, Kissin I. Effect of epidural bupivacaine block on midazolam hypnotic requirements. Reg Anesth. 1996;21:209–13.
    1. Aouad MT, Kanazi GE, Siddik-Sayyid SM, Gerges FJ, Rizk LB, Baraka AS. Preoperative caudal block prevents emergence agitation in children following sevoflurane anesthesia. Acta Anaesthesiol Scand. 2005;49:300–4.
    1. Eappen S, Kissin I. Effect of subarachnoid bupivacaine block on anesthetic requirements for thiopental in rats. Anesthesiology. 1998;88:1036–42.
    1. Ben-David B, Vaida S, Gaitini L. The influence of high spinal anesthesia on sensitivity to midazolam sedation. Anesth Analg. 1995;81:525–8.
    1. Shin SK, Hong JY, Kim WO, Koo BN, Kim JE, Kil HK. Ultrasound evaluation of the sacral area and comparison of sacral interspinous and hiatal approach for caudal block in children. Anesthesiology. 2009;111:1135–40.
    1. Motokizawa F, Fujimori B. Arousal effect of afferent discharges from muscle spindles upon electroencephalograms in cats. Jpn J Physiol. 1964;14:344–53.
    1. Lanier WL, Iaizzo PA, Milde JH, Sharbrough FW. The cerebral and systemic effects of movement in response to a noxious stimulus in lightly anesthetized dogs. Possible modulation of cerebral function by muscle afferents. Anesthesiology. 1994;80:392–401.
    1. Doufas AG, Wadhwa A, Shah YM, Lin CM, Haugh GS, Sessler DI. Block-dependent sedation during epidural anaesthesia is associated with delayed brainstem conduction. Br J Anaesth. 2004;93:228–34.
    1. Iida R, Iwasaki K, Kato J, Ogawa S. Bispectral index is related to the spread of spinal sensory block in patients with combined spinal and general anaesthesia. Br J Anaesth. 2011;106:202–7.
    1. Ganesh A, Watcha MF. Bispectral index monitoring in pediatric anesthesia. Curr Opin Anaesthesiol. 2004;17:229–34.

Source: PubMed

3
订阅