Correlation between Insertion Torque and Implant Stability Quotient in Tapered Implants with Knife-Edge Thread Design

Domenico Baldi, Teresa Lombardi, Jacopo Colombo, Gabriele Cervino, Giuseppe Perinetti, Roberto Di Lenarda, Claudio Stacchi, Domenico Baldi, Teresa Lombardi, Jacopo Colombo, Gabriele Cervino, Giuseppe Perinetti, Roberto Di Lenarda, Claudio Stacchi

Abstract

Aim: To evaluate the correlation between insertion torque (IT) and implant stability quotient (ISQ) in tapered implants with knife-edge threads.

Methods: Seventy-five identical implants (Anyridge, Megagen) were inserted by using a surgical drilling unit with torque control and an integrated resonance frequency analysis module (Implantmed, W&H). IT (N/cm) and ISQ were recorded and implants were divided into three groups (n = 25) according to the IT: low (<30), medium (30 < IT < 50), and high torque (>50). ISQ difference among groups was assessed by Kruskal-Wallis test, followed by Bonferroni-corrected Mann-Whitney U-test for pairwise comparisons. The strength of the association between IT and ISQ was assessed by Spearman Rho correlation coefficient (α = 0.05).

Results: At the pairwise comparisons, a significant difference of ISQ values was demonstrated only between low torque and high torque groups. The strength of the association between IT and ISQ value was significant for both the entire sample and the medium torque group, while it was not significant in low and high torque groups.

Conclusions: For the investigated implant, ISQ and IT showed a positive correlation up to values around 50 N/cm: higher torques subject the bone-implant system to unnecessary biological and mechanical stress without additional benefits in terms of implant stability. This trial is registered with NCT03222219.

Figures

Figure 1
Figure 1
The investigational device was a 4 × 10 mm tapered implant with knife-edge threads (Anyridge, Megagen, South Korea).
Figure 2
Figure 2
An example of insertion torque registration performed by the surgical drilling unit during entire placement. Ncm, newton/cm; S, seconds.

References

    1. De Bruyn H., Raes S., Östman P.-O., Cosyn J. Immediate loading in partially and completely edentulous jaws: A review of the literature with clinical guidelines. 2014;66(1):153–187. doi: 10.1111/prd.12040.
    1. Perren S. M. Evolution of the internal fixation of long bone fractures. 2002;84(8):1093–1110. doi: 10.1302/0301-620X.84B8.0841093.
    1. Roos J., Sennerby L., Albrektsson T. An update on the clinical documentation on currently used bone anchored endosseous oral implants. 1997;24(5):194–200.
    1. Soballe K., Hansen E. S., Brockstedt-Rasmussen H., Bunger C. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. 1993;75(2):270–278.
    1. Szmukler-Moncler S., Salama H., Reingewirtz Y., Dubruille J. H. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. 1998;43(2):192–203. doi: 10.1002/(sici)1097-4636(199822)43:2lt;192::aid-jbm1462;;2-k.
    1. Mavrogenis A. F., Dimitriou R., Parvizi J., Babis G. C. Biology of implant osseointegration. 2009;9(2):61–71.
    1. Raghavendra S., Wood M. C., Taylor T. D. Early wound healing around endosseous implants: a review of the literature. 2005;20(3):425–431.
    1. Preti G., Martinasso G., Peirone B., et al. Cytokines and growth factors involved in the osseointegration of oral titanium implants positioned using piezoelectric bone surgery versus a drill technique: a pilot study in minipigs. 2007;78(4):716–722. doi: 10.1902/jop.2007.060285.
    1. Stacchi C., Vercellotti T., Torelli L., Furlan F., di Lenarda R. Changes in implant stability using different site preparation techniques: twist drills versus piezosurgery. A single-blinded, randomized, controlled clinical trial. 2013;15(2):188–197. doi: 10.1111/j.1708-8208.2011.00341.x.
    1. Schulte W., Lukas D. Periotest to monitor osseointegration and to check the occlusion in oral implantology. 1993;19(1):23–32.
    1. Lee S.-Y., Huang H.-M., Lin C.-Y., Shih Y.-H. In vivo and in vitro natural frequency analysis of periodontal conditions: An innovative method. 2000;71(4):632–640. doi: 10.1902/jop.2000.71.4.632.
    1. Tricio J., van Steenberghe D., Rosenberg D., Duchateau L. Implant stability related to insertion torque force and bone density: An in vitro study. 1995;74(6):608–612. doi: 10.1016/S0022-3913(05)80313-0.
    1. Meredith N., Book K., Friberg B., Jemt T., Sennerby L. Resonance frequency measurements of implant stability in vivo: A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. 1997;8(3):226–233. doi: 10.1034/j.1600-0501.1997.080309.x.
    1. Kahraman S., Bal B. T., Asar N. V., Turkyilmaz I., Tözüm T. F. Clinical study on the insertion torque and wireless resonance frequency analysis in the assessment of torque capacity and stability of self-tapping dental implants. 2009;36(10):755–761. doi: 10.1111/j.1365-2842.2009.01990.x.
    1. Brizuela-Velasco A., Álvarez-Arenal Á., Gil-Mur F. J., et al. Relationship between insertion torque and resonance frequency measurements, performed by resonance frequency analysis, in micromobility of dental implants: An in vitro study. 2015;24(5):607–611. doi: 10.1097/ID.0000000000000318.
    1. Santamaría-Arrieta G., Brizuela-Velasco A., Fernández-González F. J., et al. Biomechanical evaluation of oversized drilling technique on primary implant stability measured by insertion torque and resonance frequency analysis. 2016;8(3):e307–e311. doi: 10.4317/jced.52873.
    1. Açil Y., Sievers J., Gülses A., Ayna M., Wiltfang J., Terheyden H. Correlation between resonance frequency, insertion torque and bone-implant contact in self-cutting threaded implants. 2017;105(3):347–353. doi: 10.1007/s10266-016-0265-2.
    1. Nkenke E., Hahn M., Weinzierl K., Radespiel-Tröger M., Neukam F. W., Engelke K. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. 2003;14(5):601–609. doi: 10.1034/j.1600-0501.2003.00937.x.
    1. Aleo E., Varvara G., Scarano A., Sinjari B., Murmura G. Comparison of the primary stabilities of conical and cylindrical endosseous dental implants: An in-vitro study. 2012;26(1):89–96.
    1. Barikani H., Rashtak S., Akbari S., Fard M. K., Rokn A. The effect of shape, length and diameter of implants on primary stability based on resonance frequency analysis. 2014;11(1):87–91.
    1. Sentineri R., Lombardi T., Berton F., Stacchi C. Laurell-Gottlow suture modified by sentineri for tight closure of a wound with a single line of sutures. 2016;54(1):e18–e19. doi: 10.1016/j.bjoms.2015.08.005.
    1. Eriksson A. R., Albrektsson T. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. 1983;50(1):101–107. doi: 10.1016/0022-3913(83)90174-9.
    1. Trisi P., Berardini M., Falco A., Podaliri Vulpiani M., Perfetti G. Insufficient irrigation induces peri-implant bone resorption: An in vivo histologic analysis in sheep. 2014;25(6):696–701. doi: 10.1111/clr.12127.
    1. Vercellotti T., Stacchi C., Russo C., et al. Ultrasonic implant site preparation using piezosurgery: a multicenter case series study analyzing 3,579 implants with a 1- to 3-year follow-up. 2014;34(1):11–18. doi: 10.11607/prd.1860.
    1. Lamazza L., Laurito D., Lollobrigida M., Brugnoletti O., Garreffa G., De Biase A. Identification of possible factors influencing temperatures elevation during implant site preparation with piezoelectric technique. 2015;5(4):115–122. doi: 10.11138/ads/2014.5.4.115.
    1. Baldi D., Longobardi M., Cartiglia C., et al. Dental implants osteogenic properties evaluated by cDNA microarrays. 2011;20(4):299–305. doi: 10.1097/ID.0b013e318225f22b.
    1. Esposito M., Blasone R., Favaretto G., et al. A comparison of two dental implant systems in partially edentulous patients: 4-month post-loading results from a pragmatic multicentre randomised controlled trial. 2013;6(2):169–179.
    1. Menini M., Dellepiane E., Baldi D., Longobardi M. G., Pera P., Izzotti A. Microarray expression in peri-implant tissue next to different titanium implant surfaces predicts clinical outcomes: a split-mouth study. 2017;28(9):e121–e134. doi: 10.1111/clr.12943.
    1. Javed F., Romanos G. E. The role of primary stability for successful immediate loading of dental implants. A literature review. 2010;38(8):612–620. doi: 10.1016/j.jdent.2010.05.013.
    1. Tabassum A., Meijer G. J., Wolke J. G. C., Jansen J. A. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: A laboratory study. 2010;21(2):213–220. doi: 10.1111/j.1600-0501.2009.01823.x.
    1. Alghamdi H., Anand P. S., Anil S. Undersized implant site preparation to enhance primary implant stability in poor bone density: a prospective clinical study. 2011;69(12):e506–e512. doi: 10.1016/j.joms.2011.08.007.
    1. Abuhussein H., Pagni G., Rebaudi A., Wang H. The effect of thread pattern upon implant osseointegration: review. 2010;21(2):129–136. doi: 10.1111/j.1600-0501.2009.01800.x.
    1. dos Santos M. V., Elias C. N., Cavalcanti Lima J. H. The effects of superficial roughness and design on the primary stability of dental implants. 2011;13(3):215–223. doi: 10.1111/j.1708-8208.2009.00202.x.
    1. McCullough J. J., Klokkevold P. R. The effect of implant macro-thread design on implant stability in the early post-operative period: a randomized, controlled pilot study. 2017;28(10):1218–1226.
    1. Lee S.-Y., Kim S.-J., An H.-W., et al. The effect of the thread depth on the mechanical properties of the dental implant. 2015;7(2):115–121. doi: 10.4047/jap.2015.7.2.115.
    1. Degidi M., Daprile G., Piattelli A. Influence of underpreparation on primary stability of implants inserted in poor quality bone sites: An in vitro study. 2015;73(6):1084–1088. doi: 10.1016/j.joms.2015.01.029.
    1. Rundle C. H., Wang H., Yu H., et al. Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. 2006;38(4):521–529. doi: 10.1016/j.bone.2005.09.015.
    1. Tabassum A., Meijer G. J., Frank Walboomers X., Jansen J. A. Biological limits of the undersized surgical technique: A study in goats. 2011;22(2):129–134. doi: 10.1111/j.1600-0501.2010.02016.x.
    1. Barone A., Alfonsi F., Derchi G., et al. The effect of insertion torque on the clinical outcome of single implants: a randomized clinical trial. 2016;18(3):588–600. doi: 10.1111/cid.12337.
    1. Teixeira A. B. V., Shimano A. C., Macedo A. P., Valente M. L. C., Dos Reis A. C. Influence of torsional strength on different types of dental implant platforms. 2015;24(3):281–286. doi: 10.1097/ID.0000000000000247.
    1. Verardi S., Swoboda J., Rebaudi F., Rebaudi A. Osteointegration of tissue-level implants with very low insertion torque in soft bone: a clinical study on SLA surface treatment. 2018;27(1):5–9.
    1. Toljanic J. A., Baer R. A., Ekstrand K., Thor A. Implant rehabilitation of the atrophic edentulous maxilla including immediate fixed provisional restoration without the use of bone grafting: a review of 1-year outcome data from a long-term prospective clinical trial. 2009;24(3):518–526.
    1. Norton M. R. The influence of insertion torque on the survival of immediately placed and restored single-tooth implants. 2011;26(6):1333–1343.
    1. Norton M. R. The influence of low insertion torque on primary stability, implant survival, and maintenance of marginal bone levels: A closed-cohort prospective study. 2017;32(4):849–857. doi: 10.11607/jomi.5889.
    1. Lages F. S., Douglas-de Oliveira D. W., Costa F. O. Relationship between implant stability measurements obtained by insertion torque and resonance frequency analysis: a systematic review. 2018;20(1):26–33. doi: 10.1111/cid.12565.
    1. Zita Gomes R., De Vasconcelos M. R., Lopes Guerra I. M., De Almeida R. A. B., De Campos Felino A. C. Implant stability in the posterior maxilla: a controlled clinical trial. 2017;2017:11. doi: 10.1155/2017/6825213.6825213
    1. Büchter A., Kleinheinz J., Wiesmann H. P., et al. Biological and biomechanical evaluation of bone remodelling and implant stability after using an osteotome technique. 2005;16(1):1–8. doi: 10.1111/j.1600-0501.2004.01081.x.
    1. Büchter A., Kleinheinz J., Wiesmann H. P., Jayaranan M., Joos U., Meyer U. Interface reaction at dental implants inserted in condensed bone. 2005;16(5):509–517. doi: 10.1111/j.1600-0501.2005.01111.x.
    1. Donati M., La Scala V., Billi M., Di Dino B., Torrisi P., Berglundh T. Immediate functional loading of implants in single tooth replacement: A prospective clinical multicenter study. 2008;19(8):740–748. doi: 10.1111/j.1600-0501.2008.01552.x.
    1. Maiorana C., Farronato D., Pieroni S., Cicciu M., Andreoni D., Santoro F. A four-year survival rate multicenter prospective clinical study on 377 implants: correlations between implant insertion torque, diameter, and bone quality. 2015;41(3):e60–e65. doi: 10.1563/aaid-joi-d-13-00206.

Source: PubMed

3
订阅