Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder

Emma L Dempster, Ruth Pidsley, Leonard C Schalkwyk, Sheena Owens, Anna Georgiades, Fergus Kane, Sridevi Kalidindi, Marco Picchioni, Eugenia Kravariti, Timothea Toulopoulou, Robin M Murray, Jonathan Mill, Emma L Dempster, Ruth Pidsley, Leonard C Schalkwyk, Sheena Owens, Anna Georgiades, Fergus Kane, Sridevi Kalidindi, Marco Picchioni, Eugenia Kravariti, Timothea Toulopoulou, Robin M Murray, Jonathan Mill

Abstract

Studies of the major psychoses, schizophrenia (SZ) and bipolar disorder (BD), have traditionally focused on genetic and environmental risk factors, although more recent work has highlighted an additional role for epigenetic processes in mediating susceptibility. Since monozygotic (MZ) twins share a common DNA sequence, their study represents an ideal design for investigating the contribution of epigenetic factors to disease etiology. We performed a genome-wide analysis of DNA methylation on peripheral blood DNA samples obtained from a unique sample of MZ twin pairs discordant for major psychosis. Numerous loci demonstrated disease-associated DNA methylation differences between twins discordant for SZ and BD individually, and together as a combined major psychosis group. Pathway analysis of our top loci highlighted a significant enrichment of epigenetic changes in biological networks and pathways directly relevant to psychiatric disorder and neurodevelopment. The top psychosis-associated, differentially methylated region, significantly hypomethylated in affected twins, was located in the promoter of ST6GALNAC1 overlapping a previously reported rare genomic duplication observed in SZ. The mean DNA methylation difference at this locus was 6%, but there was considerable heterogeneity between families, with some twin pairs showing a 20% difference in methylation. We subsequently assessed this region in an independent sample of postmortem brain tissue from affected individuals and controls, finding marked hypomethylation (>25%) in a subset of psychosis patients. Overall, our data provide further evidence to support a role for DNA methylation differences in mediating phenotypic differences between MZ twins and in the etiology of both SZ and BD.

Figures

Figure 1.
Figure 1.
Idiogram illustrating the mean DNA methylation difference (Δβ-value) (well-twin minus ill-twin) for each CpG site included in our analysis across all 22 pairs of psychosis-discordant MZ twins. The red-colored dots correspond to the 100 top-ranked CpG sites (Supplementary Material, Table S3). Similar idiograms for SZ- and BD-discordant twins-pairs are shown in Supplementary Material, Figure S4.
Figure 2.
Figure 2.
DNA methylation differences (Δβ-value) (well-twin minus ill-twin) for the top-ranked probes from (A) the combined psychosis-discordant analysis group: ST6GALNAC1 (cg13015534), (B) SZ-discordant analysis group: PUS3 (cg02659232) and (C) the BD-discordant analysis group: GPR24 (cg21342728). Psychosis = twin pairs 1–22, SZ = twin pairs 1–11, BD = twin pairs 12–22.
Figure 3.
Figure 3.
DNA methylation differences (Δβ-value) (well-twin minus ill-twin) for a CpG site located at ZNF659 (cg18267381), which shows disease-associated hypermethylation in SZ (twin pairs 1–11, blue bars) but disease-associated hypomethylation in BD (twin pairs 12–22, red bars).
Figure 4.
Figure 4.
DNA methylation across multiple CpG sites in the promoter of ST6GALNAC1 in postmortem brain tissue from psychosis patients and controls. Postmortem brain tissue from affected individuals showed no overall significant hypomethylation, but 4 out of the 30 (13.3%) psychosis cases tested showed marked (up to 27%) hypomethylation at the same CpG site nominated from the array analysis, with hypomethylation extending across several adjacent CpG sites. No such hypomethylation was observed in any unaffected control samples which all demonstrated very similar methylation values (shown is mean control sample methylation; error bars denote standard deviation).

References

    1. Patel V., Prince M. Global mental health: a new global health field comes of age. JAMA. 2010;303:1976–1977.
    1. Craddock N., Owen M.J. Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatry. 2007;6:84–91.
    1. Cardno A.G., Rijsdijk F.V., Sham P.C., Murray R.M., McGuffin P. A twin study of genetic relationships between psychotic symptoms. Am. J. Psychiatry. 2002;159:539–545.
    1. Craddock N., O'Donovan M.C., Owen M.J. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J. Med. Genet. 2005;42:193–204.
    1. Sullivan P.F., Kendler K.S., Neale M.C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry. 2003;60:1187–1192.
    1. Cardno A.G., Gottesman I.I. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am. J. Med. Genet. 2000;97:12–17.
    1. Craddock N., Jones I. Genetics of bipolar disorder. J. Med. Genet. 1999;36:585–594.
    1. Pidsley R., Mill J. Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol. Psychiatry. 2011;69:146–156.
    1. Henikoff S., Matzke M.A. Exploring and explaining epigenetic effects. Trends Genet. 1997;13:293–295.
    1. Ma D.K., Marchetto M.C., Guo J.U., Ming G.L., Gage F.H., Song H. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat. Neurosci. 2010;13:1338–1344.
    1. Pidsley R., Dempster E.L., Mill J. Brain weight in males is correlated with DNA methylation at IGF2. Mol. Psychiatry. 2010;15:880–881.
    1. Lubin F.D., Roth T.L., Sweatt J.D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 2008;28:10576–10586.
    1. Renthal W., Nestler E.J. Histone acetylation in drug addiction. Semin. Cell Dev. Biol. 2009;20:387–394.
    1. Migliore L., Coppede F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res. 2009;667:82–97.
    1. Nakahata Y., Grimaldi B., Sahar S., Hirayama J., Sassone-Corsi P. Signaling to the circadian clock: plasticity by chromatin remodeling. Curr. Opin. Cell Biol. 2007;19:230–237.
    1. Iwamoto K., Kato T. Epigenetic profiling in schizophrenia and major mental disorders. Neuropsychobiology. 2009;60:5–11.
    1. Tsankova N., Renthal W., Kumar A., Nestler E.J. Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 2007;8:355–367.
    1. Mill J., Tang T., Kaminsky Z., Khare T., Yazdanpanah S., Bouchard L., Jia P., Assadzadeh A., Flanagan J., Schumacher A., et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am. J. Hum. Genet. 2008;82:696–711.
    1. Bell J.T., Spector T.D. A twin approach to unraveling epigenetics. Trends Genet. 2011;27:116–125.
    1. Kaminsky Z.A., Tang T., Wang S.C., Ptak C., Oh G.H., Wong A.H., Feldcamp L.A., Virtanen C., Halfvarson J., Tysk C., et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat. Genet. 2009;41:240–245.
    1. Wong C.C., Caspi A., Williams B., Craig I.W., Houts R., Ambler A., Moffitt T.E., Mill J. A longitudinal study of epigenetic variation in twins. Epigenetics. 2010;5:516–526.
    1. Javierre B.M., Fernandez A.F., Richter J., Al-Shahrour F., Martin-Subero J.I., Rodriguez-Ubreva J., Berdasco M., Fraga M.F., O'Hanlon T.P., Rider L.G., et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010;20:170–179.
    1. Petronis A., Gottesman I.I., Kan P., Kennedy J.L., Basile V.S., Paterson A.D., Popendikyte V. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr. Bull. 2003;29:169–178.
    1. Kuratomi G., Iwamoto K., Bundo M., Kusumi I., Kato N., Iwata N., Ozaki N., Kato T. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol. Psychiatry. 2008;13:429–441.
    1. Rosa A., Picchioni M.M., Kalidindi S., Loat C.S., Knight J., Toulopoulou T., Vonk R., van der Schot A.C., Nolen W., Kahn R.S., et al. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008;147B:459–462.
    1. Merikangas A.K., Corvin A.P., Gallagher L. Copy-number variants in neurodevelopmental disorders: promises and challenges. Trends Genet. 2009;25:536–544.
    1. Rakyan V.K., Down T.A., Maslau S., Andrew T., Yang T.P., Beyan H., Whittaker P., McCann O.T., Finer S., Valdes A.M., et al. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010;20:434–439.
    1. Bocklandt S., Lin W., Sehl M.E., Sanchez F.J., Sinsheimer J.S., Horvath S., Vilain E. Epigenetic predictor of age. PLoS One. 2011;6:e14821.
    1. Weber M., Hellmann I., Stadler M.B., Ramos L., Paabo S., Rebhan M., Schubeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet. 2007;39:457–466.
    1. Smith F.I., Qu Q., Hong S.J., Kim K.S., Gilmartin T.J., Head S.R. Gene expression profiling of mouse postnatal cerebellar development using oligonucleotide microarrays designed to detect differences in glycoconjugate expression. Gene Expr. Patterns. 2005;5:740–749.
    1. Ballas N., Grunseich C., Lu D.D., Speh J.C., Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell. 2005;121:645–657.
    1. Xu B., Roos J.L., Levy S., van Rensburg E.J., Gogos J.A., Karayiorgou M. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat. Genet. 2008;40:880–885.
    1. Li L., Lee K.M., Han W., Choi J.Y., Lee J.Y., Kang G.H., Park S.K., Noh D.Y., Yoo K.Y., Kang D. Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum. Mol. Genet. 2010;19:4273–4277.
    1. Tao R., Li C., Zheng Y., Qin W., Zhang J., Li X., Xu Y., Shi Y.Y., Feng G., He L. Positive association between SIAT8B and schizophrenia in the Chinese Han population. Schizophr. Res. 2007;90:108–114.
    1. Angata K., Huckaby V., Ranscht B., Terskikh A., Marth J.D., Fukuda M. Polysialic acid-directed migration and differentiation of neural precursors are essential for mouse brain development. Mol. Cell. Biol. 2007;27:6659–6668.
    1. Pissios P., Frank L., Kennedy A.R., Porter D.R., Marino F.E., Liu F.F., Pothos E.N., Maratos-Flier E. Dysregulation of the mesolimbic dopamine system and reward in MCH−/− mice. Biol. Psychiatry. 2008;64:184–191.
    1. Borowsky B., Durkin M.M., Ogozalek K., Marzabadi M.R., DeLeon J., Lagu B., Heurich R., Lichtblau H., Shaposhnik Z., Daniewska I., et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat. Med. 2002;8:825–830.
    1. Chaki S., Funakoshi T., Hirota-Okuno S., Nishiguchi M., Shimazaki T., Iijima M., Grottick A.J., Kanuma K., Omodera K., Sekiguchi Y., et al. Anxiolytic- and antidepressant-like profile of ATC0065 and ATC0175: nonpeptidic and orally active melanin-concentrating hormone receptor 1 antagonists. J. Pharmacol. Exp. Ther. 2005;313:831–839.
    1. Badner J.A., Gershon E.S. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol. Psychiatry. 2002;7:405–411.
    1. Severinsen J.E., Als T.D., Binderup H., Kruse T.A., Wang A.G., Vang M., Muir W.J., Blackwood D.H., Mors O., Borglum A.D. Association analyses suggest GPR24 as a shared susceptibility gene for bipolar affective disorder and schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006;141B:524–533.
    1. DeLisi L.E., Shaw S.H., Crow T.J., Shields G., Smith A.B., Larach V.W., Wellman N., Loftus J., Nanthakumar B., Razi K., et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am. J. Psychiatry. 2002;159:803–812.
    1. Smith A., Bourdeau I., Wang J., Bondy C.A. Expression of Catenin family members CTNNA1, CTNNA2, CTNNB1 and JUP in the primate prefrontal cortex and hippocampus. Brain Res. Mol. Brain Res. 2005;135:225–231.
    1. Scott L.J., Muglia P., Kong X.Q., Guan W., Flickinger M., Upmanyu R., Tozzi F., Li J.Z., Burmeister M., Absher D., et al. Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc. Natl Acad. Sci. USA. 2009;106:7501–7506.
    1. Francks C., Maegawa S., Lauren J., Abrahams B.S., Velayos-Baeza A., Medland S.E., Colella S., Groszer M., McAuley E.Z., Caffrey T.M., et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol. Psychiatry. 2007;12:1129–1139. 1057.
    1. Schalkwyk L.C., Meaburn E.L., Smith R., Dempster E.L., Jeffries A.R., Davies M.N., Plomin R., Mill J. Allelic skewing of DNA methylation is widespread across the genome. Am. J. Hum. Genet. 2010;86:196–212.
    1. Pedersen K.S., Bamlet W.R., Oberg A.L., de Andrade M., Matsumoto M.E., Tang H., Thibodeau S.N., Petersen G.M., Wang L. Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls. PLoS One. 2011;6:e18223.
    1. Sapienza C., Lee J., Powell J., Erinle O., Yafai F., Reichert J., Siraj E.S., Madaio M. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics. 2011;6:20–28.
    1. Kaminsky Z., Tochigi M., Jia P., Pal M., Mill J., Kwan A., Ioshikhes I., Vincent J.B., Kennedy J.L., Strauss J., et al. A multi-tissue analysis identifies HLA complex group 9 gene methylation differences in bipolar disorder. Mol Psychiatry. 2011 [Epub ahead of print]
    1. Ghadirivasfi M., Nohesara S., Ahmadkhaniha H.R., Eskandari M.R., Mostafavi S., Thiagalingam S., Abdolmaleky H.M. Hypomethylation of the serotonin receptor type-2A Gene (HTR2A) at T102C polymorphic site in DNA derived from the saliva of patients with schizophrenia and bipolar disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011;156:536–545.
    1. Dong E., Nelson M., Grayson D.R., Costa E., Guidotti A. Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc. Natl Acad. Sci. USA. 2008;105:13614–13619.
    1. Breitling L.P., Yang R., Korn B., Burwinkel B., Brenner H. Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am. J. Hum. Genet. 2011;88:450–457.
    1. Picchioni M.M., Toulopoulou T., Landau S., Davies N., Ribchester T., Murray R.M. Neurological abnormalities in schizophrenic twins. Biol. Psychiatry. 2006;59:341–348.
    1. Bibikova M., Le J., Barners B., Saedinia-Melnyk S., Shen R., Gunderson K. Genome-wide DNA methylation profiling using Infinium assay. Epigenomics. 2009;1:177–200.
    1. Yang A.S., Estecio M.R., Doshi K., Kondo Y., Tajara E.H., Issa J.P. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32:e38.
    1. Coolen M.W., Statham A.L., Gardiner-Garden M., Clark S.J. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res. 2007;35:e119.
    1. Torrey E.F., Webster M., Knable M., Johnston N., Yolken R.H. The Stanley Foundation Brain Collection and Neuropathology Consortium. Schizophr Res. 2000;44:151–155.

Source: PubMed

3
订阅