An open-label, randomized, single intravenous dosing study to investigate the effect of fixed-dose combinations of tenofovir/lamivudine or atazanavir/ritonavir on the pharmacokinetics of remdesivir in Ugandan healthy volunteers (RemTLAR)

Stephen I Walimbwa, Julian P Kaboggoza, Catriona Waitt, Pauline Byakika-Kibwika, Antonio D'Avolio, Mohammed Lamorde, Stephen I Walimbwa, Julian P Kaboggoza, Catriona Waitt, Pauline Byakika-Kibwika, Antonio D'Avolio, Mohammed Lamorde

Abstract

Background: Remdesivir is a novel broad-spectrum antiviral therapeutic with activity against several viruses that cause emerging infectious diseases. The purpose of this study is to explore how commonly utilized antiretroviral therapy (tenofovir disoproxil fumarate/lamivudine [TDF/3TC] and atazanavir/ritonavir [ATV/r]) influence plasma and intracellular concentrations of remdesivir.

Methods: This is an open-label, randomized, fixed sequence single intravenous dosing study to assess pharmacokinetic interactions between remdesivir and TDF/3TC (Study A, crossover design) or TDF/3TC plus ATV/r (Study B). Healthy volunteers satisfying study entry criteria will be enrolled in the study and randomized to either Study A; N=16 (Sequence 1 or Sequence 2) or Study B; N=8. Participants will receive standard adult doses of antiretroviral therapy for 7 days and a single 200mg remdesivir infusion administered over 60 min. Pharmacokinetic blood sampling will be performed relative to the start of remdesivir infusion; predose (before the start of remdesivir infusion) and 30 min after the start of remdesivir infusion. Additional blood samples will be taken at 2, 4, 6, 12, and 24 h after the end of remdesivir infusion.

Discussion: This study will characterize the pharmacokinetics of remdesivir from a typical African population in whom clinical use is anticipated. Furthermore, this study will deliver pharmacokinetic datasets for remdesivir drug concentrations and demographic characteristics which could support pharmacometric approaches for simulation of remdesivir treatment regimens in patients concurrently using tenofovir/lamivudine and/or atazanavir/ritonavir.

Trial registration: ClinicalTrials.gov NCT04385719 . Registered 13 May 2020.

Keywords: Atazanavir; COVID-19; Drug-drug interactions; Ebola; HIV; Lamivudine; Remdesivir; Ritonavir; Tenofovir.

Conflict of interest statement

The authors declare they have no competing interest.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Study schema

References

    1. Malin JJ, Suárez I, Priesner V, Fätkenheuer G, Rybniker J. Remdesivir against COVID-19 and other viral diseases. Clin Microbiol Rev. 2020;34(1). 10.1128/CMR.00162-20.
    1. Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, Flint M, McMullan LK, Siegel D, Clarke MO, Mackman RL. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 2017;7(1):43395. doi: 10.1038/srep43395.
    1. Frediansyah A, Nainu F, Dhama K, Mudatsir M, Harapan H. Remdesivir and its antiviral activity against COVID-19: a systematic review. Clin Epidemiol Global Health. 2020;7:123–127. doi: 10.1016/j.cegh.2020.07.011.
    1. FDA NEWS RELEASE FDA approves first treatment for COVID-19. 2020. Available from:
    1. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of COVID-19—final report. N Engl J Med. 2020.
    1. Food US, Administration D. Fact sheet for health care providers: emergency use authorization (EUA) of Remdesivir (GS-5734™) Silver Spring: US Food and Drug Administration; 2020.
    1. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui HC, Larson N, Strickley R, Wells J, Stuthman KS, van Tongeren SA, Garza NL, Donnelly G, Shurtleff AC, Retterer CJ, Gharaibeh D, Zamani R, Kenny T, Eaton BP, Grimes E, Welch LS, Gomba L, Wilhelmsen CL, Nichols DK, Nuss JE, Nagle ER, Kugelman JR, Palacios G, Doerffler E, Neville S, Carra E, Clarke MO, Zhang L, Lew W, Ross B, Wang Q, Chun K, Wolfe L, Babusis D, Park Y, Stray KM, Trancheva I, Feng JY, Barauskas O, Xu Y, Wong P, Braun MR, Flint M, McMullan LK, Chen SS, Fearns R, Swaminathan S, Mayers DL, Spiropoulou CF, Lee WA, Nichol ST, Cihlar T, Bavari S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381–385. doi: 10.1038/nature17180.
    1. Tchesnokov EP, Feng JY, Porter DP, Götte M. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses. 2019;11(4):326. doi: 10.3390/v11040326.
    1. Bixler SL, Duplantier AJ, Bavari S. Discovering drugs for the treatment of ebola virus. Curr Treat Options Infect Dis. 2017;9(3):299–317. doi: 10.1007/s40506-017-0130-z.
    1. Dyer O. Two Ebola treatments halve deaths in trial in DRC outbreak. BMJ. 2019;366.
    1. WHO. WHO R&D Blueprint – Ad-hoc Expert Consultation on clinical trials for Ebola Therapeutics Deliberations on design options for randomized controlled clinical trials to assess the safety and efficacy of investigational therapeutics for the treatment of patients with Ebola virus disease 11 October 2018 - Geneva, Switzerland. . Accessed 20 October 2020.
    1. Uganda MOH . Consolidated Guidelines for Prevention and Treatment of HIV in Uganda. Kampala: Uganda MOH; 2016.
    1. World Health Organization. December 2018 supplement to the 2016 consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection.
    1. Gilead Sciences . Full prescribing information, Tenofovir (Viread®, TDF) 2018.
    1. Seden K, Khoo SH, Back D, Byakika-Kibwika P, Lamorde M, Ryan M, Merry C. Global patient safety and antiretroviral drug-drug interactions in the resource-limited setting. J Antimicrob Chemother. 2013;68(1):1–3. doi: 10.1093/jac/dks346.
    1. Byakika-Kibwika P, Lamorde M, Okaba-Kayom V, Mayanja-Kizza H, Katabira E, Hanpithakpong W, Pakker N, Dorlo TPC, Tarning J, Lindegardh N, de Vries PJ, Back D, Khoo S, Merry C. Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67(5):1217–1223. doi: 10.1093/jac/dkr596.
    1. Figueroa DB, Madeen EP, Tillotson J, Richardson P, Cottle L, McCauley M, Landovitz RJ, Andrade A, Hendrix CW, Mayer KH, Wilkin T, Gulick RM, Bumpus NN. Genetic variation of the kinases that phosphorylate tenofovir and emtricitabine in peripheral blood mononuclear cells. AIDS Res Hum Retrovir. 2018;34(5):421–429. doi: 10.1089/aid.2017.0243.
    1. Hamlin AN, Tillotson J, Bumpus NN. Genetic variation of kinases and activation of nucleotide analog reverse transcriptase inhibitor tenofovir. Pharmacogenomics. 2019;20(2):105–111. doi: 10.2217/pgs-2018-0140.
    1. Kharasch ED, Bedynek PS, Walker A, Whittington D, Hoffer C. Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: II. Ritonavir effects on CYP3A and P-glycoprotein activities. Clin Pharmacol Ther. 2008;84(4):506–512. doi: 10.1038/clpt.2008.102.
    1. Food and Drug Administration. Draft guidance for industry—drug interaction studies, study design, data analysis, implications for dosing, and labeling recommendations. Rockville; 2012.
    1. Ding R, Tayrouz Y, Riedel KD, Burhenne J, Weiss J, Mikus G, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76(1):73–84. doi: 10.1016/j.clpt.2004.02.008.
    1. Greenblatt DJ, Peters DE, Oleson LE, Harmatz JS, MacNab MW, Berkowitz N, et al. Inhibition of oral midazolam clearance by boosting doses of ritonavir, and by 4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074), an experimental catalytic mimic of glutathione oxidase. Br J Clin Pharmacol. 2009;68(6):920–927. doi: 10.1111/j.1365-2125.2009.03545.x.

Source: PubMed

3
订阅