Comparison between magnetic resonance and ultrasound-derived indicators of hepatic steatosis in a pooled NAFLD cohort

Cayden Beyer, Chloe Hutton, Anneli Andersson, Kento Imajo, Atsushi Nakajima, Dustin Kiker, Rajarshi Banerjee, Andrea Dennis, Cayden Beyer, Chloe Hutton, Anneli Andersson, Kento Imajo, Atsushi Nakajima, Dustin Kiker, Rajarshi Banerjee, Andrea Dennis

Abstract

Background & aims: MRI-based proton density fat fraction (PDFF) and the ultrasound-derived controlled attenuation parameter (CAP) are non-invasive techniques for quantifying liver fat, which can be used to assess steatosis in patients with non-alcoholic fatty liver disease (NAFLD). This study compared both of these techniques to histopathological graded steatosis for the assessment of fat levels in a large pooled NAFLD cohort.

Methods: This retrospective study pooled N = 581 participants from two suspected NAFLD cohorts (mean age (SD) 56 (12.7), 60% females). Steatosis was graded according to NASH-CRN criteria. Liver fat was measured non-invasively using PDFF (with Liver MultiScan's Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation method, LMS-IDEAL, Perspectum, Oxford) and CAP (FibroScan, Echosens, France), and their diagnostic performances were compared.

Results: LMS-IDEAL and CAP detected steatosis grade ≥ 1 with AUROCs of 1.00 (95% CI, 0.99-1.0) and 0.95 (95% CI, 0.91-0.99), respectively. LMS-IDEAL was superior to CAP for detecting steatosis grade ≥ 2 with AUROCs of 0.77 (95% CI, 0.73-0.82] and 0.60 (95% CI, 0.55-0.65), respectively. Similarly, LMS-IDEAL outperformed CAP for detecting steatosis grade ≥ 3 with AUROCs of 0.81 (95% CI, 0.76-0.87) and 0.63 (95% CI, 0.56-0.70), respectively.

Conclusion: LMS-IDEAL was able to diagnose individuals accurately across the spectrum of histological steatosis grades. CAP performed well in identifying individuals with lower levels of fat (steatosis grade ≥1); however, its diagnostic performance was inferior to LMS-IDEAL for higher levels of fat (steatosis grades ≥2 and ≥3).

Trial registration: ClinicalTrials.gov (NCT03551522); https://ichgcp.net/clinical-trials-registry/NCT03551522. UMIN Clinical Trials Registry (UMIN000026145); https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000026145.

Conflict of interest statement

RB is the CEO and founder of Perspectum. AD, CB, CH, AA are employees of Perspectum. DK is employed by Texas Digestive Disease Consultants (GI Alliance). KI and AN are employees of Yokohoma City University Hospital. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Example LMS-IDEAL PDFF maps.
Fig 1. Example LMS-IDEAL PDFF maps.
Fig 2. Box plots showing the minimum,…
Fig 2. Box plots showing the minimum, median, maximum and interquartile ranges (IQR) values for LMS-IDEAL, and CAP with corresponding steatosis scores.
(left) LMS-IDEAL values plotted against steatosis CRN scores, (right) CAP values plotted against steatosis CRN scores.
Fig 3. Scatter plot showing CAP values…
Fig 3. Scatter plot showing CAP values plotted against LMS-IDEAL PDFF values.
Fig 4. ROC curves illustrating diagnostic accuracies…
Fig 4. ROC curves illustrating diagnostic accuracies for LMS-IDEAL (black) and CAP (grey).
Values represent AUROC (95% CI). (A) LMS-IDEAL and CAP for diagnosing steatosis grades of ≥ 1. (B) LMS-IDEAL and CAP for diagnosing steatosis grades of ≥ 2. (C) LMS-IDEAL and CAP for diagnosing steatosis grades of ≥ 3.

References

    1. Sattar N, Forrest E, Preiss D. Non-alcoholic fatty liver disease. Br Med J. 2014; 349:g4596.
    1. Araújo AR, Rosso N, Bedogni G, et al.. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future. Liver International 2018;S1:47–51. 10.1111/liv.13643
    1. Estes C, Razavi H, Loomba R, et al.. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Journal of Hepatology 2018;67:123–133. 10.1002/hep.29466
    1. Perumpail BJ, Khan MA, Yoo ER, et al.. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World Journal of Gastroenterology 2017;23:8263–8276. 10.3748/wjg.v23.i47.8263
    1. Benjamin A, Zubajlo R, Dhyani M, et al. Non-Invasive Diagnosis of Non-Alcoholic Fatty Liver Disease (NAFLD) using Ultrasound Image Echogenicity. Conference Proceedings IEEE Engineering in Medicine and Biology Society 2017;2920–2923.
    1. Ratziu V, Charlotte F, Heurtier A, et al.. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005;128:1898–1906. 10.1053/j.gastro.2005.03.084
    1. Mumtaz S, Schomaker N, Von Roenn N. Pro: Noninvasive Imaging Has Replaced Biopsy as the Gold Standard in the Evaluation of Nonalcoholic Fatty Liver Disease. Clinical Liver Disease 2019;13:111–113. 10.1002/cld.750
    1. Castera L, Friedrich-Rust M, Loomba R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 2019;156(5):1264–1281.e4. 10.1053/j.gastro.2018.12.036
    1. Hines CD, Frydrychowicz A, Hamilton G, et al.. T(1) independent, T(2) (*) corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of hepatic steatosis. Journal of Magnetic Resonance Imaging 2011;33(4):873–881. 10.1002/jmri.22514
    1. Noureddin M, Lam J, Peterson MR, et al.. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 2013; 58:1930–1940. 10.1002/hep.26455
    1. Reeder SB. Emerging quantitative magnetic resonance imaging biomarkers of hepatic steatosis. Hepatology 2013; 58:1877–1880. 10.1002/hep.26543
    1. Caussy C, Brissot J, Singh S, et al.. Prospective, same-day, direct comparison of controlled attenuation parameter with the M vs the XL probe in patients with nonalcoholic fatty liver disease, using magnetic resonance imaging-proton density fat fraction as the standard. Clinical Gastroenterology Hepatology 2020;18(8):1842–1850.e6. 10.1016/j.cgh.2019.11.060
    1. Reeder SB, McKenzie CA, Pineda AR, et al.. Water-fat separation with IDEAL gradient echo imaging. Journal of Magnetic Resononance Imaging 2007;25(3): 644–652. 10.1002/jmri.20831
    1. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magnetic Resononance in Medicine 2008;60(5):1122–1134. 10.1002/mrm.21737
    1. Meisamy S, Hines CD, Hamilton G, Sirlin CB, McKenzie CA, Yu H, et al.. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 2011;258(3):767–75 Standard. Clinical Gastroenterology Hepatology 2020;18(8):1842-1850.e6. 10.1148/radiol.10100708
    1. Permutt Z, Le TA, Peterson MR, et al.. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease—MRI accurately quantifies hepatic steatosis in NAFLD. Alimentary Pharmacology and Therapeutics 2012;36:22–29. 10.1111/j.1365-2036.2012.05121.x
    1. Idilman IS, Aniktar H, Idilman R, et al.. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013;267(3):767–75. 10.1148/radiol.13121360
    1. Tang A, Tan J, Sun M, Hamilton G, Bydder M, Wolfson T, et al.. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013; 267:422–431. 10.1148/radiol.12120896
    1. Tang A, Desai A, Hamilton G, et al.. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology 2015;274(2):416–425. 10.1148/radiol.14140754
    1. Idilman IS, Keskin O, Celik A, et al.. A comparison of liver fat content as determined by magnetic resonance imaging-proton density fat fraction and MRS versus liver histology in non-alcoholic fatty liver disease. Acta Radiologica 2016; 57(3), 271–278. 10.1177/0284185115580488
    1. Middleton MS, Heba ER, Hooker CA, et al.. Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist-assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis. Gastroenterology 2017;153(3):753–761. 10.1053/j.gastro.2017.06.005
    1. Wildman-Tobriner B, Middleton MM, Moylan CA, et al.. Association between magnetic resonance imaging-proton density fat fraction and liver histology features in patients with nonalcoholic fatty liver disease or nonalcoholic steatohepatitis. Gastroenterology 2018;155(5):1428–1435.e2. 10.1053/j.gastro.2018.07.018
    1. Triay Bagur A, Hutton C, Irving B, Gyngell ML, Robson MD, Brady M. Magnitude-intrinsic water-fat ambiguity can be resolved with multipeak fat modeling and a multipoint search method. Magnetic Resonance in Medicine 2019;82(1):460–475. 10.1002/mrm.27728
    1. Banerjee R, Pavlides M, Tunnicliffe EM, et al.. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. Journal of Hepatology 2014;60(1):69–77. 10.1016/j.jhep.2013.09.002
    1. Pavlides M, Banerjee R, Sellwood J, et al.. Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. Journal of Hepatology 2016;64(2):308–315. 10.1016/j.jhep.2015.10.009
    1. Jayaswal ANA, Levick C, Selvaraj EA, et al.. Prognostic value of multiparametric magnetic resonance imaging, transient elastography and blood-based fibrosis markers in patients with chronic liver disease Liver International 2020; Advance online publication. 10.1111/liv.14625
    1. Sasso M, Miette V, Sandrin L, et al.. The controlled attenuation parameter (CAP): a novel tool for the non-invasive evaluation of steatosis using Fibroscan. Clinics and Research in Hepatology and Gastroenterology 2012;36(1):13–20. 10.1016/j.clinre.2011.08.001
    1. Sandrin L, Fourquet B, Hasquenoph JM, et al.. Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound in Medicine and Biology 2003;29:1705–13. 10.1016/j.ultrasmedbio.2003.07.001
    1. Chan W-K, Nik Mustapha NR, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease. Journal of Gastroenterology and Hepatology 2014;29(7):1470–1476. 10.1111/jgh.12557
    1. de Lédinghen V, Wong GL, Vergniol J, et al.. Controlled attenuation parameter for the diagnosis of steatosis in non-alcoholic fatty liver disease. Journal of Gastroenterology and Hepatology 2016;31(4):848–855. 10.1111/jgh.13219
    1. Karlas T, Petroff D, Sasso M, et al.. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. Journal of Hepatology 2017;66(5):1022–1030. 10.1016/j.jhep.2016.12.022
    1. Eddowes PJ, McDonald N, Davies N, et al.. Utility and cost evaluation of multiparametric magnetic resonance imaging for the assessment of non-alcoholic fatty liver disease. Alimentary Pharmacology and Therapeutics 2018;47(5):631–644. 10.1111/apt.14469
    1. Lee JI, Lee HW, Lee KS. Value of controlled attenuation parameter in fibrosis prediction in nonalcoholic steatohepatitis. World Journal of Gastroenterology 2019;25(33):4959–4969. 10.3748/wjg.v25.i33.4959
    1. Eddowes PJ, Sasso M, Allison M, et al.. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019;156(6):1717–1730. 10.1053/j.gastro.2019.01.042
    1. Semmler G, Wöran K, Scheiner B, et al.. Novel reliability criteria for controlled attenuation parameter assessments for non-invasive evaluation of hepatic steatosis. United European Gastroenterology Journal 2020;8(3):321–331. 10.1177/2050640619900820
    1. Shen F, Zheng RD, Mi YQ, et al.. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients. World J Gastroenterol. 2014;20(16):4702–4711. 10.3748/wjg.v20.i16.4702
    1. Imajo K, Tetlow L, Dennis A, Shumbayawonda E, Mouchti S, Kendall T, et al.. Quantitative multiparametric MRI can aid NASH diagnosis in a Japanese cohort. World J Gastroenterol. 2020.
    1. Yu-Qiang M, Qi-Yu S, Liang X, Rui-Fang S, Yong-Gang L, Ping L, et al.. Controlled attenuation parameter for noninvasive assessment of hepatic steatosis using Fibroscan®: validation in chronic hepatitis B. Dig Dis Sci. 2015;60(1):243–51. 10.1007/s10620-014-3341-x
    1. Kleiner DE, Brunt EM, Van Natta M, et al.. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41(6), 1313–1321. 10.1002/hep.20701
    1. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143:29–36. 10.1148/radiology.143.1.7063747
    1. Imajo K, Kessoku T, Honda Y, et al.. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 2016;150(3):626–637.e7. 10.1053/j.gastro.2015.11.048
    1. Park CC, Nguyen P, Hernandez C, et al.. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology 2017; 152:598–607.e592. 10.1053/j.gastro.2016.10.026
    1. Shin J, Kim MJ, Shin HJ, et al.. Quick assessment with controlled attenuation parameter for hepatic steatosis in children based on MRI-PDFF as the gold standard. BMC Pediatrics 2019;19(1):112. 10.1186/s12887-019-1485-8
    1. Wang JH, Ou HY, Yen YH, et al.. Usefulness of controlled attenuation parameter in detecting and monitoring hepatic steatosis with MRI-PDFF as reference. Digestive Diseases and Sciences 2020;65(5):1512–1519. 10.1007/s10620-019-05883-1
    1. Caussy C, Alquiraish MH, Nguyen P, et al.. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis. Hepatology 2018;67(4):1348–1359. 10.1002/hep.29639
    1. Thomaides-Brears HB, Lepe R, Banerjee R, et al.. Multiparametric MR mapping in clinical decision-making for diffuse liver disease. Abdominal Radiology 2020; Advance online publication. 10.1007/s00261-020-02684-3
    1. Bachtiar V, Kelly MD, Wilman HR, et al.. (2019). Repeatability and reproducibility of multiparametric magnetic resonance imaging of the liver. PloS One 2019; 14(4), e0214921. 10.1371/journal.pone.0214921

Source: PubMed

3
订阅