7-Ketocholesterol in disease and aging

Amelia Anderson, Angielyn Campo, Elena Fulton, Anne Corwin, W Gray Jerome 3rd, Matthew S O'Connor, Amelia Anderson, Angielyn Campo, Elena Fulton, Anne Corwin, W Gray Jerome 3rd, Matthew S O'Connor

Abstract

7-Ketocholesterol (7KC) is a toxic oxysterol that is associated with many diseases and disabilities of aging, as well as several orphan diseases. 7KC is the most common product of a reaction between cholesterol and oxygen radicals and is the most concentrated oxysterol found in the blood and arterial plaques of coronary artery disease patients as well as various other disease tissues and cell types. Unlike cholesterol, 7KC consistently shows cytotoxicity to cells and its physiological function in humans or other complex organisms is unknown. Oxysterols, particularly 7KC, have also been shown to diffuse through membranes where they affect receptor and enzymatic function. Here, we will explore the known and proposed mechanisms of pathologies that are associated with 7KC, as well speculate about the future of 7KC as a diagnostic and therapeutic target in medicine.

Conflict of interest statement

The authors would like to disclose that Matthew O'Connor and Amelia Anderson have a founding interest in Underdog Pharmaceuticals LLC. This company is developing drugs that target toxic cholesterols such as 7-ketocholesterol.

Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
7KC can be nonenzymatically produced via oxidation of cholesterol along multiple different pathways.
Fig. 2
Fig. 2
Formation of foam cells and arterial plaque due to 7KC-induced differentiation and buildup of ROS.
Fig. 3
Fig. 3
7KC promotes vascular calcification via Pi-mediated apoptosis and disruption of autophagy-lysosomal pathway (ALP) in smooth muscle cells (SMCs).

References

    1. Cox R.A., García-Palmieri M.R. Cholesterol, triglycerides, and associated lipoproteins. In: Walker H.K., Hall W.D., Hurst J.W., editors. Clinical Methods: the History, Physical, and Laboratory Examinations. Butterworths; 1990.
    1. Dias H.K.I., Brown C.L.R., Polidori M.C., Lip G.Y.H., Griffiths H.R. LDL-lipids from patients with hypercholesterolaemia and Alzheimer's disease are inflammatory to microvascular endothelial cells: mitigation by statin intervention. Clin. Sci. 2015;129:1195–1206.
    1. Yancey, P. G. & Jerome, W. G. Lysosomal Cholesterol Derived from Mildly Oxidized Low Density Lipoprotein Is Resistant to Efflux. vol 11.
    1. Sottero B. Lipid peroxidation and inflammatory molecules as markers of coronary artery disease. Redox Rep. 2007;12:81–85.
    1. Chang M.-C. 7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings, cytotoxicity and IL-8 production in endothelial cells. Oncotarget. 2016;7
    1. Colles S.M., Maxson J.M., Carlson S.G., Chisolm G.M. Oxidized LDL-Induced Injury and Apoptosis in Atherosclerosis. 2001;11:8.
    1. Jialal I., Freeman D.A., Grundy S.M. Varying susceptibility of different low density lipoproteins to oxidative modification. Arterioscler. Thromb. J. Vasc. Biol. 1991;11:482–488.
    1. Freeman N.E. Acyl-coenzyme A:cholesterol acyltransferase promotes oxidized LDL/oxysterol-induced apoptosis in macrophages. J. Lipid Res. 2005;46:1933–1943.
    1. Brown A.J., Dean R.T., Jessup W. Free and esterified oxysterol: formation during copper-oxidation of low density lipoprotein and uptake by macrophages. J. Lipid Res. 1996;37:320–335.
    1. Oh M.-J. Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation. J. Lipid Res. 2016;57:791–808.
    1. Smith W. Thin-layer chromatographic examination of cholesterol autoxidation. J. Chromatogr. A. 1967:85851–85859. 187–205.
    1. Mintzer E., Charles G., Gordon S. Interaction of two oxysterols, 7-ketocholesterol and 25-hydroxycholesterol, with phosphatidylcholine and sphingomyelin in model membranes. Chem. Phys. Lipids. 2010;163:586–593.
    1. Shinkyo R. Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J. Biol. Chem. 2011;286:33021–33028.
    1. Lee J.W., Huang J.-D., Rodriguez I.R. Extra-hepatic metabolism of 7-ketocholesterol occurs by esterification to fatty acids via cPLA2α and SOAT1 followed by selective efflux to HDL. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 2015;1851:605–619.
    1. Li W., Ghosh M., Eftekhari S., Yuan X.-M. Lipid accumulation and lysosomal pathways contribute to dysfunction and apoptosis of human endothelial cells caused by 7-oxysterols. Biochem. Biophys. Res. Commun. 2011;409:711–716.
    1. Butler D., Bahr B.A. Oxidative stress and lysosomes: CNS-related consequences and implications for lysosomal enhancement strategies and induction of autophagy. Antioxidants Redox Signal. 2006;8:185–196.
    1. Sudo R., Sato F., Azechi T., Wachi H. 7-Ketocholesterol-induced lysosomal dysfunction exacerbates vascular smooth muscle cell calcification via oxidative stress. Genes Cells. 2015;20:982–991.
    1. Leonarduzzi G. Early involvement of ROS overproduction in apoptosis induced by 7-ketocholesterol. Antioxid. Redox Signal. 2006;8:375–380.
    1. Sottero B. Omics analysis of oxysterols to better understand their pathophysiological role. Free Radic. Biol. Med. 2019
    1. Testa G., Rossin D., Poli G., Biasi F., Leonarduzzi G. Implication of oxysterols in chronic inflammatory human diseases. Biochimie. 2018;153:220–231.
    1. Crisby M., Nilsson J., Kostulas V., Björkhem I., Diczfalusy U. Localization of sterol 27-hydroxylase immuno-reactivity in human atherosclerotic plaques. Biochim. Biophys. Acta BBA - Lipids Lipid Metab. 1997;1344:278–285.
    1. Brown A.J., Leong S.L., Dean R.T., Jessup W. 7-Hydroperoxycholesterol and its products in oxidized low density lipoprotein and human atherosclerotic plaque. J. Lipid Res. 1997;38:1730–1745.
    1. Sevanian A., McLeod L.L. Cholesterol autoxidation in phospholipid membrane bilayers. Lipids. 1987;22:627–636.
    1. Lathe R. Steroid and sterol 7-hydroxylation: ancient pathways. Steroids. 2002;67:967–977.
    1. Helmschrodt C. Fast LC-MS/MS analysis of free oxysterols derived from reactive oxygen species in human plasma and carotid plaque. Clin. Chim. Acta Int. J. Clin. Chem. 2013;425:3–8.
    1. Schweizer R.A.S., Zürcher M., Balazs Z., Dick B., Odermatt A. Rapid Hepatic Metabolism of 7-Ketocholesterol by 11β-Hydroxysteroid Dehydrogenase Type 1 species-specific differences between the rat, human, and hamster enzyme. J. Biol. Chem. 2004;279:18415–18424.
    1. Wamil M. 7-Oxysterols modulate glucocorticoid activity in adipocytes through competition for 11β-hydroxysteroid dehydrogenase type. Endocrinology. 2008;149:5909–5918.
    1. Mitton J.R., Scholan N.A., Boyd G.S. The oxidation of cholesterol in rat liver sub-cellular particles. The Cholesterol-7alpha-Hydroxylase Enzyme System. Eur. J. Biochem. 1971;20:569–579.
    1. Goyal S., Xiao Y., Porter N.A., Xu L., Guengerich F.P. Oxidation of 7-dehydrocholesterol and desmosterol by human cytochrome P450 46A1. J. Lipid Res. 2014;55:1933–1943.
    1. Czuba E., Steliga A., Lietzau G., Kowiański P. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions. Metab. Brain Dis. 2017;32:935–948.
    1. Lee J.W., Huang J.-D., Rodriguez I.R. Extra-hepatic metabolism of 7-ketocholesterol occurs by esterification to fatty acids via cPLA2α and SOAT1 followed by selective efflux to HDL. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids. 2015;1851:605–619.
    1. Gelissen I.C. Sterol efflux is impaired from macrophage foam cells selectively enriched with 7-ketocholesterol. J. Biol. Chem. 1996;271:17852–17860.
    1. Rutherford L.D., Gieseg S.P. 7-Ketocholesterol is not cytotoxic to U937 cells when incorporated into acetylated low density lipoprotein. Lipids. 2012;47:239–247.
    1. Gale S.E. Side chain oxygenated cholesterol regulates cellular cholesterol homeostasis through direct sterol-membrane interactions. J. Biol. Chem. 2009;284:1755–1764.
    1. Agrawal S., Agarwal M.L., Chatterjee-Kishore M., Stark G.R., Chisolm G.M. Stat1-Dependent, p53-independent expression of p21waf1 modulates oxysterol-induced apoptosis. Mol. Cell. Biol. 2002;22:1981–1992.
    1. Mathieu J.M., Wang F., Segatori L., Alvarez P.J. Increased resistance to oxysterol cytotoxicity in fibroblasts transfected with a lysosomally targeted Chromobacterium oxidase. Biotechnol. Bioeng. 2012;109:2409–2415.
    1. Vejux A. Phospholipidosis and down-regulation of the PI3-K/PDK-1/Akt signalling pathway are vitamin E inhibitable events associated with 7-ketocholesterol-induced apoptosis. J. Nutr. Biochem. 2009;20:45–61.
    1. Lemaire S. Different patterns of IL-1beta secretion, adhesion molecule expression and apoptosis induction in human endothelial cells treated with 7alpha-, 7beta-hydroxycholesterol, or 7-ketocholesterol. FEBS Lett. 1998;440:434–439.
    1. Pincinato E. de C., Moriel P., Abdalla D.S.P. Cholesterol oxides inhibit cholesterol esterification by lecithin: cholesterol acyl transferase. Braz. J. Pharm. Sci. 2009;45:429–435.
    1. Zhou L. Different cytotoxic injuries induced by lysophosphatidylcholine and 7-ketocholesterol in mouse endothelial cells. Endothelium. 2006;13:213–226.
    1. Mutemberezi V., Guillemot-Legris O., Muccioli G.G. Oxysterols: from cholesterol metabolites to key mediators. Prog. Lipid Res. 2016;64:152–169.
    1. Zarrouk A. Effects of cholesterol oxides on cell death induction and calcium increase in human neuronal cells (SK-N-BE) and evaluation of the protective effects of docosahexaenoic acid (DHA; C22:6 n-3) Steroids. 2015;99:238–247.
    1. Fuda H., Javitt N.B., Mitamura K., Ikegawa S., Strott C.A. Oxysterols are substrates for cholesterol sulfotransferase. J. Lipid Res. 2007;48:1343–1352.
    1. Javitt N.B., Lee Y.C., Shimizu C., Fuda H., Strott C.A. Distinction from Dehydroepiandrosterone Sulfotransferase, and Differential Tissue Expression. Vol. 142. 2001. Cholesterol and hydroxycholesterol sulfotransferases: identification; p. 7.
    1. Kwik J. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl. Acad. Sci. 2003;100:13964–13969.
    1. Filomenko R., Fourgeux C., Bretillon L., Gambert-Nicot S. Oxysterols: influence on plasma membrane rafts microdomains and development of ocular diseases. Steroids. 2015;99:259–265.
    1. Ragot K. Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes. Biochem. Pharmacol. 2013;86:67–79.
    1. Wang Y., Wang W., Wang N., Tall A.R., Tabas I. Mitochondrial oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged mice. Arterioscler. Thromb. Vasc. Biol. 2017;37
    1. Li X., Gulbins E., Zhang Y. Oxidative stress triggers Ca 2+ -dependent lysosome trafficking and activation of acid sphingomyelinase. Cell. Physiol. Biochem. 2012;30:815–826.
    1. Prunet C. Multiplexed flow cytometric analyses of pro- and anti-inflammatory cytokines in the culture media of oxysterol-treated human monocytic cells and in the sera of atherosclerotic patients. Cytometry A. 2006;69A:359–373.
    1. Kim H.J. Kimchi suppresses 7-ketocholesterol-induced endoplasmic reticulum stress in macrophages. Food Sci. Biotechnol. 2012;21:1293–1299.
    1. Pedruzzi E. NAD(P)H oxidase nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol. Cell. Biol. 2004;24:10703–10717.
    1. Myoishi M. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation. 2007;116:1226–1233.
    1. Janowski B.A., Willy P.J., Devi T.R., Falck J.R., Mangelsdorf D.J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature. 1996;383:728–731.
    1. Jiang Y.J., Kim P., Elias P.M., Feingold K.R. LXR and PPAR activators stimulate cholesterol sulfotransferase type 2 isoform 1b in human keratinocytes. J. Lipid Res. 2005;46:2657–2666.
    1. Lehmann J.M. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem. 1997;272:3137–3140.
    1. Okabe A. Adaptive responses induced by 24S-hydroxycholesterol through liver X receptor pathway reduce 7-ketocholesterol-caused neuronal cell death. Redox Biol. 2013;2:28–35.
    1. Peet D.J. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell. 1998;93:693–704.
    1. Serviddio G., Bellanti F., Vendemiale G. Oxysterols in the orchestra of liver cell metabolism. Free Radic. Biol. Med. 2014 75, S6.
    1. Traversari C., Sozzani S., Steffensen K.R., Russo V. LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. Eur. J. Immunol. 2014;44:1896–1903.
    1. Zhai Y. A functional cross-talk between liver X receptor- and constitutive androstane receptor links lipogenesis and xenobiotic responses. Mol. Pharmacol. 2010;78:666–674.
    1. Crestani M. LXR (liver X receptor) and HNF-4 (hepatocyte nuclear factor-4): key regulators in reverse cholesterol transport. Biochem. Soc. Trans. 2004;32:92–96.
    1. Shibata N., Glass C.K. Macrophages, oxysterols and atherosclerosis. Circ. J. 2010;74:2045–2051.
    1. Wang C., Jebailey L., Ridgway N.D. Vol. 12. 2002. Oxysterol-Binding-Protein (OSBP)-Related Protein 4 Binds 25-Hydroxycholesterol and Interacts with Vimentin Intermediate Filaments.
    1. Chawla A. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell. 2001;7:161–171.
    1. Zabirnyk O., Liu W., Khalil S., Sharma A., Phang J.M. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy. Carcinogenesis. 2010;31:446–454.
    1. Diestel A. Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. J. Exp. Med. 2003;198:1729–1740.
    1. Kiss L. Effects of 7-ketocholesterol on the activity of endothelial poly(ADP-ribose) polymerase and on endothelium-dependent relaxant function. Int. J. Mol. Med. 2006
    1. Lehmann M. ARTD1-induced poly-ADP-ribose formation enhances PPARγ ligand binding and co-factor exchange. Nucleic Acids Res. 2015;43:129–142.
    1. Müller K.H. Poly(ADP-Ribose) links the DNA damage response and biomineralization. Cell Rep. 2019;27:3124–3138. e13.
    1. Shrestha E. Poly(ADP-ribose) polymerase 1 represses liver X receptor-mediated ABCA1 expression and cholesterol efflux in macrophages. J. Biol. Chem. 2016;291:11172–11184.
    1. He C. 7-Ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am. J. Pathol. 2013;183:626–637.
    1. Monier S. Impairment of the cytotoxic and oxidative activities of 7β-hydroxycholesterol and 7-ketocholesterol by esterification with oleate. Biochem. Biophys. Res. Commun. 2003;303:814–824.
    1. Nury T. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3) Steroids. 2015;99:194–203.
    1. Nury T. Induction of peroxisomal changes in oligodendrocytes treated with 7-ketocholesterol: attenuation by α-tocopherol. Biochimie. 2018;153:181–202.
    1. Seye C. 7-Ketocholesterol induces reversible cytochrome c release in smooth muscle cells in absence of mitochondrial swelling. Cardiovasc. Res. 2004;64:144–153.
    1. Wang Y., Wang W., Wang N., Tall A.R., Tabas I. Mitochondrial oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged mice. Arterioscler. Thromb. Vasc. Biol. 2017;37
    1. Barber S.C., Shaw P.J. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med. 2010;48:629–641.
    1. Bennett S., Grant M.M., Aldred S. Oxidative stress in vascular dementia and Alzheimer's disease: a common pathology. J. Alzheimers Dis. 2008;17:245–257.
    1. Björkhem I. On the formation of 7-ketocholesterol from 7-dehydrocholesterol in patients with CTX and SLO. J. Lipid Res. 2014;55:1165–1172.
    1. Brown A.J., Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142:1–28.
    1. Gargiulo S. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic. Biol. Med. 2017;111:140–150.
    1. Kloudova A., Guengerich F.P., Soucek P. The role of oxysterols in human cancer. Trends endocrinol. Metab. 2017;28:485–496.
    1. Kuver R. Mechanisms of oxysterol-induced disease: insights from the biliary system. Clin. Lipidol. 2012;7:537–548.
    1. Malgrange B., Varela-Nieto I., de Medina P., Paillasse M.R. Targeting cholesterol homeostasis to fight hearing loss: a new perspective. Front. Aging Neurosci. 2015;7
    1. Schroepfer G.J. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol. Rev. 2000;80:361–554.
    1. Maor I., Mandel H., Aviram M. Macrophage uptake of oxidized LDL inhibits lysosomal sphingomyelinase, thus causing the accumulation of unesterified cholesterol-sphingomyelin-rich particles in the lysosomes. A possible role for 7-Ketocholesterol. Arterioscler. Thromb. Vasc. Biol. 1995;15:1378–1387.
    1. Wen Y., Leake D.S. Low density lipoprotein undergoes oxidation within lysosomes in cells. Circ. Res. 2007;100:1337–1343.
    1. Fraldi A. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 2010;29:3607–3620.
    1. de Grey A.D.N.J. Bioremediation meets biomedicine: therapeutic translation of microbial catabolism to the lysosome. Trends Biotechnol. 2002;20:452–455.
    1. de Grey A.D.N.J. Medical bioremediation: prospects for the application of microbial catabolic diversity to aging and several major age-related diseases. Ageing Res. Rev. 2005;4:315–338.
    1. Tarling E.J., Edwards P.A. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc. Natl. Acad. Sci. 2011;108:19719–19724.
    1. Terasaka N., Wang N., Yvan-Charvet L., Tall A.R. High-density lipoprotein protects macrophages from oxidized low-density lipoprotein-induced apoptosis by promoting efflux of 7-ketocholesterol via ABCG1. Proc. Natl. Acad. Sci. U. S. A. 2007;104:15093–15098.
    1. Terasaka N. ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J. Clin. Investig. 2008;118:3701–3713.
    1. Titorenko V.I., Terlecky S.R. Peroxisome metabolism and cellular aging. Traffic. 2011;12:252–259.
    1. Nury T. 7-Ketocholesterol is increased in the plasma of X-ALD patients and induces peroxisomal modifications in microglial cells: potential roles of 7-ketocholesterol in the pathophysiology of X-ALD. J. Steroid Biochem. Mol. Biol. 2017;169:123–136.
    1. Nury T. Induction of peroxisomal changes in oligodendrocytes treated with 7-ketocholesterol: attenuation by α-tocopherol. Biochimie. 2018;153:181–202.
    1. Terlecky S.R., Koepke J.I., Walton P.A. Peroxisomes and aging. Biochim. Biophys. Acta. 2006;1763:1749–1754.
    1. Horvath S.E., Daum G. Lipids of mitochondria. Prog. Lipid Res. 2013;52:590–614.
    1. Kritharides L., Kus M., Brown A.J., Jessup W., Dean R.T. Hydroxypropyl-β-cyclodextrin-mediated efflux of 7-ketocholesterol from macrophage foam cells. J. Biol. Chem. 1996;271:27450–27455.
    1. Jerome W.G. Advanced atherosclerotic foam cell formation has features of an acquired lysosomal storage disorder. Rejuvenation Res. 2006;9:245–255.
    1. Cox B.E., Griffin E.E., Ullery J.C., Jerome W.G. Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J. Lipid Res. 2007;48:1012–1021.
    1. Jerome W.G., Cox B.E., Griffin E.E., Ullery J.C. Lysosomal cholesterol accumulation inhibits subsequent hydrolysis of lipoprotein cholesteryl ester. Microsc. Micro. 2008;14:138–149.
    1. A-González N., Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim. Biophys. Acta BBA - Mol. Basis Dis. 2011;1812:982–994.
    1. Pajares S. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency. J. Lipid Res. 2015;56:1926–1935.
    1. Porter F.D. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for niemann-pick C1 disease. Sci. Transl. Med. 2010;2:56. ra81-56ra81.
    1. Hitsumoto T., Takahashi M., Iizuka T., Shirai K. Clinical significance of serum 7-ketocholesterol concentrations in the progression of coronary atherosclerosis. J. Atheroscler. Thromb. 2009;16:363–370.
    1. Rimner A. Relevance and mechanism of oxysterol stereospecifity in coronary artery disease. Free Radic. Biol. Med. 2005;38:535–544.
    1. Yasunobu Y. Coronary atherosclerosis and oxidative stress as reflected by autoantibodies against oxidized low-density lipoprotein and oxysterols. Atherosclerosis. 2001;155:445–453.
    1. Song J. Association of plasma 7-ketocholesterol with cardiovascular outcomes and total mortality in patients with coronary artery disease. Circ. Res. 2017;120:1622–1631.
    1. Salonen J.T. Lipoprotein oxidation and progression of carotid atherosclerosis. Circulation. 1997;95:840–845.
    1. Tang H.-Y. Lipidomics reveals accumulation of the oxidized cholesterol in erythrocytes of heart failure patients. Redox Biol. 2018;14:499–508.
    1. Lyons M.A., Samman S., Gatto L., Brown A.J. Rapid hepatic metabolism of 7-ketocholesterol in vivo: implications for dietary oxysterols. J. Lipid Res. 1999;40:1846–1857.
    1. Svistounov D. The relationship between fenestrations, sieve plates and rafts in liver sinusoidal endothelial cells. PLoS One. 2012;7:e46134.
    1. Tani M., Kamata Y., Deushi M., Osaka M., Yoshida M. 7-Ketocholesterol enhances leukocyte adhesion to endothelial cells via p38MAPK pathway. PLoS One. 2018;13
    1. Shimozawa M. 7-Ketocholesterol enhances the expression of adhesion molecules on human aortic endothelial cells by increasing the production of reactive oxygen species. Redox Rep. Commun. Free Radic. Res. 2004;9:370–375.
    1. Chang M.-C. 7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings, cytotoxicity and IL-8 production in endothelial cells. Oncotarget. 2016;7
    1. Rao X. CD36-dependent 7-ketocholesterol accumulation in macrophages mediates progression of atherosclerosis in response to chronic air pollution exposure. Circ. Res. 2014;115:770–780.
    1. Buttari B. Resveratrol counteracts inflammation in human M1 and M2 macrophages upon challenge with 7-oxo-cholesterol: potential therapeutic implications in atherosclerosis. Oxid. Med. Cell. Longev. 2014;2014:257543.
    1. Lusis A.J. Atherosclerosis. Nature. 2000;407:233–241.
    1. Bi Y. M2 macrophages as a potential target for antiatherosclerosis treatment. Neural Plast. 2019;2019:1–21.
    1. Moore K.J., Sheedy F.J., Fisher E.A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 2013;13:709–721.
    1. van Tits L.J.H. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Krüppel-like factor 2. Atherosclerosis. 2011;214:345–349.
    1. Velayutham M. 175-LOS-1 primarily contributes to pro-inflammatory macrophages induced foam cell formation. Free Radic. Biol. Med. 2017;112:124.
    1. Lizard G. Characterization and comparison of the mode of cell death, apoptosis versus necrosis, induced by 7beta-hydroxycholesterol and 7-ketocholesterol in the cells of the vascular wall. Arterioscler. Thromb. Vasc. Biol. 1999;19:1190–1200.
    1. Saito E., Wachi H., Sato F., Seyama Y. 7-Ketocholesterol, a major oxysterol, promotes pi-induced vascular calcification in cultured smooth muscle cells. J. Atheroscler. Thromb. 2008;15:130–137.
    1. Watanabe Y. 7-Ketocholesterol induces ROS-mediated mRNA expression of 12-lipoxygenase, cyclooxygenase-2 and pro-inflammatory cytokines in human mesangial cells: potential role in diabetic nephropathy. Prostaglandins Other Lipid Mediat. 2018;134:16–23.
    1. Sugitani H. Characterization of an in vitro model of calcification in retinal pigmented epithelial cells. J. Atheroscler. Thromb. 2003;10:48–56.
    1. Sugitani H., Wachi H., Mecham R.P., Seyama Y. Accelerated calcification represses the expression of elastic fiber components and lysyl oxidase in cultured bovine aortic smooth muscle cells. J. Atheroscler. Thromb. 2002;9:292–298.
    1. Durham A.L., Speer M.Y., Scatena M., Giachelli C.M., Shanahan C.M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 2018;114:590–600.
    1. Dai X.-Y. Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int. 2013;83:1042–1051.
    1. Levine B., Klionsky D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell. 2004;6:463–477.
    1. Zazzeroni L., Faggioli G., Pasquinelli G. Mechanisms of arterial calcification: the role of matrix vesicles. Eur. J. Vasc. Endovasc. Surgery (St Louis) 2018;55:425–432.
    1. Musso G., Gambino R., Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 2013;52:175–191.
    1. Serviddio G. Effects of dietary fatty acids and cholesterol excess on liver injury: a lipidomic approach. Redox Biol. 2016;9:296–305.
    1. Serviddio G., Bellanti F., Vendemiale G. Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radic. Biol. Med. 2013;65:952–968.
    1. Marchesini G., Moscatiello S., Di Domizio S., Forlani G. Obesity-associated liver disease. J. Clin. Endocrinol. Metab. 2008;93:s74–s80.
    1. Subramanian S. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J. Lipid Res. 2011;52:1626–1635.
    1. Abdel-Khalik J. Defective cholesterol metabolism in amyotrophic lateral sclerosis. J. Lipid Res. 2017;58:267–278.
    1. Simonian N.A. Vol. 24. 1996. Oxidative Stress in Neurodegenerative Diseases.
    1. Doria M., Maugest L., Moreau T., Lizard G., Vejux A. Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson's disease. Free Radic. Biol. Med. 2016;101:393–400.
    1. Jang E.-R., Lee C.S. 7-Ketocholesterol induces apoptosis in differentiated PC12 cells via reactive oxygen species-dependent activation of NF-κB and Akt pathways. Neurochem. Int. 2011;58:52–59.
    1. Kim Y.J., Han J.H., Han E.S., Lee C.S. 7-Ketocholesterol enhances 1-methyl-4-phenylpyridinium-induced mitochondrial dysfunction and cell death in PC12 cells. J. Neural Transm. 2006;113:1877–1885.
    1. Seet R.C.S. Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic. Biol. Med. 2010;48:560–566.
    1. Hughes T.M., Rosano C., Evans R.W., Kuller L.H. Brain cholesterol metabolism, oxysterols, and dementia. J. Alzheimer's Dis. 2013;33:891–911.
    1. Kreilaus F., Spiro A.S., Hannan A.J., Garner B., Jenner A.M. Brain cholesterol synthesis and metabolism is progressively disturbed in the R6/1 mouse model of Huntington's disease: a targeted GC-MS/MS sterol analysis. J. Huntingt. Dis. 2015;4:305–318.
    1. Leoni V., Lütjohann D., Masterman T. Levels of 7-oxocholesterol in cerebrospinal fluid are more than one thousand times lower than reported in multiple sclerosis. J. Lipid Res. 2005;46:191–195.
    1. Slavin A., Kelly-Modis L., Labadia M., Ryan K., Brown M.L. Pathogenic mechanisms and experimental models of multiple sclerosis. Autoimmunity. 2010;43:504–513.
    1. Sharma D. Hypoxia-mediated alteration in cholesterol oxidation and raft dynamics regulates BDNF signalling and neurodegeneration in hippocampus. J. Neurochem. 2019;148:238–251.
    1. Leoni V. Diagnostic use of cerebral and extracerebral oxysterols. Clin. Chem. Lab. Med. 2004 CCLM 42.
    1. Heverin M. Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J. Lipid Res. 2005;46:1047–1052.
    1. Dietschy J.M., Turley S.D. Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 2001;12:105–112.
    1. Iuliano L. Cholesterol metabolites exported from human brain. Steroids. 2015;99:189–193.
    1. Lochhead J.J. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2010;30:1625–1636.
    1. Debbabi M. Comparison of the effects of major fatty acids present in the Mediterranean diet (oleic acid, docosahexaenoic acid) and in hydrogenated oils (elaidic acid) on 7-ketocholesterol-induced oxiapoptophagy in microglial BV-2 cells. Chem. Phys. Lipids. 2017;207:151–170.
    1. Paz J.L. 7-Ketocholesterol promotes oxiapoptophagy in bone marrow mesenchymal stem cell from patients with acute myeloid leukemia. Cells. 2019;8:482.
    1. de Medina P., Paillasse M.R., Segala G., Poirot M., Silvente-Poirot S. Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc. Natl. Acad. Sci. 2010;107:13520–13525.
    1. Hascalovici J.R. Brain sterol dys-regulation in sporadic AD and MCI: relationship to heme oxygenase-1. J. Neurochem. 2009;110:1241–1253.
    1. Testa G. Changes in brain oxysterols at different stages of Alzheimer's disease: their involvement in neuroinflammation. Redox Biol. 2016;10:24–33.
    1. Xue-shan Z. Imbalanced cholesterol metabolism in Alzheimer's disease. Clin. Chim. Acta. 2016;456:107–114.
    1. Ishikawa M., Yoshitomi T., Covey D.F., Zorumski C.F., Izumi Y. Neurosteroids and oxysterols as potential therapeutic agents for glaucoma and Alzheimer's disease. Neuropsychiatry. 2018;08
    1. Hamed S.A. Atherosclerosis in epilepsy: its causes and implications. Epilepsy Behav. 2014;41:290–296.
    1. Mattson M.P. Pathways towards and away from Alzheimer's disease. Nature. 2004;430:631–639.
    1. Bordt E.A., Polster B.M. NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic. Biol. Med. 2014;0:34–46.
    1. van Oijen M. Atherosclerosis and risk for dementia. Ann. Neurol. 2007;61:403–410.
    1. Calcia M.A. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233:1637–1650.
    1. Leoni V., Caccia C. 24S-hydroxycholesterol in plasma: a marker of cholesterol turnover in neurodegenerative diseases. Biochimie. 2013;95:595–612.
    1. Indaram M. 7-Ketocholesterol increases retinal microglial migration, activation and angiogenicity: A potential pathogenic mechanism underlying age-related macular degeneration. Sci. Rep. 2015;5:9144.
    1. Lin R.J., Krall R., Westerberg B.D., Chadha N.K., Chau J.K. Systematic review and meta-analysis of the risk factors for sudden sensorineural hearing loss in adults. The Laryngoscope. 2012;122:624–635.
    1. Ciccone M.M. Endothelial function and cardiovascular risk in patients with idiopathic sudden sensorineural hearing loss. Atherosclerosis. 2012;225:511–516.
    1. Shrivastava M., Vivekanandhan S., Pati U., Behari M., Das T.K. Mitochondrial perturbance and execution of apoptosis in platelet mitochondria of patients with amyotrophic lateral sclerosis. Int. J. Neurosci. 2011;121:149–158.
    1. Gramajo A.L. Mitochondrial DNA damage induced by 7-ketocholesterol in human retinal pigment epithelial cells in. Vitro. Investig. Opthalmology Vis. Sci. 2010;51:1164.
    1. Luthra S. Activation of caspase-8 and caspase-12 pathways by 7-ketocholesterol in human retinal pigment epithelial cells. Investig. Opthalmology Vis. Sci. 2006;47:5569.
    1. Girão H., Mota M.C., Ramalho J., Pereira P. Cholesterol oxides accumulate in human cataracts. Exp. Eye Res. 1998;66:645–652.
    1. Javitt N.B., Javitt J.C. The retinal oxysterol pathway: a unifying hypothesis for the cause of age-related macular degeneration: curr. Opin. Ophthalmol. Times. 2009;20:151–157.
    1. Moreira E.F., Larrayoz I.M., Lee J.W., Rodri'guez I.R. 7-Ketocholesterol is present in lipid deposits in the primate retina: potential implication in the induction of VEGF and CNV formation. Investig. Opthalmology Vis. Sci. 2009;50:523.
    1. Vejux A., Samadi M., Lizard G. Contribution of cholesterol and oxysterols in the physiopathology of cataract: implication for the development of pharmacological treatments. J. Ophthalmol. 2011;2011:1–6.
    1. Winkler B.S., Boulton M.E., Gottsch J.D., Sternberg P. Vol. 27. 2007. Oxidative Damage and Age-Related Macular Degeneration.
    1. Rodriguez I.R., Fliesler S.J. Photodamage generates 7-keto- and 7-hydroxycholesterol in the rat retina via a free radical-mediated mechanism. Photochem. Photobiol. 2009;85:1116–1125.
    1. Booij J.C., Baas D.C., Beisekeeva J., Gorgels T.G.M.F., Bergen A.A.B. The dynamic nature of Bruch's membrane. Prog. Retin. Eye Res. 2010;29:1–18.
    1. Spraul C., Grossniklaus H. Characteristics of drusen and Bruch's membrane in postmortem eyes with age-related macular degeneration. Opthamology. 1997;115:267–273.
    1. Joffre C. Oxysterols induced inflammation and oxidation in primary porcine retinal pigment epithelial cells. Curr. Eye Res. 2007;32:271–280.
    1. Xu L., Sheflin L.G., Porter N.A., Fliesler S.J. 7-Dehydrocholesterol-derived oxysterols and retinal degeneration in a rat model of Smith-Lemli-Opitz Syndrome. Biochim. Biophys. Acta. 2012;1821:877–883.
    1. Yang C. 7-Ketocholesterol disturbs RPE cells phagocytosis of the outer segment of photoreceptor and induces inflammation through ERK signaling pathway. Exp. Eye Res. 2019;189:107849.
    1. Amara N. NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGF 1-induced fibroblast differentiation into myofibroblasts. Thorax. 2010;65:733–738.
    1. Carnesecchi S. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid. Redox Signal. 2011;15:607–619.
    1. Chan E.C., Jiang F., Peshavariya H.M., Dusting G.J. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol. Ther. 2009;122:97–108.
    1. Crestani B., Besnard V., Boczkowski J. Signalling pathways from NADPH oxidase-4 to idiopathic pulmonary fibrosis. Int. J. Biochem. Cell Biol. 2011;43:1086–1089.
    1. Domej W., Oettl K., Renner W. Oxidative stress and free radicals in COPD – implications and relevance for treatment. Int. J. Chronic Obstr. Pulm. Dis. 2014;9:1207–1224.
    1. Iuliano L. Association of cholesterol oxidation and abnormalities in fatty acid metabolism in cystic fibrosis. Am. J. Clin. Nutr. 2009;90:477–484.
    1. Biasi F. Pro-oxidant and proapoptotic effects of cholesterol oxidation products on human colonic epithelial cells: a potential mechanism of inflammatory bowel disease progression. Free Radic. Biol. Med. 2009;47:1731–1741.
    1. Chalubinski M., Wojdan K., Gorzelak P., Borowiec M., Broncel M. The effect of oxidized cholesterol on barrier functions and IL-10 mRNA expression in human intestinal epithelium co-cultured with dendritic cells in the transwell system. Food Chem. Toxicol. 2014;69:289–293.
    1. Chalubinski M. The effect of 7-ketocholesterol and 25-hydroxycholesterol on the integrity of the human aortic endothelial and intestinal epithelial barriers. Inflamm. Res. 2013;62:1015–1023.
    1. Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S.E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014;94:329–354.
    1. Gabandé-Rodríguez E., Boya P., Labrador V., Dotti C.G., Ledesma M.D. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ. 2014;21:864–875.
    1. Hollak C.E.M. Acid sphingomyelinase (Asm) deficiency patients in The Netherlands and Belgium: disease spectrum and natural course in attenuated patients. Mol. Genet. Metab. 2012;107:526–533.
    1. Mengel E. Niemann-Pick disease type C symptomatology: an expert-based clinical description. Orphanet J. Rare Dis. 2013;8:166.
    1. Beltroy E.P., Richardson J.A., Horton J.D., Turley S.D., Dietschy J.M. Cholesterol accumulation and liver cell death in mice with Niemann-Pick type C disease. Hepatology. 2005;42:886–893.
    1. Boenzi S. Evaluation of plasma cholestane-3β,5α,6β-triol and 7-ketocholesterol in inherited disorders related to cholesterol metabolism. J. Lipid Res. 2016;57:361–367.
    1. Mignot C., Gelot A., De Villemeur T. Handbook of Clinical Neurology. vol. 113. Elsevier; 2013. B. Gaucher disease; pp. 1709–1715.
    1. Lin N. Determination of 7-ketocholesterol in plasma by LC-MS for rapid diagnosis of acid SMase-deficient Niemann-Pick disease. J. Lipid Res. 2014;55:338–343.
    1. Polo G. High level of oxysterols in neonatal cholestasis: a pitfall in analysis of biochemical markers for Niemann-Pick type C disease. Clin. Chem. Lab. Med. CCLM. 2016;54
    1. Singhal A., Szente L., Hildreth J.E.K., Song B. Hydroxypropyl-beta and -gamma cyclodextrins rescue cholesterol accumulation in Niemann–Pick C1 mutant cell via lysosome-associated membrane protein 1. Cell Death Dis. 2018;9:1019.
    1. Ward S., O'Donnell P., Fernandez S., Vite C.H. 2-Hydroxypropyl-β-Cyclodextrin raises hearing threshold in normal cats and in cats with niemann-pick type C disease. Pediatr. Res. 2010;68:52–56.
    1. Matsuo M. Effects of cyclodextrin in two patients with Niemann–Pick Type C disease. Mol. Genet. Metab. 2013;108:76–81.
    1. Mole S.E., Haltia M. Chapter 70-the neuronal ceroid-lipofuscinoses (batten disease) In: Rosenberg R.N., Pascual J.M., editors. Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease. fifth ed. 2015. pp. 793–808. Academic Press.
    1. Zhang B., Porto A.F. Cholesteryl ester storage disease: protean presentations of lysosomal acid lipase deficiency. J. Pediatr. Gastroenterol. Nutr. 2013;56:682–685.
    1. Arca M. Increased plasma levels of oxysterols, in vivo markers of oxidative stress, in patients with familial combined hyperlipidemia: reduction during atorvastatin and fenofibrate therapy. Free Radic. Biol. Med. 2007;42:698–705.
    1. Fouchier S.W., Defesche J.C. Lysosomal acid lipase A and the hypercholesterolaemic phenotype. Curr. Opin. Lipidol. 2013;24:332–338.
    1. Nie S., Chen G., Cao X., Zhang Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J. Rare Dis. 2014;9:179.
    1. Björkhem I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J. Intern. Med. 2006;260:493–508.
    1. Kelley R.I. The Smith-Lemli-Opitz syndrome. J. Med. Genet. 2000;37:321–335.
    1. Rahimi Z. Plasma lipids in Iranians with sickle cell disease: hypocholesterolemia in sickle cell anemia and increase of HDL-cholesterol in sickle cell trait. Clin. Chim. Acta. 2006;365:217–220.
    1. Shores J., Peterson J., VanderJagt D., Glew R.H. Reduced cholesterol levels in african-american adults with sickle cell disease. J. Natl. Med. Assoc. 2003;95:5.
    1. Belcher J.D. Low-density lipoprotein susceptibility to oxidation and cytotoxicity to endothelium in sickle cell anemia. J. Lab. Clin. Med. 1999;133:605–612.
    1. Kucuk O. The effects of cholesterol oxidation products in sickle and normal red blood cell membranes. Biochim. Biophys. Acta BBA - Biomembr. 1992;1103:296–302.
    1. Yalçınkaya A. Vol. 4. 2017. Hypocholesterolemia and Increased Plasma 7-ketocholesterol Levels in Pediatric Sickle Cell Patients.
    1. Szostek R. Effect of inserted oxysterols on phospholipid packing in normal and sickle red blood cell membranes. Biochem. Biophys. Res. Commun. 1991;180:730–734.
    1. Harman D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology. 2009;10:773–781.
    1. Barja G. Towards a unified mechanistic theory of aging. Exp. Gerontol. 2019;124:110627.
    1. Vejux A. 7-Ketocholesterol and 7β-hydroxycholesterol: in vitro and animal models used to characterize their activities and to identify molecules preventing their toxicity. Biochem. Pharmacol. 2019;113648
    1. Brahmi F. Prevention of 7-ketocholesterol-induced side effects by natural compounds. Crit. Rev. Food Sci. Nutrition. 2018:1–20.
    1. Vejux A. 7-Ketocholesterol and 7β-hydroxycholesterol: in vitro and animal models used to characterize their activities and to identify molecules preventing their toxicity. Biochem. Pharmacol. 2019;113648

Source: PubMed

3
订阅