Advances in Lasers for the Treatment of Stones-a Systematic Review

Peter Kronenberg, Bhaskar Somani, Peter Kronenberg, Bhaskar Somani

Abstract

Purpose of review: Laser lithotripsy is increasingly used worldwide and is a continuously evolving field with new and extensive research being published every year.

Recent findings: Variable pulse length Ho:YAG lithotripters allow new lithotripsy parameters to be manipulated, and there is an effort to integrate new technologies into lithotripters. Pulsed thulium lasers seem to be a viable alternative to holmium lasers. The performance of similar laser fibers varies from manufacturer to manufacturer. Special laser fibers and "cleaving only" fiber tip preparation can be beneficial for the lithotripsy procedure. Different laser settings and the surgical technique employed can have significant impact on the success of laser lithotripsy. When safely done, complications of laser lithotripsy are rare and concern the endoscopic nature of procedure, not the technology itself, making laser lithotripsy one of the safest tools in urology. Laser lithotripsy has had several new developments and more insight has been gained in recent years with many more advances expected in the future.

Keywords: Endourology; Laser lithotripsy; Pulsed thulium lasers.

Conflict of interest statement

Conflict of Interest

Peter Kronenberg and Bhaskar Somani each declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Figures

Fig. 1
Fig. 1
Graphic representation of differences between standard (short-pulse) laser lithotripsy, high-frequency laser lithotripsy, long-pulse laser lithotripsy, and burst laser lithotripsy over time

References

    1. Parsons RL, Campbell JL, Thomley MW. Carcinoma of the penis treated by the ruby laser. J Urol. 1968;100(1):38–39.
    1. Coptcoat MJ, Ison KT, Watson G, Wickham JE. Lasertripsy for ureteric stones in 120 cases: lessons learned. Br J Urol. 1988;61(6):487–489.
    1. Hofmann R, Hartung R. Use of pulsed Nd:YAG laser in the ureter. Urol Clin North Am. 1988;15(3):369–375.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
    1. EAU15 – 30th Annual Congress of the European Association of Urology Abstracts. Eur Urol Suppl. 2015;14(2):e1-eV77.
    1. EAU16 – 31st Annual Congress of the European Association of Urology Abstracts. Eur Urol Suppl. 2016;15(3):e1-eV79.
    1. Abstracts EAU17 – 32nd Annual EAU Congress. Eur Urol Suppl. 2017;16(3):e1-e2160.
    1. 2015 Annual Meeting Program Abstracts. J Urol. 2015; 193(4):e1-e1118.
    1. 2016 Annual Meeting Program Abstracts. J Urol. 2016;195(4):e1-e1192.
    1. 2017 Annual Meeting Program Abstracts. J Urol. 2017;197(4):1–1376.
    1. SIU 2015 Abstracts. World J Urol 2015;33(Suppl 1):1–256. 10.1007/s00345-015-1684-3.
    1. Abstract SIU 2016 Buenos Aires, Argentina book. World J Urol. 2016; 34(Suppl 1):1–248. 10.1007/s00345-016-1931-2.
    1. Abstracts from the 37th Congress of the Société Internationale d'Urologie, Centro de Congressos de Lisboa, October 19-22, 2017. World J Urol. 2017;35(Suppl 1):1–360. 10.1007/s00345-017-2090-9.
    1. Scientific Program of 33rd World Congress of Endourology & SWL Program Book. J Endourol. 2015;29(Suppl 1):P1-A457. 10.1089/end.2015.29003.abstracts.
    1. Scientific Program of 34th World Congress of Endourology & SWL Program Book and Abstracts. J Endourol. 2016;30(S2):P1-A464. 10.1089/end.2016.29020.abstracts.
    1. Scientific Program of 35th World Congress of Endourology Program Book and Abstracts. J Endourol. 2017;31(S2):P1-A474. 10.1089/end.2017.29029.abstracts.
    1. Einstein A. Zur Quantentheorie der Strahlung. Phys Z. 1917;18:121–128.
    1. Schawlow AL, Townes CH. Infrared and optical masers. Phys Rev. 1958;112(6):1940–1949.
    1. Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187(4736):493–494.
    1. Pal D, Ghosh A, Sen R, Pal A. Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations. Appl Opt. 2016;55(23):6151–6155.
    1. Zörcher T, Hochberger J, Schrott KM, Kühn R, Schafhauser W. In vitro study concerning the efficiency of the frequency-doubled double-pulse neodymium:YAG laser (FREDDY) for lithotripsy of calculi in the urinary tract. Lasers Surg Med. 1999;25(1):38–42.
    1. Banús Gassol JM. Física del láser. Arch Esp Urol. 2008;61(9):961–964.
    1. Ow D, Bolton D, Lawrentschuk N, VID.38 Photovaporization of calculi as an alternative approach for vesical urolithiasis. World J Urol. 2015;33(Suppl 1):102–256.
    1. Floratos DL, de la Rosette JJ. Lasers in urology. BJU Int. 1999;84(2):204–211.
    1. Vicente Rodríguez JJ, Fernández González I, Hernández Fernández C, Santos García-Vaquero I, Rosales Bordes A. Láser en Urología. Actas Urol Esp. 2006;30:879–895.
    1. Kronenberg P, Traxer O. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol. 2015;33(4):463–469.
    1. Lumenis. VersaPulse PowerSuite Brochure; PB-1106750 Rev. B; 2013 [cited 2014 Jun 19]. Available from: URL:.
    1. Kronenberg P, Traxer O. PI-05 ultra-short, short, medium and long-pulse laser lithotripsy performance. J Urol. 2016;195(4, Supplement):e410.
    1. Wollin DA, Ackerman A, Yang C, Chen T, Simmons WN, Preminger GM, Lipkin ME. Variable pulse duration from a new holmium: YAG laser: the effect on stone comminution, fiber tip degradation, and retropulsion in a dusting model. Urology. 2017;103:47–51.
    1. Bell JR, Penniston KL, Nakada SY. In vitro comparison of holmium lasers: evidence for shorter fragmentation time and decreased retropulsion using a modern variable-pulse laser. Urology. 2017;107:37–42.
    1. Sroka R, Pongratz T, Scheib G, Khoder W, Stief CG, Herrmann T, et al. Impact of pulse duration on Ho: YAG laser lithotripsy: treatment aspects on the single-pulse level. World J Urol. 2015;33(4):479–485.
    1. Bader MJ, Pongratz T, Khoder W, Stief CG, Herrmann T, Nagele U, et al. Impact of pulse duration on Ho: YAG laser lithotripsy: fragmentation and dusting performance. World J Urol. 2015;33(4):471–477.
    1. Bell JR, Penniston KL, Nakada SY. In vitro comparison of stone fragmentation when using various settings with modern variable pulse holmium lasers. J Endourol. 2017;31(10):1067–1072.
    1. Fried NM. Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94 microm. Lasers Surg Med. 2005;37(1):53–58.
    1. Platonova DV, Zamyatina VA, Dymov AM, Kovalenko AA, Vinarov AZ, Minaev VP. Laser lithotripsy. Urologiia (Moscow, Russia : 1999). 2015;(6):116–21.
    1. Kamal W, Kallidonis P, Koukiou G, Amanatides L, Panagopoulos V, Ntasiotis P, Liatsikos E. Stone retropulsion with Ho: YAG and Tm: YAG lasers: a clinical practice-oriented experimental study. J Endourol. 2016;30(11):1145–1149.
    1. Dymov A, Glybochko P, Alyaev Y, Vinarov A, Altshuler G, Zamyatina V, Sorokin N, Enikeev D, Lekarev V, Proskura A, Koshkarev A. V11-11 thulium lithotripsy: from experiment to clinical practice. J Urol. 2017;197((4):e1285.
    1. Glybochko P, Altshuler G, Vinarov A, Rapoport L, Enikeev M, Grigoriev N, et al. 226 Comparison between the possibilities of holmium and thulium laser in lithotripsy in vitro. Eur Urol Suppl. 2017;16(3):e391–e392.
    1. Mullerad M, Aguinaga JRA, Aro T, Kastin A, Goldin O, Kravtsov A, Assadi A, Badaan S, Amiel GE. Initial clinical experience with a modulated holmium laser pulse-Moses technology: does it enhance laser lithotripsy efficacy? Rambam Maimonides Med J. 2017;8(4):e0038.
    1. Elhilali MM, Badaan S, Ibrahim A, Andonian S. Use of the Moses technology to improve holmium laser lithotripsy outcomes: a preclinical study. J Endourol. 2017;31(6):598–604.
    1. Kronenberg P, Traxer O. MP22-13 burst laser lithotripsy—a novel lithotripsy mode. J Urol. 2016;195(4, Supplement):e258.
    1. Kronenberg P, Traxer O. Lithotripsie par laser en salves: Un nouveau mode de lithotripsie. Prog Urol. 2016;26(13):697–698.
    1. CoolTouch - Syneron Candela. StoneLight 30 brochure: laser therapy. 2016.
    1. Lange B, Jocham D, Brinkmann R, Cordes J. Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence: clinical proof of concept study. Lasers Surg Med. 2017;49(4):361–365.
    1. Miernik A, Eilers Y, Nuese C, Bolwien C, Lambrecht A, Hesse A, Rassweiler JJ, Schlager D, Wilhelm K, Wetterauer U, Schoenthaler M. Is in vivo analysis of urinary stone composition feasible? Evaluation of an experimental setup of a Raman system coupled to commercial lithotripsy laser fibers. World J Urol. 2015;33(10):1593–1599.
    1. Dragos LB, Proietti S, Buttice S, Sener E, Tefik T, Emiliani E, et al. 82 - Lasers in flexible ureterorenoscopy. Are they user friendly enough? Eur Urol Suppl. 2016;15(11):e1449–e1450.
    1. Kronenberg P, Traxer O. V1718 laser fibers, pulse energy and retropulsion—what we can see and what we can’t. J Urol. 2013;189((4):e707.
    1. Kronenberg P, Traxer O. The truth about laser fiber diameters. Urology. 2014;84(6):1301–1307.
    1. Pasqui F, Dubosq F, Tchala K, Tligui M, Gattegno B, Thibault P, Traxer O. Impact on active scope deflection and irrigation flow of all endoscopic working tools during flexible ureteroscopy. Eur Urol. 2004;45(1):58–64.
    1. Spore SS, Teichman JM, Corbin NS, Champion PC, Williamson EA, Glickman RD. Holmium: YAG lithotripsy: optimal power settings. J Endourol. 1999;13(8):559–566.
    1. Akar EC, Knudsen BE. Evaluation of 16 new holmium:yttrium-aluminum-garnet laser optical fibers for ureteroscopy. Urology. 2015;86(2):230–235.
    1. Lusch A, Heidari E, Okhunov Z, Osann K, Landman J. Evaluation of contemporary holmium laser fibers for performance characteristics. J Endourol. 2016;30(5):567–573.
    1. Mues AC, Teichman JMH, Knudsen BE. Evaluation of 24 holmium:YAG laser optical fibers for flexible ureteroscopy. J Urol. 2009;182(1):348–354.
    1. European Association of Urology. Information conveyed to urologists regarding laser fiber diameter is incorrect. ScienceDaily 2013 Sep 17 [cited 2014 Jul 17]. Available from: URL:.
    1. Wilson CR, Hardy LA, Kennedy JD, Irby PB, Fried NM. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones. J Biomed Opt. 2016;21(1):18003.
    1. Shin RH, Lautz JM, Cabrera FJ, Shami CJ, Goldsmith ZG, Kuntz NJ, Kaplan AG, Neisius A, Simmons WN, Preminger GM, Lipkin ME. Evaluation of novel ball-tip holmium laser Fiber: impact on ureteroscope performance and fragmentation efficiency. J Endourol. 2016;30(2):189–194.
    1. Kronenberg P, Traxer O. Lithotripsy performance of specially designed laser fiber tips. J Urol. 2016;195(5):1606–1612.
    1. Chapman RA, Somani BK, Robertson A, Healy S, Kata SG. Decreasing cost of flexible ureterorenoscopy: single-use laser fiber cost analysis. Urology. 2014;83(5):1003–1005.
    1. Haddad M, Emiliani E, Rouchausse Y, Coste F, Doizi S, Berthe L, et al. Impact of the curve diameter and laser settings on laser fiber fracture. J Endourol. 2017;31(9):918–921.
    1. Bagley DH, Das A. Endourologic use of the holmium laser. Teton NewMedia: Jackson; 2001.
    1. Mues AC, Teichman JMH, Knudsen BE. Quantification of holmium:yttrium aluminum garnet optical tip degradation. J Endourol. 2009;23(9):1425–1428.
    1. Sung C, Singh H, Schwartz M, Mirabile G, Hruby GW, Ryan CD, Landman J. Evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage. Urology. 2008;72(1):57–60.
    1. Kronenberg P, Traxer O. Are we all doing it wrong? Influence of stripping and cleaving methods of laser fibers on laser lithotripsy performance. J Urol. 2015;193(3):1030–1035.
    1. Vassantachart JM, Lightfoot M, Yeo A, Maldonado J, Li R, Alsyouf M, Martin J, Lee M, Olgin G, Baldwin DD. Laser fiber cleaving techniques: effects on tip morphology and power output. J Endourol. 2015;29(1):84–89.
    1. Ritchie C, Yang P, Peplinski B, Keheila M, Cheriyan S, Abourbih S, Kelln W, Baldwin DD. Jackets off: the impact of laser fiber stripping on power output and stone degradation. J Endourol. 2017;31(8):780–785.
    1. Baghdadi M, Emiliani E, Talso M, Servián P, Barreiro A, Orosa A, Proietti S, Traxer O. Comparison of laser fiber passage in ureteroscopic maximum deflection and their influence on deflection and irrigation: do we really need the ball tip concept? World J Urol. 2017;35(2):313–318.
    1. Peplinski B, Faaborg D, Miao E, Alsyouf M, Myklak K, Kelln W, Baldwin DD. The effect of laser fiber cleave technique and lithotripsy time on power output. J Endourol. 2016;30(6):678–684.
    1. Haddad M, Emiliani E, Rouchausse Y, Coste F, Berthe L, Doizi S, et al. Impact of laser fiber tip cleavage on power output for ureteroscopy and stone treatment. World J Urol. 2017;35(11):1765–1770.
    1. Haddad M, Emiliani E, Traxer O. Re: The effect of laser fiber cleave technique and lithotripsy time on power output. J Endourol. 2016; 10.1089/end.2016.0492.
    1. Wilson CR, Hutchens TC, Hardy LA, Irby PB, Fried NM. A miniaturized, 1.9F integrated optical fiber and stone basket for use in thulium fiber laser lithotripsy. J Endourol. 2015;29(10):1110–1114.
    1. Hutchens TC, Gonzalez DA, Irby PB, Fried NM. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy. J Biomed Opt. 2017;22(1):18001.
    1. Wu Z, Gao P, Feng C, Wang L, Mao S, Ding Q, et al. MP-04.10 flexible ureteroscopic stone dusting with holmium: YAG laser for treatment of renal stones. World J Urol. 2016;34(Suppl 1):19.
    1. Gamal W, Mamdouh A. MP28-04 flexible URS holmium laser stone dusting VS fragmentaion for 2 cm single renal stone. J Urol. 2015;193(4):e312–e313.
    1. Singh A, Sabnis R, Ganpule A, Chhabra J, Desai M. MP-04.11 initial experience of using high power holmium laser for dusting of large bulk renal stones by RIRS. World J Urol. 2016;34(Suppl 1):20–248.
    1. •• Matlaga BR, Chew B, Eisner B, Humphreys M, Knudsen B, Krambeck A, et al. Ureteroscopic laser lithotripsy: a review of dusting vs fragmentation with extraction. J Endourol. 2017; 10.1089/end.2017.0641. Key paper on dusting laser lithotripsy and its numerous advantages, as well as focusing on its technique.
    1. Santiago JE, Hollander AB, Soni SD, Link RE, Mayer WA. To dust or not to dust: a systematic review of ureteroscopic laser lithotripsy techniques. Curr Urol Rep. 2017;18(4):32.
    1. Tracey J, Gagin G, Morhardt D, Hollingsworth J, Ghani K. MP51-07 flexible ureteroscopy and laser lithotripsy for renal stones using ‘pop-dusting’: comparison of outcomes between traditional dusting settings versus ultra-high frequency settings. J Urol. 2016;195(4, Supplement):e683.
    1. Tracey JM, Gagin G, Morhardt D, Hollingsworth JM, Ghani KR. Ureteroscopic high frequency dusting utilizing a 120-watt holmium laser. J Endourol. 2017; 10.1089/end.2017.0220.
    1. Teichman JMH. Editorial comment on: In vitro comparison of stone fragmentation when using various settings with modern variable pulse holmium lasers by Bell et al. (from: Bell JR, Penniston KL, Nakada SY, J Endourol 2017;31:1067-1072) J Endourol. 2017;31(12):1345–1346.
    1. Bell J, Philip J, Rane A, Nakada SY. MP39-16 international holmium laser lithotripsy settings: an international survey of endourologists. J Endourol. 2016;30(S2):A336–A464.
    1. Shah O, Chew B, Humphreys M, Sur R, Knudsen BE, Matlaga B, et al. MP46-13 dusting vs basketing during ureteroscopic lithotripsy—what is more efficacious? A multi-centre prospective trial from the EDGE Research Consortium. J Endourol. 2015;29(Suppl 1):A351.
    1. Aldoukhi AH, Roberts WW, Hall TL, Ghani KR. Holmium laser lithotripsy in the new stone age: dust or bust? Front Surg. 2017;4:57.
    1. Wollin D, Jiang R, Tom W, Radvak D, Simmons WN, Preminger G, et al. PD35-05 how do you like your popcorn? An evaluation of laser settings and location in the efficiency of the popcorn effect. J Urol. 2017;197(4, Supplement):e664.
    1. Emiliani E, Talso M, Cho S-Y, Baghdadi M, Mahmoud S, Pinheiro H, et al. Optimal settings for the noncontact holmium:YAG stone fragmentation popcorn technique. J Urol. 2017;198(3):702–706.
    1. Al-Kandari AM, Desai M, Shokeir AA, Shoma AM, Smith AD. Difficult cases in endourology. London: Springer; 2013.
    1. Hecht SL, Wolf JS., Jr Techniques for holmium laser lithotripsy of intrarenal calculi. Urology. 2013;81(2):442–445.
    1. Ishii H, Griffin S, Somani BK. Ureteroscopy for stone disease in the paediatric population: a systematic review. BJU Int. 2015;115(6):867–873.
    1. Ghosh A, Somani BK. Safety and feasibility of day case ureteroscopy and laser lithotripsy (URSL) in patients with a solitary kidney. Centr Eur J Urol. 2016;69(1):91–95.
    1. El-Nahas AR, Elshal AM, El-Tabey NA, El-Assmy AM, Shokeir AA. Percutaneous nephrolithotomy for staghorn stones: a randomised trial comparing high-power holmium laser versus ultrasonic lithotripsy. BJU Int. 2016;118(2):307–312.
    1. Ishii H, Aboumarzouk OM, Somani BK. Current status of ureteroscopy for stone disease in pregnancy. Urolithiasis. 2014;42(1):1–7.
    1. Aboulela W, ElSheemy MS, Shoukry AI, Shouman AM, Elshenoufy A, Daw K, et al. Transurethral holmium laser cystolithotripsy in children: single center experience. J Endourol. 2015;29(6):661–665.
    1. Altay B, Erkurt B, Albayrak S. A review study to evaluate holmium:YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy. Lasers Med Sci. 2017;32(7):1615–1619.
    1. Bujons A, Millán F, Centeno C, Emiliani E, Sánchez Martín F, Angerri O, Caffaratti J, Villavicencio H. Mini-percutaneous nephrolithotomy with high-power holmium YAG laser in pediatric patients with staghorn and complex calculi. J Pediatr Urol. 2016;12(4):253.e1–253.e5.
    1. Ilic P, Djordjevic M, Kojovic V, Dzambasanovic S. Laser lithotripsy in the treatment of renal stones in children. A single-center experience. Ann Ital Chir. 2016;87:326–332.
    1. Sevinc C, Balaban M, Ozkaptan O, Karadeniz T. Flexible ureterorenoscopy and laser lithotripsy for the treatment of allograft kidney lithiasis. Transplant Proc. 2015;47(6):1766–1771.
    1. Dołowy Ł, Krajewski W, Dembowski J, Zdrojowy R, Kołodziej A. The role of lasers in modern urology. Centr Eur J Urol. 2015;68(2):175–182.
    1. Abedi AR, Allameh F, Razzaghi MR, Fadavi B, Qashqai H, Najafi S, Ranjbar A, Bashirian M. The efficacy and safety of laser lithotripsy in pregnancy. J Lasers Med Sci. 2017;8(2):84–87.
    1. Tepeler A, Sninsky BC, Nakada SY. Flexible ureteroscopic laser lithotripsy for upper urinary tract stone disease in patients with spinal cord injury. Urolithiasis. 2015;43(6):501–505.
    1. • Prattley S, Cheng S, Voss J, Geraghty R, Jones P, Somani BK. Ureteroscopy and stone treatment in the elderly (≥70 years): prospective outcomes over 5-years with a review of literature. Int Braz J Urol. 2018; (In Press). One of the several key papers on the safety of ureterorenoscopy and laser lithotripsy for specific patient populations.
    1. Yoshioka T, Otsuki H, Uehara S, Shimizu T, Murao W, Fujio K, Fujio K, Wada K, Araki M, Nasu Y. Effectiveness and safety of ureteroscopic holmium laser lithotripsy for upper urinary tract calculi in elderly patients. Acta Med Okayama. 2016;70(3):159–166.
    1. Sharaf A, Amer T, Somani BK, Aboumarzouk OM. Ureteroscopy in patients with bleeding diatheses, anticoagulated, and on anti-platelet agents: a systematic review and meta-analysis of the literature. J Endourol. 2017;31(12):1217–1225.
    1. Zhang P, Hu W-L. Sudden onset of a huge subcapsular renal hematoma following minimally invasive ureteroscopic holmium laser lithotripsy: a case report. Exp Ther Med. 2015;10(1):335–337.
    1. Guzelburc V, Balasar M, Colakogullari M, Guven S, Kandemir A, Ozturk A, et al. Comparison of absorbed irrigation fluid volumes during retrograde intrarenal surgery and percutaneous nephrolithotomy for the treatment of kidney stones larger than 2 cm. SpringerPlus. 2016;5(1):1707.
    1. Uchida Y, Takazawa R, Kitayama S, Tsujii T. Predictive risk factors for systemic inflammatory response syndrome following ureteroscopic laser lithotripsy. Urolithiasis. 2017; 10.1007/s00240-017-1000-3.
    1. Fan S, Gong B, Hao Z, Zhang L, Zhou J, Zhang Y, Liang C. Risk factors of infectious complications following flexible ureteroscope with a holmium laser: a retrospective study. Int J Clin Exp Med. 2015;8(7):11252–11259.
    1. Madec F-X, Suply E, Luyckx F, Nedelec M, Chowaniec Y, Branchereau J, le Normand L, Glemain P. L’urétérorénoscopie souple avec fragmentation laser dans le traitement des calculs du haut appareil urinaire chez les patients atteints d’une maladie du système nerveux avec un handicap moteur sévère. Prog Urol. 2017;27(6):369–374.
    1. Tao W, Cai CJ, Sun CY, Xue BX, Shan YX. Subcapsular renal hematoma after ureteroscopy with holmium:yttrium-aluminum-garnet laser lithotripsy. Lasers Med Sci. 2015;30(5):1527–1532.
    1. Paiva MM, da Silva RD, Jaworski P, Kim FJ, Molina WR. Subcapsular hematoma after ureteroscopy and laser lithotripsy. Can J Urol. 2016;23(4):8385–8387.
    1. Chouhan JD, Zhao HH, Magee B, McNeil BK. Retroperitoneal hemorrhage after ureteroscopy without laser lithotripsy: an extreme example of an underreported event? Can J Urol. 2016;23(3):8324–8328.
    1. Althunayan AM, Elkoushy MA, Elhilali MM, Andonian S. Adverse events resulting from lasers used in urology. J Endourol. 2014;28(2):256–260.
    1. Whitehurst LA, Somani BK. Perirenal hematoma after ureteroscopy: a systematic review. J Endourol. 2017;31(5):438–445.
    1. Vaidyanathan S, Samsudin A, Singh G, Hughes PL, Soni BM, Selmi F. Large subcapsular hematoma following ureteroscopic laser lithotripsy of renal calculi in a spina bifida patient: lessons we learn. Int Med Case Rep J. 2016;9:253–259.
    1. Aldoukhi AH, Ghani KR, Hall TL, Roberts WW. Thermal response to high-power holmium laser lithotripsy. J Endourol. 2017;31(12):1308–1312.
    1. Butticè S, Sener TE, Proietti S, Dragos L, Tefik T, Doizi S, et al. Temperature changes inside the kidney: what happens during holmium:yttrium-aluminium-garnet laser usage? J Endourol. 2016;30(5):574–579.
    1. • Wollin DA, Carlos EC, Tom WR, Simmons WN, Preminger GM, Lipkin ME. Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model. J Endourol. 2017; 10.1089/end.2017.0658. One of the several scary papers about possible and significantly harmful temperature increases during laser lithotripsy.
    1. Lange BI, Brendel T, Hüttmann G. Temperature dependence of light absorption in water at holmium and thulium laser wavelengths. Appl Opt. 2002;41(27):5797–5803.
    1. Kallidonis P, Amanatides L, Panagopoulos V, Kyriazis I, Vrettos T, Fligou F, Kamal W, Liatsikos EN. Does the heat generation by the thulium:yttrium aluminum garnet laser in the irrigation fluid allow its use on the upper urinary tract? An experimental study. J Endourol. 2016;30(4):422–427.
    1. Rossini FD. Excursion in chemical thermodynamics, from the past into the future. Pure Appl Chem. 1964;8(2):95–112.
    1. Gross AJ, Netsch C. Editorial comment on: Thermal response to high-power holmium laser lithotripsy by Aldoukhi et al. J Endourol. 2017;31(12):1313.
    1. Villa L, Cloutier J, Compérat E, Kronemberg P, Charlotte F, Berthe L, et al. Do we really need to wear proper eye protection when using holmium:YAG laser during endourologic procedures? Results from an ex vivo animal model on pig eyes. J Endourol. 2016;30(3):332–337.
    1. Hadjipavlou M, Lam V, Seth J, Anjum F, Sriprasad S. MP28-18 predicting radiation exposure in ureterorenoscopy and laser lithotripsy: an analysis of patient and stone characteristics. J Urol. 2015;193(4, Supplement):e317.
    1. Aboutaleb H. Fluoroscopy free flexible ureteroscopy with holmium: yttrium-aluminium-garnet laser lithotripsy for removal of renal calculi. Arab J Urol. 2016;14(2):123–130.
    1. Talso M, Emiliani E, Haddad M, Berthe L, Baghdadi M, Montanari E, et al. Laser fiber and flexible ureterorenoscopy: the safety distance concept. J Endourol. 2016;30(12):1269–1274.
    1. Emiliani E, Talso M, Traxer O. Re: Evaluation of novel ball-tip holmium laser fiber: impact on ureteroscope performance and fragmentation efficiency (from: Shin RH, Lautz JM, Cabrera FJ, et al. J Endourol 2016;30:189-194) J Endourol. 2017;31(6):618.
    1. Bagbanci S. Holmium: yttrium aluminum garnet laser and guidewires: is there a durability difference among guidewires against laser energy? An in vitro experimental study. J Endourol. 2017;31(5):528–532.
    1. Huang Z, Fu F, Zhong Z, Xu R, Zhang L, Deng G, et al. Zebra guidewire damage by holmium: YAG laser and management of removal. Int J Clin Exp Med. 2015;8(8):14251–14253.

Source: PubMed

3
订阅