An expanded multilocus sequence typing scheme for propionibacterium acnes: investigation of 'pathogenic', 'commensal' and antibiotic resistant strains

Andrew McDowell, Emma Barnard, István Nagy, Anna Gao, Shuta Tomida, Huiying Li, Anne Eady, Jonathan Cove, Carl E Nord, Sheila Patrick, Andrew McDowell, Emma Barnard, István Nagy, Anna Gao, Shuta Tomida, Huiying Li, Anne Eady, Jonathan Cove, Carl E Nord, Sheila Patrick

Abstract

The Gram-positive bacterium Propionibacterium acnes is a member of the normal human skin microbiota and is associated with various infections and clinical conditions. There is tentative evidence to suggest that certain lineages may be associated with disease and others with health. We recently described a multilocus sequence typing scheme (MLST) for P. acnes based on seven housekeeping genes (http://pubmlst.org/pacnes). We now describe an expanded eight gene version based on six housekeeping genes and two 'putative virulence' genes (eMLST) that provides improved high resolution typing (91eSTs from 285 isolates), and generates phylogenies congruent with those based on whole genome analysis. When compared with the nine gene MLST scheme developed at the University of Bath, UK, and utilised by researchers at Aarhus University, Denmark, the eMLST method offers greater resolution. Using the scheme, we examined 208 isolates from disparate clinical sources, and 77 isolates from healthy skin. Acne was predominately associated with type IA(1) clonal complexes CC1, CC3 and CC4; with eST1 and eST3 lineages being highly represented. In contrast, type IA(2) strains were recovered at a rate similar to type IB and II organisms. Ophthalmic infections were predominately associated with type IA(1) and IA(2) strains, while type IB and II were more frequently recovered from soft tissue and retrieved medical devices. Strains with rRNA mutations conferring resistance to antibiotics used in acne treatment were dominated by eST3, with some evidence for intercontinental spread. In contrast, despite its high association with acne, only a small number of resistant CC1 eSTs were identified. A number of eSTs were only recovered from healthy skin, particularly eSTs representing CC72 (type II) and CC77 (type III). Collectively our data lends support to the view that pathogenic versus truly commensal lineages of P. acnes may exist. This is likely to have important therapeutic and diagnostic implications.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. eBURST population snapshot of the…
Figure 1. eBURST population snapshot of the eMLST database.
A total of eight clonal complexes, where isolates share 7/8 loci with at least one other eST in the group, and 21 singletons were identified. The frequency of each eST is indicated by the area of each circle. Type IA1 isolates are represented by CC1, CC3, CC4 and 11 singletons; type IA2 by CC2 and two singletons, type IB by CC5 and one singleton; type II by CC6, CC69 and six singletons; type III by CC77 and one singleton. Founding genotypes are highlighted in blue and sub-founders in yellow. eSTs only isolated from healthy skin are circled in green. Note, the spacing between singletons and clonal complexes is not related to the genetic distance between them. Culture collection strain NCTC737 (type IA1) is represented by eST1 (ST18, Arahus), KPA171202 by eST5 (ST36, Arahus), CCUG32901 by eST5 (ST36, Arahus) and ATCC11828 by eST27 (novel ST, Arahus).
Figure 2. Neighbour-net splits graph of allelic…
Figure 2. Neighbour-net splits graph of allelic profiles from all 91 P. acnes eSTs.
Parallelogram structures indicative of recombination are clearly present within the major divisions I, II and III. Overall levels of recombination within the population were statistically significant (phi test; p = 0.021).
Figure 3. Minimum evolution phylogenetic tree of…
Figure 3. Minimum evolution phylogenetic tree of concatenated gene sequences from all 91 P. acnes eSTs.
The tree was constructed using concatenated sequences (4253 bp) from each eST. The sequence input order was randomized, and bootstrapping resampling statistics were performed using 500 data sets. Bootstrap values are shown on the arms of the tree. Horizontal bar represents genetic distance. Coloured vertical bars on the right relate to eBURST groupings or clonal complexes. The colour scheme relating to each eBURST group is described, with singletons highlighted in red. Culture collection strain NCTC737 (type IA1) is represented by eST1 (ST18, Arahus), KPA171202 by eST5 (ST36, Arahus), CCUG32901 by eST5 (ST36, Arahus) and ATCC11828 by eST27 (novel ST, Arahus).

References

    1. Patrick S, McDowell A(2011) The Propionibacteriaceae. In Vol 5 Bergey’s Manual of Systematic Bacteriology 2nd Edn. Edited by M. Goodfellow, P Kämpfer, H-J. Busse, M. E. Trujillo, K-I, Suzuki, W, Ludwig & B. W. B. Whitman: New York: Springer-Verlag..
    1. Dessinioti C, Katsambas AD (2010) The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol 28: 2–7.
    1. Tunney MM, Patrick S, Curran MD, Ramage G, Hanna D, et al. (1999) Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16 S rRNA gene. J Clin Microbiol 37: 3281–3290.
    1. Zeller V, Ghorbani A, Strady C, Leonard P, Mamoudy P, et al. (2007) Propionibacterium acnes: an agent of prosthetic joint infection and colonization. J Infect 55: 119–124.
    1. Piper KE, Jacobson MJ, Cofield RH, Sperling JW, Sanchez-Sotelo J, et al. (2009) Microbiologic diagnosis of prosthetic shoulder infection by use of implant sonication. J Clin Microbiol 6: 1878–1884.
    1. Niazi SA, Clarke D, Do T, Gilbert SC, Mannocci F, et al. (2010) Propionibacterium acnes and Staphylococcus epidermidis isolated from refractory endodontic lesions are opportunistic pathogens. J Clin Microbiol 48: 3859–3869.
    1. Javey G, Albini TA, Flynn HW Jr (2010) Resolution of pigmented keratic precipitates following treatment of pseudophakic endophthalmitis caused by Propionibacterium acnes . Ophthalmic Surg Lasers Imaging 9: 1–3.
    1. Schaeverbeke T, Lequen L, de Barbeyrac B, Labbe L, Bebear CM, et al. (1998) Propionibacterium acnes isolated from synovial tissue and fluid in a patient with oligoarthritis associated with acne and pustulosis. Arthritis Rheum 41: 1889–1893.
    1. Eishi Y, Suga M, Ishige I, Kobayashi D, Yamada T, et al. (2002) Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J Clin Microbiol 40: 198–204.
    1. Yasuhara T, Tada R, Nakano Y, Tei M, Mochida C, et al. (2005) The presence of Propionibacterium spp. in the vitreous fluid of uveitis patients with sarcoidosis. Acta Ophthalmol Scand 83: 364–369.
    1. Cohen RJ, Shannon BA, McNeal JE, Shannon T, Garrett KL (2005) Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J Urol 173: 1969–1974.
    1. McDowell A, Valanne S, Ramage G, Tunney MM, Glenn JV, et al. (2005) Propionibacterium acnes types I and II represent phylogenetically distinct groups. J Clin Microbiol 43: 326–334.
    1. McDowell A, Perry AL, Lambert PA, Patrick S (2008) A new phylogenetic group of Propionibacterium acnes . J Med Microbiol 57: 218–224.
    1. Valanne S, McDowell A, Ramage G, Tunney MM, Einarsson GG, et al. (2005) CAMP factor homologues in Propionibacterium acnes: a new protein family differentially expressed by types I and II. Microbiology 151: 1369–1379.
    1. Lodes MJ, Secrist H, Benson DR, Jen S, Shanebeck KD, et al. (2006) Variable expression of immunoreactive surface proteins of Propionibacterium acnes . Microbiology 152: 3667–3681.
    1. Nagy I, Pivarcsi A, Kis K, Koreck A, Bodai L, et al. (2006) Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect 8: 2195–2205.
    1. McDowell A, Gao A, Barnard E, Fink C, Murray PI, et al. (2011) A novel multilocus sequence typing scheme for the opportunistic pathogen Propionibacterium acnes and characterization of type I cell surface-associated antigens. Microbiology 157: 1990–2003.
    1. Kilian M, Scholz C, Lomholt HB (2012) Multilocus Sequence Typing (MLST) and Phylogenetic Analysis of Propionibacterium acnes . J Clin Microbiol 50: 1158–1165.
    1. Vörös A, Horváth B, Hunyadkürti J, McDowell A, Barnard E, et al. (2012) Complete genome sequences of three Propionibacterium acnes isolates from the type IA2 cluster. J Bacteriol 194: 1621–1622.
    1. Dekio I, Rajendram D, Morita E, Gharbia S, Shah HN (2012) Genetic diversity of Propionibacterium acnes strains isolated from human skin in Japan and comparison with their distribution in Europe. J Med Microbiol 61: 622–630.
    1. Lomholt HB, Kilian M (2010) Population genetic analysis of Propionibacterium acnes identifies a subpopulation and epidemic clones associated with acne. PLoS One 5: e12277.
    1. Zhang W, Jayarao BM, Knabel SJ (2004) Multi-virulence-locus sequence typing of Listeria monocytogenes . Appl Environ Microbiol 70: 913–920.
    1. Lemée L, Bourgeois I, Ruffin E, Collignon A, Lemeland J-F, et al. (2005) Multilocus sequence analysis and comparative evolution of virulence-associated genes and housekeeping genes of Clostridium difficile . Microbiology 151: 3171–3180.
    1. Furukawa A, Uchida K, Ishige Y, Ishige I, Kobayashi I, et al. (2009) Characterisation of Propionibacterium acnes isolates from sarcoid and non-sarcoid tissues with special reference to cell invasiveness, serotype, and trigger factor gene polymorphism. Microbial Pathogenesis 46: 80–87.
    1. Holland C, Mak TN, Zimny-Arndt U, Schmid M, Meyer TF, et al. (2010) Proteomic identification of secreted proteins of Propionibacterium acnes . BMC Microbiology 10: 230.
    1. Brzuszkiewicz E, Weiner J, Wollherr A, Thürmer A, Hüpeden J, et al. (2011) Comparative genomics and transcriptomics of Propionibacterium acnes . PLoS One 6: e21581.
    1. Lang S, Palmer M (2003) Chacterization of Streptococcus agalactiae CAMP factor as a pore-forming toxin. J Biol Chem 278: 38167–38173.
    1. Bruggemann H, Henne A, Hoster F, Liesegang H, Wiezer A (2004) The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305: 671–673.
    1. Hunyadkürti J, Feltóti Z, Horváth B, Nagymihály M, Vörös A, et al. (2011) Complete genome sequence of Propionibacterium acnes type IB strain 6609. J Bacteriol 17: 4561–4562.
    1. Horváth B, Hunyadkürti J, Vörös A, Fekete C, Urbán E, et al. (2012) Genome sequence of Propionibacterium acnes type II strain ATCC 11828. J Bacteriol 194: 202–203.
    1. Butler-Wu SM, Sengupta DJ, Kittichotirat W, Matsen FA 3rd, Bumgarner RE (2011) Genome sequence of a novel species, Propionibacterium humerusii . J Bacteriol 193: 3678.
    1. Shannon BA, Cohen RJ, Garrett KL (2006) Polymerase chain reaction-based identification of Propionibacterium acnes types isolated from the male urinary tract: evaluation of adolescents, normal adults and men with prostatic pathology. BJU Int 98: 388–392.
    1. Holmberg A, Lood R, Mörgelin M, Söderquist B, Holst E, et al. (2009) Biofilm formation by Propionibacterium acnes is a characteristic of invasive isolates. Clin Microbiol Infect 15: 787–795.
    1. Sampedro MF, Piper KE, McDowell A, Patrick S, Mandrekar JN, et al. (2009) Species of Propionibacterium and Propionibacterium acnes phylotypes associated with orthopaedic implants. Diagn Microbiol Infect Dis 64: 138–45.
    1. Spratt BG, Maiden MCJ (1999) Bacterial population genetics, evolution and epidemiology. Phil Trans R Soc Lond B 354: 701–710.
    1. Sukhnanand S, Alcaine S, Warnick LD, Su W-L, Hof J, et al. (2005) DNA sequence-based subtyping and evolutionary analysis of selected Salmonella enterica serotypes. J Clin Microbiol 43: 3688–3698.
    1. Jiang L, Chen J, Xu J, Zhang X, Wang S, et al. (2007) Virulence characterization and genotypic analyses of Listeria monocytogenes isolates from food and processing envirnoments in eastern China. Int J Food Microbiol 121: 53–59.
    1. Bojar RA, Holland K (2004) Acne and Propionibacterium acnes . Clin Dermatol 22: 375–379.
    1. Nagy I, Pivarcsi A, Koreck A, Széll M, Urbán E, et al. (2005) Distinct strains of Propionibacterium acnes induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol 124: 931–938.
    1. Ross JI, Eady EA, Cove JH, Jones CE, Ratyal AH, et al. (1997) Clinical resistance to erythromycin and clindamycin in cutaneous propionibacteria isolated from acne patients is associated with mutations in 23 S rRNA. Antimicrob Agents Chemother 41: 1162–1165.
    1. Ross JI, Eady EA, Cove JH, Cunliffe WJ (1998) 16 S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob Agents Chemother 42: 1702–1705.
    1. Ross JI, Eady EA, Carnegie E, Cove JH (2002) Detection of transposon Tn5432-mediated macrolide-lincosamide-streptogramin B (MLSB) resistance in cutaneous propionibacteria from six European cities. J Antimicrob Chemother 49: 165–168.
    1. Jahns AC, Lundskog B, Ganceviciene R, Palmer RH, Golovleva I, et al. (2012) An increased incidence of Propionibacterium acnes biofilms in acne vulgaris: a case-control study. Br J Dermatol. [Epub ahead of print].
    1. Ramage G, Tunney MM, Patrick S, Gorman SP, et al. (2003) Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials 19: 3221–3227.
    1. Coates P, Vyakrnam S, Eady EA, Jones CE, Cove JH, et al. (2002) Prevalence of antibiotic-resistant propionibacteria on the skin of acne patients: 10-year surveillance data and snapshot distribution study. Br J Dermatol 146: 840–848.
    1. Oprica C, Löfmark S, Lund B, Edlund C, Emtestam L, et al. (2005) Genetic basis of resistance in Propionibacterium acnes strains isolated from diverse types of infection in different European countries. Anaerobe 11: 137–143.
    1. Ross JI, Snelling AM, Eady EA, Cove JH, Cunliffe WJ, et al. (2001) Phenotypic and genotypic characterization of antibiotic-resistant Propionibacterium acnes isolated from acne patients attending dermatology clinics in Europe, the U.S.A., Japan and Australia. Br J Dermatol 144: 339–346.
    1. Ross JI, Snelling AM, Carnegie E, Coates P, Cunliffe WJ, et al. (2003) Antibiotic-resistant acne: lessons from Europe. Br J Dermatol 148: 467–478.
    1. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.
    1. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267.
    1. Kosakovsky Pond SL, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21: 2531–2533.
    1. Kosakovsky Pond SL, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22, 1208–1222.
    1. Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22: 2493–2499.
    1. Haubold B, Hudson RR (2000) LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage Analysis. Bioinformatics 16: 847–848.
    1. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186: 1518–1530.

Source: PubMed

3
订阅