Efficacy of a long-term home parenteral nutrition regimen containing fish oil-derived n-3 polyunsaturated fatty acids: a single-centre, randomized, double blind study

Helene Bohnert, Max Maurer, Philip C Calder, Johann Pratschke, Paul Thul, Verena Müller, Helene Bohnert, Max Maurer, Philip C Calder, Johann Pratschke, Paul Thul, Verena Müller

Abstract

Background: Data on the use of lipid emulsions containing fish-oil (FO) derived n-3 polyunsaturated fatty acids (n-3 PUFAs) in addition to medium- and long-chain triglycerides (MCT/LCT) for long-term home parenteral nutrition (HPN) are limited. This study aimed to compare HPN regimens containing either MCT/LCT/FO-derived n-3 PUFAs (test group) or MCT/LCT (control group) with respect to efficacy and safety during 8 weeks of HPN using a non-inferiority trial design with change of body mass index (BMI) as primary endpoint.

Methods: This prospective, randomized, double-blind study was conducted at the Charité, Berlin, Germany, from 02/2008 until 01/2014. Adult patients (n = 42; aged 18 to 80 years) requiring HPN for at least 8 weeks were randomly assigned to the test or control group. Assessments included weight, height, physical examination (cardiovascular system, abdomen, respiratory tract, liver, spleen, kidney, urine tract, skin, mucous membrane, neurology, psyche, musculoskeletal system, lymph nodes), bio impedance analysis, calorimetry, blood samplings (haematology, biochemistry, fatty acid analysis) and quality of life questionnaire.

Results: BMI increased in both groups with 8 weeks of HPN (ΔBMI(test group) = 1.3 ± 1.1 kg/m2; ΔBMI(control group) = 0.6 ± 0.9 kg/m2) demonstrating non-inferiority of the test regimen regarding nutritional efficacy. Assessment of secondary efficacy endpoints revealed that after 8 weeks of HPN with the test regimen, the proportion of n-3 PUFAs in serum, platelet and red blood cell phospholipids significantly increased, while the proportion of n-6 PUFAs decreased. The fatty acid pattern in the control group remained mostly stable. No statistically significant differences were detected between groups regarding inflammatory markers or quality of life. Laboratory parameters reflecting the safety endpoints liver function, bone metabolism, renal function, metabolic activity, lipid metabolism, coagulation and haematology were stable in both groups and no group differences were detected regarding (serious) adverse events.

Conclusions: The HPN regimen prepared with MCT/LCT/FO-derived n-3 PUFAs was at least as efficient in maintaining or even improving nutritional status during HPN as the control MCT/LCT regimen. Administration of FO-derived n-3 PUFAs for 8 weeks altered the fatty acid pattern of serum, platelet and red blood cell phospholipids. Both regimens were safe and well tolerated.

Trial registration: www.clinicaltrials.gov , registration number: NCT00530738.

Keywords: Fish oil; Home parenteral nutrition; Lipid emulsion; N-3 polyunsaturated fatty acids.

Conflict of interest statement

Authors’ information

Not applicable

Ethics approval and consent to participate

This study was approved by the ethics committee of the federal city state Berlin, Landesamt für Gesundheit und Soziales (LAGeSo), reference number EK6 194/07. Written informed consent was obtained from all participants prior to any study procedure.

Consent for publication

Not applicable.

Competing interests

PCC has received speaking honoraria from B. Braun. For conflict of interest see “funding sources”. Otherwise the authors have no conflict of interest to declare.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart of study patients. Figure displays the number of patients screened, randomised and included for ITT and PP / FAS analyses. Nine patients of the ITT population were excluded from PP analysis because of premature study termination due to severe protocol deviation (N = 1), withdrawal of informed consent (N = 2) or serious adverse events (SAEs; N = 6). SAEs leading to premature study discontinuation were not investigational product related but required discontinuation of study medication due to necessary hospitalisation

References

    1. Staun M, Pironi L, Bozzetti F, Baxter J, Forbes A, Joly F, et al. ESPEN guidelines on parenteral nutrition: home parenteral nutrition (HPN) in adult patients. Clin Nutr. 2009;28:467–479. doi: 10.1016/j.clnu.2009.04.001.
    1. Pironi L, Goulet O, Buchman A, Messing B, Gabe S, Candusso M, et al. Outcome on home parenteral nutrition for benign intestinal failure: a review of the literature and benchmarking with the European prospective survey of ESPEN. Clin Nutr. 2012;31:831–845. doi: 10.1016/j.clnu.2012.05.004.
    1. McNamara MJ, Alexander HR, Norton JA. Cytokines and their role in the pathophysiology of cancer cachexia. JPEN J Parenter Enteral Nutr. 1992;16:50S–55S. doi: 10.1177/014860719201600603.
    1. Bozzetti F, Gavazzi C, Ferrari P, Dworzak F. Effect of total parenteral nutrition on the protein kinetics of patients with cancer cachexia. Tumori. 2000;86:408–411. doi: 10.1177/030089160008600508.
    1. Lawson RM, Doshi MK, Barton JR, Cobden I. The effect of unselected post-operative nutritional supplementation on nutritional status and clinical outcome of orthopaedic patients. Clin Nutr. 2003;22:39–46. doi: 10.1054/clnu.2002.0588.
    1. Wanten GJA, Calder PC. Immune modulation by parenteral lipid emulsions. Am J Clin Nutr. 2007;85:1171–1184. doi: 10.1093/ajcn/85.5.1171.
    1. Stapleton RD, Martin JM, Mayer K. Fish oil in critical illness: mechanisms and clinical applications. Crit Care Clin. 2010;26:501–514. doi: 10.1016/j.ccc.2010.04.009.
    1. Calder PC. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015;1851:469–484. doi: 10.1016/j.bbalip.2014.08.010.
    1. Waitzberg DL, Torrinhas RS, Jacintho TM. New parenteral lipid emulsions for clinical use. JPEN J Parenter Enteral Nutr. 2006;30:351–367. doi: 10.1177/0148607106030004351.
    1. Miles EA, Calder PC. Fatty acids, lipid emulsions and the immune and inflammatory systems. World Rev Nutr Diet. 2015;112:17–30. doi: 10.1159/000365426..
    1. Calder PC, Adolph M, Deutz NE, Grau T, Innes JK, Klek S, et al. Lipids in the intensive care unit: recommendations from the ESPEN expert group. Clin Nutr. 2017. 10.1016/j.clnu.2017.08.032.
    1. Wachtler P, Konig W, Senkal M, Kemen M, Koller M. Influence of a total parenteral nutrition enriched with omega-3 fatty acids on leukotriene synthesis of peripheral leukocytes and systemic cytokine levels in patients with major surgery. J Trauma. 1997;42:191–198. doi: 10.1097/00005373-199702000-00004.
    1. Grimm H, Mertes N, Goeters C, Schlotzer E, Mayer K, Grimminger F, Furst P. Improved fatty acid and leukotriene pattern with a novel lipid emulsion in surgical patients. Eur J Nutr. 2006;45:55–60. doi: 10.1007/s00394-005-0573-8.
    1. Morlion BJ, Torwesten E, Lessire H, Sturm G, Peskar BM, Furst P, Puchstein C. The effect of parenteral fish oil on leukocyte membrane fatty acid composition and leukotriene-synthesizing capacity in patients with postoperative trauma. Metabolism. 1996;45:1208–1213. doi: 10.1016/S0026-0495(96)90237-1.
    1. Koller M, Senkal M, Kemen M, Konig W, Zumtobel V, Muhr G. Impact of omega-3 fatty acid enriched TPN on leukotriene synthesis by leukocytes after major surgery. Clin Nutr. 2003;22:59–64. doi: 10.1054/clnu.2002.0592.
    1. Wichmann MW, Thul P, Czarnetzki H-D, Morlion BJ, Kemen M, Jauch K-W. Evaluation of clinical safety and beneficial effects of a fish oil containing lipid emulsion (Lipoplus, MLF541): data from a prospective, randomized, multicenter trial. Crit Care Med. 2007;35:700–706. doi: 10.1097/.
    1. Liang B, Wang S, Ye Y-J, Yang X-D, Wang Y-L, Qu J, et al. Impact of postoperative omega-3 fatty acid-supplemented parenteral nutrition on clinical outcomes and immunomodulations in colorectal cancer patients. World J Gastroenterol. 2008;14:2434–2439. doi: 10.3748/wjg.14.2434.
    1. Weiss G, Meyer F, Matthies B, Pross M, Koenig W, Lippert H. Immunomodulation by perioperative administration of n-3 fatty acids. Br J Nutr. 2002;87(Suppl 1):S89–S94. doi: 10.1079/BJN2001461.
    1. Jiang ZM, Wilmore DW, Wang XR, Wei JM, Zhang ZT, Gu ZY, et al. Randomized clinical trial of intravenous soybean oil alone versus soybean oil plus fish oil emulsion after gastrointestinal cancer surgery. Br J Surg. 2010;97:804–809. doi: 10.1002/bjs.6999.
    1. Calder PC. Lipids for intravenous nutrition in hospitalised adult patients: a multiple choice of options. Proc Nutr Soc. 2013;72:263–276. doi: 10.1017/S0029665113001250.
    1. Dyerberg J, Bang HO. Haemostatic function and platelet polyunsaturated fatty acids in Eskimos. Lancet. 1979;2:433–435. doi: 10.1016/S0140-6736(79)91490-9.
    1. Wachira JK, Larson MK, Harris WS. N-3 fatty acids affect haemostasis but do not increase the risk of bleeding: clinical observations and mechanistic insights. Br J Nutr. 2014;111:1652–1662. doi: 10.1017/S000711451300425X.
    1. Jeansen S, Witkamp RF, Garthoff JA, van Helvoort A, Calder PC. Fish oil LC-PUFAs do not affect blood coagulation parameters and bleeding manifestations: analysis of 8 clinical studies with selected patient groups on omega-3-enriched medical nutrition. Clin Nutr. 2018;37:948–957. doi: 10.1016/j.clnu.2017.03.027.
    1. Jones CJ, Calder PC. Influence of different intravenous lipid emulsions on fatty acid status and laboratory and clinical outcomes in adult patients receiving home parenteral nutrition: a systematic review. Clin Nutr. 2016. 10.1016/j.clnu.2016.12.026.
    1. Klek S, Chambrier C, Singer P, Rubin M, Bowling T, Staun M, et al. Four-week parenteral nutrition using a third generation lipid emulsion (SMOFlipid)--a double-blind, randomised, multicentre study in adults. Clin Nutr. 2013;32:224–231. doi: 10.1016/j.clnu.2012.06.011.
    1. Driscoll DF, Ling P-R, Bistrian BR. Pharmacopeial compliance of fish oil-containing parenteral lipid emulsion mixtures: globule size distribution (GSD) and fatty acid analyses. Int J Pharm. 2009;379:125–130. doi: 10.1016/j.ijpharm.2009.06.021.
    1. Versleijen MW, Roelofs HM, Rombouts C, Hermans PW, Noakes PS, Calder PC, Wanten GJ. Short-term infusion of a fish oil-based lipid emulsion modulates fatty acid status, but not immune function or (anti)oxidant balance: a randomized cross-over study. Eur J Clin Investig. 2012;42:290–302. doi: 10.1111/j.1365-2362.2011.02582.x.
    1. Barros KV, Cassulino AP, Schalch L, Della Valle Munhoz E, Manetta JA, Noakes PS, et al. Supplemental intravenous n-3 fatty acids and n-3 fatty acid status and outcome in critically ill elderly patients in the ICU receiving enteral nutrition. Clin Nutr. 2013;32:599–605. doi: 10.1016/j.clnu.2012.10.016.
    1. Friede T, Kieser M. Blinded sample size reassessment in non-inferiority and equivalence trials. Stat Med. 2003;22:995–1007. doi: 10.1002/sim.1456.
    1. Pironi L, Agostini F, Guidetti M. Intravenous lipids in home parenteral nutrition. World Rev Nutr Diet. 2015;112:141–149. doi: 10.1159/000365608..
    1. Pradelli L, Mayer K, Muscaritoli M, Heller AR. N-3 fatty acid-enriched parenteral nutrition regimens in elective surgical and ICU patients: a meta-analysis. Crit Care. 2012;16:R184. doi: 10.1186/cc11668.
    1. Manzanares W, Dhaliwal R, Jurewitsch B, Stapleton RD, Jeejeebhoy KN, Heyland DK. Parenteral fish oil lipid emulsions in the critically ill: a systematic review and meta-analysis. JPEN J Parenter Enteral Nutr. 2014;38:20–28. doi: 10.1177/0148607113486006.
    1. Manzanares W, Langlois PL, Dhaliwal R, Lemieux M, Heyland DK. Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and meta-analysis. Crit Care. 2015;19:167. doi: 10.1186/s13054-015-0888-7.
    1. Friesecke S, Lotze C, Köhler J, Heinrich A, Felix SB, Abel P. Fish oil supplementation in the parenteral nutrition of critically ill medical patients: a randomised controlled trial. Intensive Care Med. 2008;34:1411–1420. doi: 10.1007/s00134-008-1072-1.
    1. Palmer AJ, Ho CKM, Ajibola O, Avenell A. The role of ω-3 fatty acid supplemented parenteral nutrition in critical illness in adults: a systematic review and meta-analysis. Crit Care Med. 2013;41:307–316. doi: 10.1097/CCM.0b013e3182657578.
    1. Norman K, Kirchner H, Lochs H, Pirlich M. Malnutrition affects quality of life in gastroenterology patients. World J Gastroenterol. 2006;12:3380–3385. doi: 10.3748/wjg.v12.i21.3385.
    1. Gupta D, Lis CG, Granick J, Grutsch JF, Vashi PG, Lammersfeld CA. Malnutrition was associated with poor quality of life in colorectal cancer: a retrospective analysis. J Clin Epidemiol. 2006;59:704–709. doi: 10.1016/j.jclinepi.2005.08.020.
    1. Chambers A, Hennessy E, Powell-Tuck J. Longitudinal trends in quality of life after starting home parenteral nutrition: a randomised controlled study of telemedicine. Clin Nutr. 2006;25:505–514. doi: 10.1016/j.clnu.2006.01.001.
    1. Culine S, Chambrier C, Tadmouri A, Senesse P, Seys P, Radji A, et al. Home parenteral nutrition improves quality of life and nutritional status in patients with cancer: a French observational multicentre study. Support Care Cancer. 2014;22:1867–1874. doi: 10.1007/s00520-014-2164-9.
    1. Vashi PG, Dahlk S, Popiel B, Lammersfeld CA, Ireton-Jones C, Gupta D. A longitudinal study investigating quality of life and nutritional outcomes in advanced cancer patients receiving home parenteral nutrition. BMC Cancer. 2014;14:593. doi: 10.1186/1471-2407-14-593.

Source: PubMed

3
订阅