Mitigation of oxidative damage by green tea polyphenols and Tai Chi exercise in postmenopausal women with osteopenia

Guoqing Qian, Kathy Xue, Lili Tang, Franklin Wang, Xiao Song, Ming-Chien Chyu, Barbara C Pence, Chwan-Li Shen, Jia-Sheng Wang, Guoqing Qian, Kathy Xue, Lili Tang, Franklin Wang, Xiao Song, Ming-Chien Chyu, Barbara C Pence, Chwan-Li Shen, Jia-Sheng Wang

Abstract

Background: Osteoporosis is a degenerative bone disease predominantly in postmenopausal women. Green tea polyphenols (GTP) and Tai Chi (TC) have been shown to be beneficial on human bone health. This study examined the efficacy of GTP and TC on mitigation of oxidative damage in postmenopausal women with osteopenia.

Methods: A 6-month randomized and placebo-controlled clinical trial was conducted in 171 postmenopausal women with osteopenia, who were recruited from Lubbock County, Texas. These participants were treated with placebo, GTP (500 mg daily), placebo + TC (60-minute group exercise, 3 times/week), or GTP (500 mg daily) + TC (60-minute group exercise, 3 times/week), respectively. Their blood and urine samples were collected at the baseline, 1-, 3- and 6-months during intervention for assessing levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative DNA damage biomarker, and concentrations of serum and urine GTP components.

Results: The elevated concentrations of serum and urinary GTP components demonstrated a good adherence for the trial. A significant reduction of urinary 8-OHdG concentrations was found in all three treated groups during 3-month (P<0.001) and 6-month (P<0.001) intervention, as compared to the placebo group. The significant time- and dose-effects on mitigation of the oxidative damage biomarker were also found for GTP, TC, and GTP+TC intervened groups.

Conclusion: Our study demonstrated that GTP and TC interventions were effective strategies of reducing the levels of oxidative stress, a putative mechanism for osteoporosis in postmenopausal women, and more importantly, working in an additive manner, which holds the potential as alternative tools to improve bone health in this population.

Trial registration: ClinicalTrials.gov NCT00625391.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow chart of the trial.
Figure 1. Flow chart of the trial.
Figure 2. Mean (±SEM) serum GTP concentrations…
Figure 2. Mean (±SEM) serum GTP concentrations in study participants in the clinical trial.
A: serum EGCG concentrations; B: serum ECG concentrations. Starting from first month, serum EGCG and ECG kept constant with minor fluctuations in the GTP and GTP+TC groups. The differences among different time points (1-, 3-, or 6-months) within each group and between groups were tested with repeated measures ANOVA followed by Bonferroni correction for multiple comparisons for each outcome and the significant difference was found in EGCG concentrations in the GTP group between 3- and 6-months (P<0.050). No significant differences were found between these two groups at each time point (P>0.050).
Figure 3. Mean (±SEM) urinary GTP concentrations…
Figure 3. Mean (±SEM) urinary GTP concentrations in study participants in intervention groups.
A: urinary EC concentrations; B: urinary EGC concentrations. Starting from first month, urinary EC and EGC concentrations kept constant with minor fluctuations in GTP and GTP+TC groups. No significant differences were found between these two groups at same time points (P>0.050, tested with Wilcoxon rank sum test). The differences among differnt time points within each group were tested with Friedman’s test followed by Wilcoxon signed rank test with Bonferroni correction for multiple comparisons for each outcome and the significant difference only existed in the EGC concentrations in GTP+TC group between 1- and 3-months (P<0.050).
Figure 4. Urinary 8-OHdG concentrations in study…
Figure 4. Urinary 8-OHdG concentrations in study participants in different groups.
A: baseline, no significant differences in urinary 8-OHdG were found (P = 0.299); B: 1 month, urinary 8-OHdG concentrations were reduced by all treatments, but no significant differences were observed (P = 0.110); C: 3 month, urinary 8-OHdG concentrations were significantly reduced in all treatment groups (P<0.001); D: 6 month, urinary 8-OHdG concentrations were significantly reduced in all treatment groups (P<0.001).
Figure 5. Temporal patterns of urinary 8-OHdG…
Figure 5. Temporal patterns of urinary 8-OHdG concentrations in study participants.
A: Placebo, no significant differences was observed in different treatment periods (P = 0.133); B: TC, compared to baseline, urinary 8-OHdG concentrations were significantly reduced at 1-, 3-, and 6- months treatment (P<0.001); C: GTP, compared to baseline, urinary 8-OHdG concentrations were all significantly reduced at 1-, 3-, and 6-months treatment (P<0.001); and D: GTP+TC, compared to baseline, urinary 8-OHdG concentrations were all significantly reduced at 1-, 3- and 6-months treatment (P<0.001).

References

    1. NIH (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285: 785–795.
    1. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194: S3–11.
    1. Boonen S, Dejaeger E, Vanderschueren D, Venken K, Bogaerts A, et al. (2008) Osteoporosis and osteoporotic fracture occurrence and prevention in the elderly: a geriatric perspective. Best Pract Res Clin Endocrinol Metab 22: 765–785.
    1. Looker AC, Johnston CC Jr, Wahner HW, Dunn WL, Calvo MS, et al. (1995) Prevalence of low femoral bone density in older U.S. women from NHANES III. J Bone Miner Res 10: 796–802.
    1. Inada M, Miyaura C (2010) [Cytokines in bone diseases. Cytokine and postmenopausal osteoporosis]. Clin Calcium 20: 1467–1472.
    1. Clarke BL, Khosla S (2010) Female reproductive system and bone. Arch Biochem Biophys 503: 118–128.
    1. Syed FA, Ng AC (2010) The pathophysiology of the aging skeleton. Curr Osteoporos Rep 8: 235–240.
    1. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288: 275–279.
    1. Isomura H, Fujie K, Shibata K, Inoue N, Iizuka T, et al. (2004) Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 197: 93–100.
    1. Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31: 266–300.
    1. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27: 120–139.
    1. Pilger A, Rudiger HW (2006) 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 80: 1–15.
    1. Shen CL, Yeh JK, Samathanam C, Cao JJ, Stoecker BJ, et al. (2011) Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporos Int 22: 327–337.
    1. Shen CL, Yeh JK, Cao JJ, Wang JS (2009) Green tea and bone metabolism. Nutr Res 29: 437–456.
    1. Wang JS, Luo H, Wang P, Tang L, Yu J, et al. (2008) Validation of green tea polyphenol biomarkers in a phase II human intervention trial. Food Chem Toxicol 46: 232–240.
    1. Yang CS, Lambert JD, Ju J, Lu G, Sang S (2007) Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol Appl Pharmacol 224: 265–273.
    1. Jochmann N, Baumann G, Stangl V (2008) Green tea and cardiovascular disease: from molecular targets towards human health. Curr Opin Clin Nutr Metab Care 11: 758–765.
    1. Li Q, Li Y (2010) [Review on the neuroprotective effects of green tea polyphenols for the treatment of neurodegenerative diseases]. Wei Sheng Yan Jiu 39: 123–126.
    1. Woo J, Hong A, Lau E, Lynn H (2007) A randomised controlled trial of Tai Chi and resistance exercise on bone health, muscle strength and balance in community-living elderly people. Age Ageing 36: 262–268.
    1. Lui PP, Qin L, Chan KM (2008) Tai Chi Chuan exercises in enhancing bone mineral density in active seniors. Clin Sports Med 27: 75–86.
    1. Qin L, Choy W, Leung K, Leung PC, Au S, et al. (2005) Beneficial effects of regular Tai Chi exercise on musculoskeletal system. J Bone Miner Metab 23: 186–190.
    1. Lee MS, Pittler MH, Shin BC, Ernst E (2008) Tai chi for osteoporosis: a systematic review. Osteoporos Int 19: 139–146.
    1. Goon JA, Aini AH, Musalmah M, Anum MY, Nazaimoon WM, et al. (2009) Effect of Tai Chi exercise on DNA damage, antioxidant enzymes, and oxidative stress in middle-age adults. J Phys Act Health 6: 43–54.
    1. Shen CL, Chyu MC, Yeh JK, Felton CK, Xu KT, et al. (2009) Green tea polyphenols and Tai Chi for bone health: designing a placebo-controlled randomized trial. BMC Musculoskelet Disord 10: 110.
    1. Shen CL, Chyu MC, Pence BC, Yeh JK, Zhang Y, et al. (2010) Green tea polyphenols supplementation and Tai Chi exercise for postmenopausal osteopenic women: safety and quality of life report. BMC Complement Altern Med 10: 76.
    1. Shen CL, Chyu MC, Yeh JK, Zhang Y, Pence BC, et al. (2012) Effect of green tea and Tai Chi on bone health in postmenopausal osteopenic women: a 6-month randomized placebo-controlled trial. Osteoporos Int 23: 1541–1552.
    1. Luo H, Tang L, Tang M, Billam M, Huang T, et al. (2006) Phase IIa chemoprevention trial of green tea polyphenols in high-risk individuals of liver cancer: modulation of urinary excretion of green tea polyphenols and 8-hydroxydeoxyguanosine. Carcinogenesis 27: 262–268.
    1. Hedeker D, Gibbons RD, Waternaux C (1999) Sample size estimation for longitudinal designs with attrition: Comparing time-related contrasts between two groups. Journal of Educational and Behavioral Statistics 24: 70–93.
    1. Brunner E DS, Langer F. (2002) Nonparametric analysis of longitudinal data in factorial experiments. New York, NY:Wiley.
    1. Yamamoto N, Sakai F, Kon S, Morimoto J, Kimura C, et al. (2003) Essential role of the cryptic epitope SLAYGLR within osteopontin in a murine model of rheumatoid arthritis. J Clin Invest 112: 181–188.
    1. Almeida M, Martin-Millan M, Ambrogini E, Bradsher R, Han L, et al. (2010) Estrogens attenuate oxidative stress and the differentiation and apoptosis of osteoblasts by DNA-binding-independent actions of the ERalpha. J Bone Miner Res 25: 769–781.
    1. Chan K, Qin L, Lau M, Woo J, Au S, et al. (2004) A randomized, prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch Phys Med Rehabil 85: 717–722.
    1. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, et al. (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322: 339–346.
    1. Rice-Evans C (1999) Implications of the mechanisms of action of tea polyphenols as antioxidants in vitro for chemoprevention in humans. Proc Soc Exp Biol Med 220: 262–266.
    1. Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339: 1–9.
    1. Lan C, Chen SY, Lai JS (2004) Relative exercise intensity of Tai Chi Chuan is similar in different ages and gender. Am J Chin Med 32: 151–160.
    1. Finaud J, Lac G, Filaire E (2006) Oxidative stress : relationship with exercise and training. Sports Med 36: 327–358.
    1. Goto C, Higashi Y, Kimura M, Noma K, Hara K, et al. (2003) Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation 108: 530–535.

Source: PubMed

3
订阅