Cyclosporine A reduces microvascular obstruction and preserves left ventricular function deterioration following myocardial ischemia and reperfusion

Jaroslaw Zalewski, Piet Claus, Jan Bogaert, Nina Vanden Driessche, Ronald B Driesen, Diogo T Galan, Karin R Sipido, Piotr Buszman, Krzysztof Milewski, Frans Van de Werf, Jaroslaw Zalewski, Piet Claus, Jan Bogaert, Nina Vanden Driessche, Ronald B Driesen, Diogo T Galan, Karin R Sipido, Piotr Buszman, Krzysztof Milewski, Frans Van de Werf

Abstract

Postconditioning and cyclosporine A prevent mitochondrial permeability transition pore opening providing cardioprotection during ischemia/reperfusion. Whether microvascular obstruction is affected by these interventions is largely unknown. Pigs subjected to coronary occlusion for 1 h followed by 3 h of reperfusion were assigned to control (n = 8), postconditioning (n = 9) or cyclosporine A intravenous infusion 10-15 min before the end of ischemia (n = 8). Postconditioning was induced by 8 cycles of repeated 30-s balloon inflation and deflation. After 3 h of reperfusion magnetic resonance imaging, triphenyltetrazolium chloride/Evans blue staining and histopathology were performed. Microvascular obstruction (MVO, percentage of gadolinium-hyperenhanced area) was measured early (3 min) and late (12 min) after contrast injection. Infarct size with double staining was smaller in cyclosporine (46.2 ± 3.1%, P = 0.016) and postconditioning pigs (47.6 ± 3.9%, P = 0.008) versus controls (53.8 ± 4.1%). Late MVO was significantly reduced by cyclosporine (13.9 ± 9.6%, P = 0.047) but not postconditioning (23.6 ± 11.7%, P = 0.66) when compared with controls (32.0 ± 16.9%). Myocardial blood flow in the late MVO was improved with cyclosporine versus controls (0.30 ± 0.06 vs 0.21 ± 0.03 ml/g/min, P = 0.002) and was inversely correlated with late-MVO extent (R(2) = 0.93, P < 0.0001). Deterioration of left ventricular ejection fraction (LVEF) between baseline and 3 h of reperfusion was smaller with cyclosporine (-7.9 ± 2.4%, P = 0.008) but not postconditioning (-12.0 ± 5.5%, P = 0.22) when compared with controls (-16.4 ± 5.5%). In the three groups, infarct size (β = -0.69, P < 0.001) and late MVO (β = -0.33, P = 0.02) were independent predictors of LVEF deterioration following ischemia/reperfusion (R(2) = 0.73, P < 0.001). Despite both cyclosporine A and postconditioning reduce infarct size, only cyclosporine A infusion had a beneficial effect on microvascular damage and was associated with better preserved LV function when compared with controls.

Figures

Fig. 1
Fig. 1
Methods. a Study protocol. b Gadolinium-enhanced (GE) images in short and horizontal long axis. The microvascular obstruction (indicated by arrows) is a dark zone in the high-intensity signal of infarct area. The left ventricle landmarks—place of insertion of papillary muscles (asterisk) and right ventricle (♥)—have been used to obtain biopsy specimens from the triphenyltetrazolium (TTC)-determined infarct territory. c Representative pictures of TTC/Evans blue staining with indicated place of biopsy corresponding with gadolinium-enhanced area of infarct and microvascular obstruction. d Microscopic pictures of infarct region with and without erythrocytes stasis. Black arrows indicate interstitial edema whereas white arrows show capillaries occupied by erythrocytes
Fig. 2
Fig. 2
Cardiovascular magnetic resonance imaging and histopathology. Representative pictures of corresponding: a T2-weighted myocardial edema, b hyperenhanced area of infarct with dark zone of microvascular obstruction (MVO), c two perfusion slices of first pass with contrast medium in the right ventricle (i), in both ventricles and myocardium (ii) and in the left ventricle (iii), d no-reflow region as a lack of thioflavin S staining, e the infarct region determined by triphenyltetrazolium staining. *MVO region, **gadolinium-enhanced infarct area without MVO, ***border zone, ****remote myocardium
Fig. 3
Fig. 3
The area at risk and infarct size. Area at risk (AAR) by Evans blue and infarct size by triphenyltetrazolium staining, box plot shows median and interquartile range (IQR, Q3–Q1). Q1 and Q3 are the first and third quartiles. Whiskers are drawn at minimum and maximum. LV left ventricle, Con control group, PoC postconditioning group, CsA cyclosporine group, *versus controls
Fig. 4
Fig. 4
Microvascular obstruction and its dynamics. Gadolinium-enhanced (GE) images in short (S) and horizontal long (L) axis obtained at 3 (early) and 12 (late) min post-contrast. a Representative pictures of control pig with a small change of microvascular obstruction (MVO, indicated by arrows) extent by 25 % between 3 and 12 min (infarct size of 27 % of left ventricle). b Representative pictures of pig pre-treated with cyclosporine A with substantial decrease of MVO area by 60 % (infarct size of 25 % of left ventricle). c The early MVO and late MVO. Scatter plot shows absolute values and means. d The reduction of MVO area between 3 and 12 min post-contrast, e the late-to-early MVO ratio. Box plot shows median and interquartile range (IQR, Q3–Q1). Q1 and Q3 are the first and third quartiles. Whiskers are drawn at minimum and maximum, Con control group, PoC postconditioning group, CsA cyclosporine group. *versus controls
Fig. 5
Fig. 5
Changes of left ventricular ejection fraction and its determinants. a Changes of left ventricular ejection fraction between baseline and 3 h of reperfusion (LVEF). Box plot shows median and interquartile range (IQR, Q3–Q1). Q1 and Q3 are the first and third quartiles. Whiskers are drawn at minimum and maximum, Con control group, PoC postconditioning group, CsA cyclosporine A group, *versus controls. The relationship between: b LVEF and microvascular obstruction 12 min post-contrast (late MVO) or c LVEF and infarct size as percentage of area at risk (AAR) as measured by double staining
Fig. 6
Fig. 6
Myocardial blood flow. a Myocardial blood flow (MBF) in the territory of late microvascular obstruction (MVO), gadolinium-hyperenhanced area without MVO, border zone and in the remote myocardium. The relationship between b MBF in the region of late MVO and its size and c MBF in hyperenhanced area without MVO and the size of gadolinium-enhanced area of infarct. Con control group, CsA cyclosporine group
Fig. 7
Fig. 7
No-reflow area. a No-reflow area as measured by the lack of thioflavin S staining within infarct size (IS) as measured by triphenyltetrazolium staining. The relationship between no-reflow area and b microvascular obstruction (MVO) or c late-to-early MVO ratio and d the relationship between late-to-early MVO ratio and myocardial blood flow in the late MVO
Fig. 8
Fig. 8
Histological composition of infarct area with and without microvascular obstruction. Data are shown as mean and absolute values

References

    1. Argaud L, Gateau-Roesch O, Chalabreysse L, Gomez L, Loufouat J, Thivolet-Béjui F, Robert D, Ovize M. Preconditioning delays Ca2+-induced mitochondrial permeability transition. Cardiovasc Res. 2004;61:115–122. doi: 10.1016/j.cardiores.2003.11.003.
    1. Baines CP. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol. 2009;104:181–188. doi: 10.1007/s00395-009-0004-8.
    1. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–662. doi: 10.1038/nature03434.
    1. Bergerot C, Mewton N, Lacote-Roiron C, Ernande L, Ovize M, Croisille P, Thibault H, Derumeaux G. Influence of microvascular obstruction on regional myocardial deformation in the acute phase of myocardial infarction: a speckle-tracking echocardiography study. J Am Soc Echocardiogr. 2014;27:93–100. doi: 10.1016/j.echo.2013.09.011.
    1. Bogaert J, Kalantzi M, Rademakers FE, Dymarkowski S, Janssens S. Determinants and impact of microvascular obstruction in successfully reperfused ST-segment elevation myocardial infarction. Assessment by magnetic resonance imaging. Eur Radiol. 2007;17:2572–2580. doi: 10.1007/s00330-007-0627-9.
    1. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest. 1985;76:1713–1719. doi: 10.1172/JCI112160.
    1. Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, Arai AE. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology. 2004;232:677–684. doi: 10.1148/radiol.2323030573.
    1. Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation. 2007;115:1895–1903. doi: 10.1161/CIRCULATIONAHA.106.675710.
    1. Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD(+) and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem. 2001;276:2571–2575. doi: 10.1074/jbc.M006825200.
    1. Diaz RJ, Fernandes K, Lytvyn Y, Hawrylyshyn K, Harvey K, Hossain T, Hinek A, Wilson GJ. Enhanced cell-volume regulation in cyclosporin A cardioprotection. Cardiovasc Res. 2013;98:411–419. doi: 10.1093/cvr/cvt056.
    1. doi:10.1093/cvr/cvt056
    1. Dow J, Kloner RA. Postconditioning does not reduce myocardial infarct size in an in vivo regional ischemia rodent model. J Cardiovasc Pharmacol Ther. 2007;12:153–163. doi: 10.1177/1074248407300897.
    1. Ezekowitz JA, Armstrong PW, Granger CB, Theroux P, Stebbins A, Kim RJ, Patel MR. Predicting chronic left ventricular dysfunction 90 days after ST-segment elevation myocardial infarction: an assessment of pexelizumab in acute myocardial infarction (APEX-AMI) substudy. Am Heart J. 2010;160:272–278. doi: 10.1016/j.ahj.2010.05.035.
    1. Fishbein MC, Y-Rit J, Lando U, Kanmatsuse K, Mercier JC, Ganz W. The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion. Circulation. 1980;62:1274–1279. doi: 10.1161/01.CIR.62.6.1274.
    1. Freixa X, Bellera N, Ortiz-Pérez JT, Jiménez M, Paré C, Bosch X, De Caralt TM, Betriu A, Masotti M. Ischaemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J. 2012;33:103–112. doi: 10.1093/eurheartj/ehr297.
    1. Gateau-Roesch O, Argaud L, Ovize M. Mitochondrial permeability transition pore and postconditioning. Cardiovasc Res. 2006;70:264–273. doi: 10.1016/j.cardiores.2006.02.024.
    1. Gedik N, Heusch G, Skyschally A. Infarct size reduction by cyclosporine A at reperfusion involves inhibition of the mitochondrial permeability transition pore but does not improve mitochondrial respiration. Arch Med Sci. 2013;6:968–975. doi: 10.5114/aoms.2013.38175.
    1. Griffiths EJ, Halestrap AP. Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993;25:1461–1469. doi: 10.1006/jmcc.1993.1162.
    1. Hahn JY, Song YB, Kim EK, Yu CW, Bae JW, Chung WY, Choi SH, Choi JH, Bae JH, An KJ, Park JS, Oh JH, Kim SW, Hwang JY, Ryu JK, Park HS, Lim DS, Gwon HC. Ischemic postconditioning during primary percutaneous coronary intervention: the effects of postconditioning on myocardial reperfusion in patients with ST-segment elevation myocardial infarction (POST) randomized trial. Circulation. 2013;128:1889–1896. doi: 10.1161/CIRCULATIONAHA.113.001690.
    1. Hale SL, Mehra A, Leeka J, Kloner RA. Postconditioning fails to improve no reflow or alter infarct size in an open-chest rabbit model of myocardial ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2008;294:H421–H425. doi: 10.1152/ajpheart.00962.2007.
    1. Hausenloy DJ, Kunst G, Boston-Griffiths E, Kolvekar S, Chaubey S, John L, Desai J, Yellon D. The effect of cyclosporin-A on peri-operative myocardial injury in adult patients undergoing coronary artery bypass graft surgery: a randomised controlled clinical trial. Heart. 2014;100:544–549. doi: 10.1136/heartjnl-2013-304845.
    1. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med. 2005;15:69–75. doi: 10.1016/j.tcm.2005.03.001.
    1. Hearse DJ, Bolli R. Reperfusion induced injury: manifestations, mechanisms, and clinical relevance. Cardiovasc Res. 1992;26:101–108. doi: 10.1093/cvr/26.2.101.
    1. Heusch G, Kleinbongard P, Skyschally A. Myocardial infarction and coronary microvascular obstruction: an intimate, but complicated relationship. Basic Res Cardiol. 2013;108:380. doi: 10.1007/s00395-013-0380-y.
    1. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383:1933–1943. doi: 10.1016/S0140-6736(14)60107-0.
    1. Heusch G, Musioloik G, Gedik N, Skyschally A. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res. 2011;109:1302–1308. doi: 10.1161/CIRCRESAHA.111.255604.
    1. Hsu LY, Rhoads KL, Holly JE, Kellman P, Aletras AH, Arai AE. Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging. 2006;23:315–322. doi: 10.1002/jmri.20502.
    1. Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT. Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol. 2006;101:502–507. doi: 10.1007/s00395-006-0606-3.
    1. Jeremy RW, Links JM, Becker LC. Progressive failure of coronary flow during reperfusion of myocardial infarction: documentation of the no reflow phenomenon with positron emission tomography. J Am Coll Cardiol. 1990;16:695–704. doi: 10.1016/0735-1097(90)90362-S.
    1. Karlsson LO, Bergh N, Grip L. Cyclosporine A, 2.5 mg/kg, does not reduce myocardial infarct size in a porcine model of ischemia and reperfusion. J Cardiovasc Pharmacol Ther. 2012;17:159–163. doi: 10.1177/1074248411407636.
    1. Karlsson LO, Zhou AX, Larsson E, Aström-Olsson K, Månsson C, Akyürek LM, Grip L. Cyclosporine does not reduce myocardial infarct size in a porcine ischemia-reperfusion model. J Cardiovasc Pharmacol Ther. 2010;15:182–189. doi: 10.1177/1074248410362074.
    1. Kloner RA. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ Res. 2013;113:451–463. doi: 10.1161/CIRCRESAHA.112.300627.
    1. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1974;54:1496–1508. doi: 10.1172/JCI107898.
    1. Kloner RA, Rude RE, Carlson N, Maroko PR, DeBoer LW, Braunwald E. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: which comes first? Circulation. 1980;62:945–952. doi: 10.1161/01.CIR.62.5.945.
    1. Lie RH, Stoettrup N, Sloth E, Hasenkam JM, Kroyer R, Nielsen TT. Post-conditioning with cyclosporine A fails to reduce the infarct size in an in vivo porcine model. Acta Anaesthesiol Scand. 2010;54:804–813. doi: 10.1111/j.1399-6576.2010.02241.x.
    1. Lim WY, Messow CM, Berty C. Cyclosporin variably and inconsistently reduces infarct size in experimental models of reperfused myocardial infarction: a systematic review and meta-analysis. British J Pharmacol. 2012;165:2034–2043. doi: 10.1111/j.1476-5381.2011.01691.x.
    1. Liu X, Huang X, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pellens M, Gillijns H, Van de Werf F, Bloch KD, Janssens S. Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol. 2007;50:808–817. doi: 10.1016/j.jacc.2007.04.069.
    1. Massoudy P, Zahler S, Kupatt C, Reder E, Becker BF, Gerlach E. Cardioprotection by cyclosporine A in experimental ischemia and reperfusion—evidence for a nitric oxide-dependent mechanism mediated by endothelin. J Mol Cell Cardiol. 1997;29:535–544. doi: 10.1006/jmcc.1996.0297.
    1. Mewton N, Thibault H, Roubille F, Lairez O, Rioufol G, Sportouch C, Sanchez I, Bergerot C, Cung TT, Finet G, Angoulvant D, Revel D, Bonnefoy-Cudraz E, Elbaz M, Piot C, Sahraoui I, Croisille P, Ovize M. Postconditioning attenuates no-reflow in STEMI patients. Basic Res Cardiol. 2013;108:383. doi: 10.1007/s00395-013-0383-8.
    1. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–658. doi: 10.1038/nature03317.
    1. Nijveldt R, Beek AM, Hirsch A, Stoel MG, Hofman MB, Umans VA, Algra PR, Twisk JW, van Rossum AC. Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol. 2008;52:181–189. doi: 10.1016/j.jacc.2008.04.006.
    1. Okorie MI, Bhavsar DD, Ridout D, Charakida M, Deanfield JE, Loukogeorgakis SP, MacAllister RJ. Postconditioning protects against human endothelial ischaemia-reperfusion injury via subtype-specific KATP channel activation and is mimicked by inhibition of the mitochondrial permeability transition pore. Eur Heart J. 2011;32:1266–1274. doi: 10.1093/eurheartj/ehr041.
    1. Ørn S, Manhenke C, Greve OJ, Larsen AI, Bonarjee VV, Edvardsen T, Dickstein K. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J. 2009;30:1978–1985. doi: 10.1093/eurheartj/ehp219.
    1. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, André-Fouët X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–481. doi: 10.1056/NEJMoa071142.
    1. Reffelmann T, Hale SL, Li G, Kloner RA. Relationship between no reflow and infarct size as influenced by the duration of ischemia and reperfusion. Am J Physiol. 2002;82:H766–H772.
    1. Reffelmann T, Kloner RA. Microvascular reperfusion injury: rapid expansion of anatomic no reflow during reperfusion in the rabbit. Am J Physiol. 2002;283:H1099–H1107.
    1. Robbers LF, Eerenberg ES, Teunissen PF, Jansen MF, Hollander MR, Horrevoets AJ, Knaapen P, Nijveldt R, Heymans MW, Levi MM, van Rossum AC, Niessen HW, Marcu CB, Beek AM, van Royen N. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur Heart J. 2013;34:2346–2353. doi: 10.1093/eurheartj/eht100.
    1. Schwartz LM, Lagranha CJ. Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol. 2006;290:H1011–H1018.
    1. Skyschally A, Schulz R, Heusch G. Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther. 2010;24:85–87. doi: 10.1007/s10557-010-6219-y.
    1. Skyschally A, Walter B, Heusch G. Coronary microembolization during early reperfusion: infarct extension, but protection by ischaemic postconditioning. Eur Heart J. 2013;34:3314–3321. doi: 10.1093/eurheartj/ehs434.
    1. Sorensson P, Saleh N, Bouvier F, Böhm F, Settergren M, Caidahl K, Tornvall P, Arheden H, Rydén L, Pernow J. Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart. 2010;96:1710–1715. doi: 10.1136/hrt.2010.199430.
    1. Thuny F, Lairez O, Roubille F, Mewton N, Rioufol G, Sportouch C, Sanchez I, Bergerot C, Thibault H, Cung TT, Finet G, Argaud L, Revel D, Derumeaux G, Bonnefoy-Cudraz E, Elbaz M, Piot C, Ovize M, Croisille P. Post-conditioning reduces infarct size and edema in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2012;59:2175–2181. doi: 10.1016/j.jacc.2012.03.026.
    1. Wong DT, Leung MC, Richardson JD, Puri R, Bertaso AG, Williams K, Meredith IT, Teo KS, Worthley MI, Worthley SG. Cardiac magnetic resonance derived late microvascular obstruction assessment post ST-segment elevation myocardial infarction is the best predictor of left ventricular function: a comparison of angiographic and cardiac magnetic resonance derived measurements. Int J Cardiovasc Imaging. 2012;28:1971–1981. doi: 10.1007/s10554-012-0021-9.
    1. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JA. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation. 1998;97:765–772. doi: 10.1161/01.CIR.97.8.765.
    1. Wu M, D’hooge J, Ganame J, Ferferieva V, Sipido KR, Maes F, Dymarkowski S, Bogaert J, Rademakers FE, Claus P. Non-invasive characterization of the area-at-risk using magnetic resonance imaging in chronic ischaemia. Cardiovasc Res. 2011;89:166–174. doi: 10.1093/cvr/cvq257.
    1. Yetgin T, Magro M, Manintveld OC, Nauta ST, Cheng JM, den Uil CA, Simsek C, Hersbach F, van Domburg RT, Boersma E, Serruys PW, Duncker DJ, van Geuns RJ, Zijlstra F. Impact of multiple balloon inflations during primary percutaneous coronary intervention on infarct size and long-term clinical outcomes in ST-segment elevation myocardial infarction: real-world postconditioning. Basic Res Cardiol. 2014;109:403. doi: 10.1007/s00395-014-0403-3.
    1. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol. 2003;285:H579–H588.

Source: PubMed

3
订阅