Heart Rate Variability Biofeedback Based on Slow-Paced Breathing With Immersive Virtual Reality Nature Scenery

Johannes Blum, Christoph Rockstroh, Anja S Göritz, Johannes Blum, Christoph Rockstroh, Anja S Göritz

Abstract

This study investigated the benefits of using a virtual nature environment to administer immersive heart rate variability biofeedback (HRV-BF) based on slow-paced breathing. We compared the virtual reality (VR)-based HRV-BF with a standard implementation in a randomized controlled experiment with 60 healthy employees. After a cognitive stress induction, the participants performed a single-session of HRV-BF before repeating the cognitive stressor task. VR-based versus standard HRV-BF was comparable in terms of biofeedback performance (cardiac coherence and cardiac vagal tone). However, the VR-based implementation buffered perceived stress in the subsequent stressor task, increased relaxation self-efficacy more, reduced mind wandering, helped participants focus on the present moment, and helped preserve attentional resources. Potential long-term effects and generalizability need to be assessed in future research.

Keywords: attentional focus; attentional resources; biofeedback; heart rate variability; mind wandering; nature environment; relaxation self-efficacy; virtual reality.

Copyright © 2019 Blum, Rockstroh and Göritz.

Figures

Figure 1
Figure 1
Screenshot of the virtual environment in the VR-BF condition.
Figure 2
Figure 2
Phases of the experiment. Q, questionnaire; S, Stroop; T, treatment.
Figure 3
Figure 3
Mean heart rate (bpm) by condition. Error bars represent 95% confidence intervals (CI).
Figure 4
Figure 4
Mean STAI-S (sum score) by condition. Error bars represent 95% CI.
Figure 5
Figure 5
Relaxation self-efficacy by condition. Error bars represent 95% CI.
Figure 6
Figure 6
Mean state mindfulness of mind and body by condition. Error bars represent 95% CI.
Figure 7
Figure 7
Mean task-related and task-irrelevant interference by condition. Error bars represent 95% CI.
Figure 8
Figure 8
Mean reaction times (in seconds) for congruent and incongruent stimuli by condition. Error bars represent 95% CI.
Figure 9
Figure 9
Cardiac coherence by condition. Error bars represent 95% CI.
Figure 10
Figure 10
RMSSD (ms) by condition. Error bars represent 95% CI.

References

    1. Acharya U. R., Joseph K. P., Kannathal N., Min L. C., Suri J. S. (2006). Heart rate variability. Med. Biol. Eng. Comput. 44, 1031–1054. 10.1007/s11517-006-0119-0
    1. Allen B., Friedman B. H. (2012). Positive emotion reduces dyspnea during slow paced breathing. Psychophysiology 49, 690–696. 10.1111/j.1469-8986.2011.01344.x, PMID:
    1. Andersen T., Anisimovaite G., Christiansen A., Hussein M., Lund C., Nielsen T., et al. (2017). A preliminary study of users’ experiences of meditation in virtual reality. Paper presented at 2017 IEEE Virtual Reality (VR). Los Angeles, CA: IEEE pp. 343–344.
    1. Anderson A. P., Mayer M. D., Fellows A. M., Cowan D. R., Hegel M. T., Buckey J. C. (2017). Relaxation with immersive natural scenes presented using virtual reality. Aerosp. Med. Hum. Perform. 88, 520–526. 10.3357/AMHP.4747.2017, PMID:
    1. Annerstedt M., Jönsson P., Wallergård M., Johansson G., Karlson B., Grahn P., et al. (2013). Inducing physiological stress recovery with sounds of nature in a virtual reality forest – results from a pilot study. Physiol. Behav. 118, 240–250. 10.1016/j.physbeh.2013.05.023
    1. Bandura A. (2006). “Guide for constructing self-efficacy scales” in Self-efficacy beliefs of adolescents. eds. Urdan T., Pajares F. (Charlotte, NC: IAP; ), 307–337.
    1. Baumeister R. F., Tice D. M., Vohs K. D. (2018). The strength model of self-regulation: conclusions from the second decade of willpower research. Perspect. Psychol. Sci. 13, 141–145. 10.1177/1745691617716946, PMID:
    1. Beauchaine T. P., Thayer J. F. (2015). Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 98, 338–350. 10.1016/j.ijpsycho.2015.08.004, PMID:
    1. Berntson G. G., Bigger J. T., Eckberg D. L., Grossman P., Kaufmann P. G., Malik M., et al. . (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34, 623–648. 10.1111/j.1469-8986.1997.tb02140.x, PMID:
    1. Berntson G. G., Stowell J. R. (1998). ECG artifacts and heart period variability: don’t miss a beat! Psychophysiology 35, 127–132. 10.1111/1469-8986.3510127, PMID:
    1. Berto R. (2014). The role of nature in coping with psycho-physiological stress: a literature review on restorativeness. Behav. Sci. 4, 394–409. 10.3390/bs4040394, PMID:
    1. Boiten F. A., Frijda N. H., Wientjes C. J. (1994). Emotions and respiratory patterns: review and critical analysis. Int. J. Psychophysiol. 17, 103–128. 10.1016/0167-8760(94)90027-2, PMID:
    1. Bowler D. E., Buyung-Ali L. M., Knight T. M., Pullin A. S. (2010). A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health 10:456. 10.1186/1471-2458-10-456, PMID:
    1. Chalmers J. A., Quintana D. S., Abbott M. J., Kemp A. H. (2014). Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front. Psych. 5:80. 10.3389/fpsyt.2014.00080, PMID:
    1. Crawford J. R., Henry J. D. (2004). The positive and negative affect schedule (PANAS): construct validity, measurement properties and normative data in a large non-clinical sample. Br. J. Clin. Psychol. 43, 245–265. 10.1348/0144665031752934, PMID:
    1. Cummings J. J., Bailenson J. N. (2016). How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychol. 19, 272–309. 10.1080/15213269.2015.1015740
    1. de Kort Y., Meijnders A. L., Sponselee A. A. G., Ijsselsteijn W. A. (2006). What’s wrong with virtual trees? Restoring from stress in a mediated environment. J. Environ. Psychol. 26, 309–320. 10.1016/j.jenvp.2006.09.001
    1. Felnhofer A., Kothgassner O. D., Schmidt M., Heinzle A. K., Beutl L., Hlavacs H., et al. (2015). Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. Int. J. Hum.-Comput. Stud. 82, 48–56. 10.1016/j.ijhcs.2015.05.004
    1. Gevirtz R. (2013). The promise of heart rate variability biofeedback: evidence-based applications. Biofeedback 41, 110–120. 10.5298/1081-5937-41.3.01
    1. Giardino N. D., Chan L., Borson S. (2004). Combined heart rate variability and pulse oximetry biofeedback for chronic obstructive pulmonary disease: preliminary findings. Appl. Psychophysiol. Biofeedback 29, 121–133. 10.1023/B:APBI.0000026638.64386.89, PMID:
    1. Gillinov A. M., Etiwy M., Gillinov S., Wang R., Blackburn G., Phelan D., et al. (2017). Variable accuracy of commercially available wearable heart rate monitors. J. Am. Coll. Cardiol. 69, 1697–1703. 10.1016/S0735-1097(17)33725-7
    1. Goessl V. C., Curtiss J. E., Hofmann S. G. (2017). The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis. Psychol. Med. 47, 2578–2586. 10.1017/S0033291717001003, PMID:
    1. Gromala D., Tong X., Choo A., Karamnejad M., Shaw C. D. (2015). The virtual meditative walk: virtual reality therapy for chronic pain management. Paper presented at the 33rd Annual ACM Conference on Human Factors in Computing Systems New York, NY: ACM; pp. 521–524.
    1. Grossman P., Taylor E. W. (2007). Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74, 263–285. 10.1016/j.biopsycho.2005.11.014, PMID:
    1. Hayano J., Yasuma F., Okada A., Mukai S., Fujinami T. (1996). Respiratory sinus arrhythmia: a phenomenon improving pulmonary gas exchange and circulatory efficiency. Circulation 94, 842–847. 10.1161/01.CIR.94.4.842, PMID:
    1. Kaplan S. (1995). The restorative benefits of nature: toward an integrative framework. J. Environ. Psychol. 15, 169–182. 10.1016/0272-4944(95)90001-2
    1. Kaplan S., Berman M. G. (2010). Directed attention as a common resource for executive functioning and self-regulation. Perspect. Psychol. Sci. 5, 43–57. 10.1177/1745691609356784, PMID:
    1. Kemp A. H., Quintana D. S. (2013). The relationship between mental and physical health: insights from the study of heart rate variability. Int. J. Psychophysiol. 89, 288–296. 10.1016/j.ijpsycho.2013.06.018, PMID:
    1. Kemp A. H., Quintana D. S., Gray M. A., Felmingham K. L., Brown K., Gatt J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol. Psychiatry 67, 1067–1074. 10.1016/j.biopsych.2009.12.012, PMID:
    1. Kennedy L., Parker S. H. (2018). Biofeedback as a stress management tool: a systematic review. Cogn. Tech. Work 21, 161–190. 10.1007/s10111-018-0487-x
    1. Khazan I. (2015). Mindfulness- and acceptance-based biofeedback. Biofeedback 43, 104–110. 10.5298/1081-5937-43.3.08
    1. Kim S., Zemon V., Cavallo M. M., Rath J. F., McCraty R., Foley F. W. (2013). Heart rate variability biofeedback, executive functioning and chronic brain injury. Brain Inj. 27, 209–222. 10.3109/02699052.2012.729292, PMID:
    1. Kosunen I., Salminen M., Järvelä S., Ruonala A., Ravaja N., Jacucci G. (2016). RelaWorld: neuroadaptive and immersive virtual reality meditation system. Paper presented at the 21st International Conference on Intelligent User Interfaces New York, NY: ACM; pp. 208–217.
    1. Laborde S., Mosley E., Mertgen A. (2018). Vagal tank theory: the three Rs of cardiac vagal control functioning – resting, reactivity, and recovery. Front. Neurosci. 12:458. 10.3389/fnins.2018.00458, PMID:
    1. Laborde S., Mosley E., Thayer J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front. Physiol. 8:213. 10.3389/fpsyg.2017.00213
    1. Lehrer P. M., Gevirtz R. (2014). Heart rate variability biofeedback: how and why does it work? Front. Psychol. 5:756. 10.3389/fpsyg.2014.00756, PMID:
    1. Lehrer P. M., Vaschillo E., Vaschillo B. (2000). Resonant frequency biofeedback training to increase cardiac variability: rationale and manual for training. Appl. Psychophysiol. Biofeedback 25, 177–191. 10.1023/A:1009554825745, PMID:
    1. Lin I. M., Tai L. Y., Fan S. Y. (2014). Breathing at a rate of 5.5 breaths per minute with equal inhalation-to-exhalation ratio increases heart rate variability. Int. J. Psychophysiol. 91, 206–211. 10.1016/j.ijpsycho.2013.12.006, PMID:
    1. Liszio S., Graf L., Masuch M. (2018). The relaxing effect of virtual nature: immersive technology provides relief in acute stress situations. Annu. Rev. Cyberther. Telemed. 2018, 87–93. ISBN 978-1-949-331-25-7.
    1. MacLeod C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 109, 163–203. 10.1037/0033-2909.109.2.163, PMID:
    1. McCraty R., Atkinson M., Tomasino D., Bradley R. T. (2009). The coherent heart: heart-brain interactions, psychophysiological coherence, and the emergence of system-wide order. Integr. Rev. 5, 10–114.
    1. Navarro-Haro M. V., López-del-Hoyo Y., Campos D., Linehan M. M., Hoffman H. G., García-Palacios A., et al. . (2017). Meditation experts try virtual reality mindfulness: a pilot study evaluation of the feasibility and acceptability of virtual reality to facilitate mindfulness practice in people attending a mindfulness conference. PLoS One 12:e0187777. 10.1371/journal.pone.0187777, PMID:
    1. Ohly H., White M. P., Wheeler B. W., Bethel A., Ukoumunne O. C., Nikolaou V., et al. . (2016). Attention restoration theory: a systematic review of the attention restoration potential of exposure to natural environments. J. Toxicol. Environ. Health 19, 305–343. 10.1080/10937404.2016.1196155, PMID:
    1. Paul M., Garg K. (2012). The effect of heart rate variability biofeedback on performance psychology of basketball players. Appl. Psychophysiol. Biofeedback 37, 131–144. 10.1007/s10484-012-9185-2, PMID:
    1. Peek C. J. (2017). “A primer of traditional biofeedback instrumentation” in Biofeedback. A practitioner’s guide. 4th Edn. eds. Schwartz M. S., Andrasik F. (New York, NY: Guilford Press; ), 35–67.
    1. Plews D. J., Scott B., Altini M., Wood M., Kilding A. E., Laursen P. B. (2017). Comparison of heart-rate-variability recording with smartphone photoplethysmography, polar H7 chest strap, and electrocardiography. Int. J. Sports Physiol. Perform. 12, 1324–1328. 10.1123/ijspp.2016-0668, PMID:
    1. Porges S. W. (2007). The polyvagal perspective. Biol. Psychol. 74, 116–143. 10.1016/j.biopsycho.2006.06.009, PMID:
    1. Prinsloo G. E., Rauch H. G., Lambert M. I., Muench F., Noakes T. D., Derman W. E. (2011). The effect of short duration heart rate variability (HRV) biofeedback on cognitive performance during laboratory induced cognitive stress. Appl. Cogn. Psychol. 25, 792–801. 10.1002/acp.1750
    1. Ratcliff R. (1993). Methods for dealing with reaction time outliers. Psychol. Bull. 114, 510–532. 10.1037/0033-2909.114.3.510, PMID:
    1. Rey G. D. (2012). A review of research and a meta-analysis of the seductive detail effect. Educ. Res. Rev. 7, 216–237. 10.1016/j.edurev.2012.05.003
    1. Riva G., Mantovani F., Capideville C. S., Preziosa A., Morganti F., Villani D., et al. . (2007). Affective interactions using virtual reality: the link between presence and emotions. Cyberpsychol. Behav. 10, 45–56. 10.1089/cpb.2006.9993, PMID:
    1. Rousselet G. A., Wilcox R. R. (2018). Reaction times and other skewed distributions: problems with the mean and the median. bioRxiv, 383935 [Preprint]. 10.1101/383935
    1. Sanchez-Vives M. V., Slater M. (2005). From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–366. 10.1038/nrn1651, PMID:
    1. Sarason I. G., Sarason B. R., Keefe D. E., Hayes B. E., Shearin E. N. (1986). Cognitive interference: situational determinants and traitlike characteristics. J. Pers. Soc. Psychol. 51, 215–226. 10.1037/0022-3514.51.1.215
    1. Serrano B., Baños R. M., Botella C. (2016). Virtual reality and stimulation of touch and smell for inducing relaxation: a randomized controlled trial. Comput. Hum. Behav. 55, 1–8. 10.1016/j.chb.2015.08.007
    1. Shaffer F., McCraty R., Zerr C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 5:1040. 10.3389/fpsyg.2014.01040, PMID:
    1. Singh R. K., Göritz A. S. (2019). Revisiting ego depletion: moderators and measurement. Basic Appl. Soc. Psychol. 41, 1–19. 10.1080/01973533.2018.1530671
    1. Singh D., Vinod K., Saxena S. C. (2004). Sampling frequency of the RR interval time series for spectral analysis of heart rate variability. J. Med. Eng. Technol. 28, 263–272. 10.1080/03091900410001662350
    1. Smith R., Thayer J. F., Khalsa S. S., Lane R. D. (2017). The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 75, 274–296. 10.1016/j.neubiorev.2017.02.003, PMID:
    1. Song H. S., Lehrer P. M. (2003). The effects of specific respiratory rates on heart rate and heart rate variability. Appl. Psychophysiol. Biofeedback 28, 13–23. 10.1023/A:1022312815649, PMID:
    1. Spielberger C. D., Gorsuch R. L., Lushene R., Vagg P. R., Jacobs G. A. (1983). Manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press.
    1. Steyer R., Schwenkmezger P., Notz P., Eid M. (1997). Der Mehrdimensionale Befindlichkeitsfragebogen (MDBF). Handanweisung [The multidimensional mood Questionnaire]. Göttingen, Germany: Hogrefe.
    1. Strauss-Blasche G., Moser M., Voica M., McLeod D. R., Klammer N., Marktl W. (2000). Relative timing of inspiration and expiration affects respiratory sinus arrhythmia. Clin. Exp. Pharmacol. Physiol. 27, 601–606. 10.1046/j.1440-1681.2000.03306.x, PMID:
    1. Tanay G., Bernstein A. (2013). State mindfulness scale (SMS): development and initial validation. Psychol. Assess. 25, 1286–1299. 10.1037/a0034044, PMID:
    1. Tarvainen M. P., Niskanen J. P., Lipponen J. A., Ranta-Aho P. O., Karjalainen P. A. (2014). Kubios HRV - heart rate variability analysis software. Comput. Methods Prog. Biomed. 113, 210–220. 10.1016/j.cmpb.2013.07.024, PMID:
    1. Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology (Task Force) (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065. 10.1161/01.CIR.93.5.1043, PMID:
    1. Teufel M., Stephan K., Kowalski A., Käsberger S., Enck P., Zipfel S., et al. . (2013). Impact of biofeedback on self-efficacy and stress reduction in obesity: a randomized controlled pilot study. Appl. Psychophysiol. Biofeedback 38, 177–184. 10.1007/s10484-013-9223-8, PMID:
    1. Thayer J. F., Åhs F., Fredrikson M., Sollers J. J., III, Wager T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756. 10.1016/j.neubiorev.2011.11.009, PMID:
    1. Thayer J. F., Hansen A. L., Saus-Rose E., Johnsen B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 37, 141–153. 10.1007/s12160-009-9101-z, PMID:
    1. Thayer J. F., Lane R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biol. Psychol. 74, 224–242. 10.1016/j.biopsycho.2005.11.013, PMID:
    1. Thayer J. F., Yamamoto S. S., Brosschot J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 141, 122–131. 10.1016/j.ijcard.2009.09.543, PMID:
    1. Vaschillo E. G., Vaschillo B., Lehrer P. M. (2006). Characteristics of resonance in heart rate variability stimulated by biofeedback. Appl. Psychophysiol. Biofeedback 31, 129–142. 10.1007/s10484-006-9009-3, PMID:
    1. Villani D., Riva G. (2012). Does interactive media enhance the management of stress? Suggestions from a controlled study. Cyberpsychol. Behav. Soc. Netw. 15, 24–30. 10.1089/cyber.2011.0141, PMID:
    1. Walker F. R., Pfingst K., Carnevali L., Sgoifo A., Nalivaiko E. (2017). In the search for integrative biomarker of resilience to psychological stress. Neurosci. Biobehav. Rev. 74, 310–320. 10.1016/j.neubiorev.2016.05.003, PMID:
    1. Weerdmeester J., van Rooij M., Harris O., Smit N., Engels R. C., Granic I. (2017). Exploring the role of self-efficacy in biofeedback video games. Paper presented at the 2017 Annual Symposium on Computer-Human Interaction in Play Amsterdam, Netherlands: ACM; pp. 453–461.
    1. Wheat A. L., Larkin K. T. (2010). Biofeedback of heart rate variability and related physiology: a critical review. Appl. Psychophysiol. Biofeedback 35, 229–242. 10.1007/s10484-010-9133-y, PMID:
    1. White M. P., Yeo N. L., Vassiljev P., Lundstedt R., Wallergård M., Albin M., et al. (2018). A prescription for “nature” – the potential of using virtual nature in therapeutics. Neuropsychiatr. Dis. Treat. 14, 3001–3013. 10.2147/NDT.S179038
    1. Won A. S., Bailey J., Bailenson J., Tataru C., Yoon I. A., Golianu B. (2017). Immersive virtual reality for pediatric pain. Children 4:E52. 10.3390/children4070052, PMID:
    1. Yu B., Funk M., Hu J., Wang Q., Feijs L. (2018). Biofeedback for everyday stress management: a systematic review. Front. ICT 5:23. 10.3389/fict.2018.00023
    1. Zaccaro A., Piarulli A., Laurino M., Garbella E., Menicucci D., Neri B., et al. . (2018). How breath-control can change your life: a systematic review on psycho-physiological correlates of slow breathing. Front. Hum. Neurosci. 12:353. 10.3389/fnhum.2018.00353, PMID:

Source: PubMed

3
订阅