Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review

Diego A Bonilla, Richard B Kreider, Jeffrey R Stout, Diego A Forero, Chad M Kerksick, Michael D Roberts, Eric S Rawson, Diego A Bonilla, Richard B Kreider, Jeffrey R Stout, Diego A Forero, Chad M Kerksick, Michael D Roberts, Eric S Rawson

Abstract

Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl--dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4-]2- and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3-]-. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.

Keywords: bioinformatics; cell survival; cellular allostasis; creatine kinase; dynamic biosensor; energy metabolism; systems biology.

Conflict of interest statement

D.A.B. serves as science product manager for MTX Corporation®, a company that produces, distributes, sells and does research on dietary supplements (including creatine) in Europe, has acted as scientific consultant for MET-Rx and Healthy Sports in Colombia, and has received honoraria for speaking about creatine at international conferences. R.B.K. has conducted industry sponsored research on creatine, received financial support for presenting on creatine at industry sponsored scientific conferences, and has served as an expert witness on cases related to creatine. Additionally, he serves as Chair of the “Creatine in Health” Scientific Advisory Board for AlzChem Tostberg GmbH who sponsored this special issue. J.R.S. has conducted industry-sponsored research on creatine and other nutraceuticals over the past 25 years. Further, J.R.S has also received financial support for presenting on the science of various nutraceuticals, except creatine, at industry-sponsored scientific conferences. D.A.F. has been previously supported by grants from MinCiencias but not related to creatine. C.M.K. have consulted with and received external funding from companies who sell certain dietary ingredients, and have received remuneration from companies for delivering scientific presentations at conferences. M.D.R. has received academic and industry funding related to dietary supplements, served as a non-paid consultant for industry and received honoraria for speaking at various conferences. E.S.R. has conducted industry-sponsored research on creatine and received financial support for presenting on creatine at industry-sponsored scientific conferences. R.B.K. acts as chair of the “Creatine in Health” scientific advisory board for AlzChem Tostberg GmbH while all other authors serve as members (except D.A.F.).

Figures

Figure 1
Figure 1
Creatine synthesis/excretion and the creatine kinase reaction. Enzymes are represented by ovals. Once synthesized from L-arginine, glycine, and S-adenosyl-L-methionine, creatine (Cr) is converted to phosphocreatine (PCr) by means of the creatine kinase (CK), which catalyzes the reversible transference of a phosphoryl group (PO32−), not a phosphate (PO43−), from ATP. The kinetic rate of the non-enzymatic conversion of Cr (or PCr) to creatinine (Crn) depends on the H+ concentration of the media. It is important to note that neither Crn nor PCr are substrates of the sodium- and chloride-dependent creatine transporter (not shown). Oval size represents the expression level of AGAT (black), GAMT (white), and CK (orange) in some tissues. For more details related to expression in different tissues or conditions (i.e., pathologies) use the following BioGPS ID numbers: AGAT–2628; GAMT–2593. AGAT: L-Arginine-Glycine amidinotransferase; GAMT: Guanidinoacetate N-Methyltransferase; H+: hydrogen ion; Pi: inorganic phosphate. Modified with permission from Bonilla and Moreno [7] using the Freeware ACD/ChemSketch 2021 (Advanced Chemistry Development, Inc., Toronto, ON, Canada).
Figure 2
Figure 2
Clustering of CK-interacting proteins using the Markov Cluster Algorithm. Network nodes represent proteins while edges represent protein–protein associations. The red cluster includes a subgroup of enzymes participating in the tricarboxylic acid cycle that are represented in the graph with blue nodes. To visualize our interactive network access to this permanent link: https://version-11-0b.string-db.org/cgi/network?networkId=bu20zAE45PpB (accessed on 14 February 2021).
Figure 3
Figure 3
General overview of the CK/PCr system. The diagram represents the super-connected subcellular energy production and cellular mechanics of Cr metabolism. This chemo-mechanical energy transduction network involves structural and functional coupling of the mitochondrial reticulum (mitochondrial interactosome and oxidative metabolism), phosphagen and glycolytic system (extramitochondrial ATP production), the linker of nucleoskeleton and cytoskeleton complex (nesprins interaction with microtubules, actin polymerization, β-tubulins), motor proteins (e.g., myofibrillar ATPase machinery, vesicles transport), and ion pumps (e.g., SERCA, Na+/K+-ATPase). The cardiolipin-rich domain is represented by parallel black lines. Green sparkled circles represent the subcellular processes where the CK/PCr system is important for functionality (see the previous sections for rationale and citations). Several proteins of the endoplasmic reticulum–mitochondria organizing network (ERMIONE), the SERCA complex, the TIM/TOM complex, the MICOS complex, the linker of nucleoskeleton and cytoskeleton complex, and the architecture of sarcomere and cytoskeleton are not depicted for readability. ANT: adenine nucleotide translocase; CK: creatine kinase; Cr: creatine; Crn: creatinine; CRT: Na+/Cl−-dependent creatine transporter; ERMES: endoplasmic reticulum-mitochondria encounter structure; ETC: electron transport chain; GLUT-4: glucose transporter type 4; HK: hexokinase; mdm10: mitochondrial distribution and morphology protein 10; MICOS: mitochondrial contact site and cristae organizing system; NDPK: nucleoside-diphosphate kinase; NPC: nuclear pore complex; PCr: phosphocreatine; SAM: sorting and assembly machinery; SERCA: Sarco/Endoplasmic Reticulum Ca2+ ATPase; TIM: translocase of the inner membrane complex; TOM: translocase of the outer membrane complex; UCP: uncoupling protein; VDAC: voltage-dependent anion channel. Source: designed by the authors (D.A.B.) using figure templates developed by Servier Medical Art (Les Laboratoires Servier, Suresnes, France), licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/ (accessed on 14 January 2021).
Figure 4
Figure 4
Importance of Cr metabolism in whole-body physiology. The CK/PCr system is essential for the chemo-mechanical energy transduction of cells/tissues with high, fluctuant, and constant energy demands. Source: designed by the authors (D.A.B.) using an anatomy template developed by 3dMediSphere (https://www.turbosquid.com/), licensed 3D standard Vray 3.60. accessed on 14 February 2020.

References

    1. Brosnan J.T., Brosnan M.E. Creatine: Endogenous Metabolite, Dietary, and Therapeutic Supplement. Annu. Rev. Nutr. 2007;27:241–261. doi: 10.1146/annurev.nutr.27.061406.093621.
    1. Béard E., Braissant O. Synthesis and transport of creatine in the CNS: Importance for cerebral functions. J. Neurochem. 2010;115:297–313. doi: 10.1111/j.1471-4159.2010.06935.x.
    1. Moore N.P. The distribution, metabolism and function of creatine in the male mammalian reproductive tract: A review. Int. J. Androl. 2000;23:4–12. doi: 10.1046/j.1365-2605.2000.00197.x.
    1. Brosnan J.T., da Silva R.P., Brosnan M.E. The metabolic burden of creatine synthesis. Amino Acids. 2011;40:1325–1331. doi: 10.1007/s00726-011-0853-y.
    1. Humm A., Fritsche E., Steinbacher S. Structure and reaction mechanism of L-arginine:glycine amidinotransferase. Biol. Chem. 1997;378:193–197.
    1. Komoto J., Yamada T., Takata Y., Konishi K., Ogawa H., Gomi T., Fujioka M., Takusagawa F. Catalytic Mechanism of Guanidinoacetate Methyltransferase: Crystal Structures of Guanidinoacetate Methyltransferase Ternary Complexes. Biochemistry. 2004;43:14385–14394. doi: 10.1021/bi0486785.
    1. Bonilla D.A., Moreno Y. Molecular and metabolic insights of creatine supplementation on resistance training. Rev. Colomb. Química. 2015;44:11–18. doi: 10.15446/rev.colomb.quim.v44n1.53978.
    1. Wyss M., Kaddurah-Daouk R. Creatine and Creatinine Metabolism. Physiol. Rev. 2000;80:1107–1213. doi: 10.1152/physrev.2000.80.3.1107.
    1. Brosnan M.E., Edison E.E., da Silva R., Brosnan J.T. New insights into creatine function and synthesis. Adv. Enzyme Regul. 2007;47:252–260. doi: 10.1016/j.advenzreg.2006.12.005.
    1. Bonilla D.A. A Systems Biology Approach to Creatine Metabolism. In: Hogan L., editor. Creatine: Biosynthesis, Health Effects and Clinical Perspectives. Nova Science Publishers Inc.; New York, NY, USA: 2017.
    1. Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H.M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 1992;281:21–40. doi: 10.1042/bj2810021.
    1. Hemmer W., Wallimann T. Functional Aspects of Creatine Kinase in Brain. Dev. Neurosci. 1993;15:249–260. doi: 10.1159/000111342.
    1. Wallimann T., Hemmer W. Creatine kinase in non-muscle tissues and cells. Mol. Cell. Biochem. 1994;133–134:193–220. doi: 10.1007/BF01267955.
    1. Balestrino M., Gandolfo C., Perasso L. Controlling the Flow of Energy: Inhibition and Stimulation of the Creatine Transporter. Curr. Enzym. Inhib. 2009;5:223–233. doi: 10.2174/157340809789630299.
    1. Speer O., Neukomm L.J., Murphy R.M., Zanolla E., Schlattner U., Henry H., Snow R.J., Wallimann T. Creatine transporters: A reappraisal. Mol. Cell. Biochem. 2004;256:407–424. doi: 10.1023/B:MCBI.0000009886.98508.e7.
    1. Christie D.L. Functional Insights into the Creatine Transporter. In: Salomons G.S., Wyss M., editors. Creatine and Creatine Kinase in Health and Disease. Springer; Dordrecht, The Netherlands: 2007. pp. 99–118.
    1. Nash S.R., Giros B., Kingsmore S.F., Rochelle J.M., Suter S.T., Gregor P., Seldin M.F., Caron M.G. Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Recept Channels. 1994;2:165–174.
    1. Hanna-El-Daher L., Braissant O. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models? Amino Acids. 2016;48:1877–1895. doi: 10.1007/s00726-016-2189-0.
    1. Braissant O., Rackayová V., Pierzchala K., Grosse J., McLin V.A., Cudalbu C. Longitudinal neurometabolic changes in the hippocampus of a rat model of chronic hepatic encephalopathy. J. Hepatol. 2019;71:505–515. doi: 10.1016/j.jhep.2019.05.022.
    1. Joncquel-Chevalier Curt M., Voicu P.-M., Fontaine M., Dessein A.-F., Porchet N., Mention-Mulliez K., Dobbelaere D., Soto-Ares G., Cheillan D., Vamecq J. Creatine biosynthesis and transport in health and disease. Biochimie. 2015;119:146–165. doi: 10.1016/j.biochi.2015.10.022.
    1. Marques E.P., Wyse A.T.S. Creatine as a Neuroprotector: An Actor that Can Play Many Parts. Neurotox. Res. 2019;36:411–423. doi: 10.1007/s12640-019-00053-7.
    1. Wallimann T., Harris R. Creatine: A miserable life without it. Amino Acids. 2016;48:1739–1750. doi: 10.1007/s00726-016-2297-x.
    1. Frampton C.S., Wilson C.C., Shankland N., Florence A.J. Single-crystal neutron refinement of creatine monohydrate at 20 K and 123 K. J. Chem. Soc. Faraday Trans. 1997;93:1875–1879. doi: 10.1039/a701292f.
    1. Arlin J.-B., Bhardwaj R.M., Johnston A., Miller G.J., Bardin J., MacDougall F., Fernandes P., Shankland K., David W.I.F., Florence A.J. Structure and stability of two polymorphs of creatine and its monohydrate. CrystEngComm. 2014;16 doi: 10.1039/C4CE00508B.
    1. Dash A.K., Mo Y., Pyne A. Solid-state Properties of Creatine Monohydrate. J. Pharm. Sci. 2002;91:708–718. doi: 10.1002/jps.10073.
    1. Pischel I., Gastner T. Creatine—its Chemical Synthesis, Chemistry, and Legal Status. In: Salomons G.S., Wyss M., editors. Creatine and Creatine Kinase in Health and Disease. Springer; Dordrecht, The Netherlands: 2007. pp. 291–307.
    1. Kreider R.B., Kalman D.S., Antonio J., Ziegenfuss T.N., Wildman R., Collins R., Candow D.G., Kleiner S.M., Almada A.L., Lopez H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. of Sports Nutr. 2017;14 doi: 10.1186/s12970-017-0173-z.
    1. Wallimann T., Tokarska-Schlattner M., Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011;40:1271–1296. doi: 10.1007/s00726-011-0877-3.
    1. Bonilla D.A., Pérez-Idárraga A., Odriozola-Martínez A., Kreider R.B. The 4R’s Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates. Int. J. Environ. Res. Public Health. 2020;18:103. doi: 10.3390/ijerph18010103.
    1. Mielgo-Ayuso J., Calleja-Gonzalez J., Marqués-Jiménez D., Caballero-García A., Córdova A., Fernández-Lázaro D. Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis. Nutrients. 2019;11:757. doi: 10.3390/nu11040757.
    1. Kaviani M., Shaw K., Chilibeck P.D. Benefits of Creatine Supplementation for Vegetarians Compared to Omnivorous Athletes: A Systematic Review. Int. J. Environ. Res. Public Health. 2020;17:3041. doi: 10.3390/ijerph17093041.
    1. Bakian A.V., Huber R.S., Scholl L., Renshaw P.F., Kondo D. Dietary creatine intake and depression risk among U.S. adults. Transl. Psychiatry. 2020;10 doi: 10.1038/s41398-020-0741-x.
    1. Forbes S.C., Candow D.G., Smith-Ryan A.E., Hirsch K.R., Roberts M.D., VanDusseldorp T.A., Stratton M.T., Kaviani M., Little J.P. Supplements and Nutritional Interventions to Augment High-Intensity Interval Training Physiological and Performance Adaptations—A Narrative Review. Nutrients. 2020;12:390. doi: 10.3390/nu12020390.
    1. De Guingand D.L., Palmer K.R., Bilardi J.E., Ellery S.J. Acceptability of dietary or nutritional supplementation in pregnancy (ADONS)—Exploring the consumer’s perspective on introducing creatine monohydrate as a pregnancy supplement. Midwifery. 2020;82 doi: 10.1016/j.midw.2019.102599.
    1. Candow D.G., Forbes S.C., Chilibeck P.D., Cornish S.M., Antonio J., Kreider R.B. Effectiveness of Creatine Supplementation on Aging Muscle and Bone: Focus on Falls Prevention and Inflammation. J. Clin. Med. 2019;8:488. doi: 10.3390/jcm8040488.
    1. Stares A., Bains M. The Additive Effects of Creatine Supplementation and Exercise Training in an Aging Population: A Systematic Review of Randomized Controlled Trials. J. Geriatr. Phys. Ther. 2020;43:99–112. doi: 10.1519/JPT.0000000000000222.
    1. Rawson E.S., Miles M.P., Larson-Meyer D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018;28:188–199. doi: 10.1123/ijsnem.2017-0340.
    1. Clarke H., Kim D.-H., Meza C.A., Ormsbee M.J., Hickner R.C. The Evolving Applications of Creatine Supplementation: Could Creatine Improve Vascular Health? Nutrients. 2020;12:2834. doi: 10.3390/nu12092834.
    1. Machek S.B., Bagley J.R. Creatine Monohydrate Supplementation: Considerations for Cognitive Performance in Athletes. Strength Cond. J. 2018;40:82–93. doi: 10.1519/SSC.0000000000000369.
    1. Dolan E., Gualano B., Rawson E.S. Beyond muscle: The effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. Eur. J. Sport Sci. 2018;19:1–14. doi: 10.1080/17461391.2018.1500644.
    1. Forbes S.C., Candow D.G., Ferreira L.H.B., Souza-Junior T.P. Effects of Creatine Supplementation on Properties of Muscle, Bone, and Brain Function in Older Adults: A Narrative Review. J. Diet. Suppl. 2021:1–18. doi: 10.1080/19390211.2021.1877232.
    1. De Souza e Silva A., Pertille A., Reis Barbosa C.G., Aparecida de Oliveira Silva J., de Jesus D.V., Ribeiro A.G.S.V., Baganha R.J., de Oliveira J.J. Effects of Creatine Supplementation on Renal Function: A Systematic Review and Meta-Analysis. J. Ren. Nutr. 2019;29:480–489. doi: 10.1053/j.jrn.2019.05.004.
    1. Forbes S.C., Candow D.G., Krentz J.R., Roberts M.D., Young K.C. Changes in Fat Mass Following Creatine Supplementation and Resistance Training in Adults ≥50 Years of Age: A Meta-Analysis. J. Funct. Morphol. Kinesiol. 2019;4:62. doi: 10.3390/jfmk4030062.
    1. Galvan E., Walker D.K., Simbo S.Y., Dalton R., Levers K., O’Connor A., Goodenough C., Barringer N.D., Greenwood M., Rasmussen C., et al. Acute and chronic safety and efficacy of dose dependent creatine nitrate supplementation and exercise performance. J. Int. Soc. Sports Nutr. 2016;13 doi: 10.1186/s12970-016-0124-0.
    1. Dalton R., Sowinski R., Grubic T., Collins P., Coletta A., Reyes A., Sanchez B., Koozehchian M., Jung Y., Rasmussen C., et al. Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation. Nutrients. 2017;9:1359. doi: 10.3390/nu9121359.
    1. Ostojic S.M., Stajer V., Vranes M., Ostojic J. Searching for a better formulation to enhance muscle bioenergetics: A randomized controlled trial of creatine nitrate plus creatininevs.creatine nitratevs.creatine monohydrate in healthy men. Food Sci. Nutr. 2019;7:3766–3773. doi: 10.1002/fsn3.1237.
    1. Antonio J., Candow D.G., Forbes S.C., Gualano B., Jagim A.R., Kreider R.B., Rawson E.S., Smith-Ryan A.E., VanDusseldorp T.A., Willoughby D.S., et al. Common questions and misconceptions about creatine supplementation: What does the scientific evidence really show? J. Int. Soc. Sports Nutr. 2021;18 doi: 10.1186/s12970-021-00412-w.
    1. Kreider R.B., Stout J.R. Creatine in Health and Disease. Nutrients. 2021;13:447. doi: 10.3390/nu13020447.
    1. Patra S., Bera S., SinhaRoy S., Ghoshal S., Ray S., Basu A., Schlattner U., Wallimann T., Ray M. Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. FEBS J. 2008;275:3236–3247. doi: 10.1111/j.1742-4658.2008.06475.x.
    1. Bender A., Klopstock T. Creatine for neuroprotection in neurodegenerative disease: End of story? Amino Acids. 2016;48:1929–1940. doi: 10.1007/s00726-015-2165-0.
    1. Cheng Y., Chen Y., Shang H. Aberrations of biochemical indicators in amyotrophic lateral sclerosis: A systematic review and meta-analysis. Transl. Neurodegener. 2021;10 doi: 10.1186/s40035-020-00228-9.
    1. Salazar M.D., Zelt N.B., Saldivar R., Kuntz C.P., Chen S., Penn W.D., Bonneau R., Koehler Leman J., Schlebach J.P. Classification of the Molecular Defects Associated with Pathogenic Variants of the SLC6A8 Creatine Transporter. Biochemistry. 2020;59:1367–1377. doi: 10.1021/acs.biochem.9b00956.
    1. Salomons G.S., van Dooren S.J., Verhoeven N.M., Cecil K.M., Ball W.S., Degrauw T.J., Jakobs C. X-linked creatine-transporter gene (SLC6A8) defect: A new creatine-deficiency syndrome. Am. J. Hum. Genet. 2001;68:1497–1500. doi: 10.1086/320595.
    1. Shearer J., Weljie A.M. Biomarkers of skeletal muscle regulation, metabolism and dysfunction. In: Jones O., editor. Metabolomics and Systems Biology in Human Health and Medicine. CABI; Oxfordshire, UK: 2014. pp. 157–170.
    1. McLeish M.J., Kenyon G.L. Relating Structure to Mechanism in Creatine Kinase. Crit. Rev. Biochem. Mol. Biol. 2008;40:1–20. doi: 10.1080/10409230590918577.
    1. Stout J.R., Antonio J., Kalman D. Essentials of Creatine in Sports and Health. Humana Press; New York, USA: 2008.
    1. Ellington W.R. Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens. J. Exp. Biol. 1989;143:177–194.
    1. Uzzan M., Nechrebeki J., Zhou P., Labuza T.P. Effect of water activity and temperature on the stability of creatine during storage. Drug Dev. Ind. Pharm. 2009;35:1003–1008. doi: 10.1080/03639040902755197.
    1. Harris R.C., Söderlund K., Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. 1992;83:367–374. doi: 10.1042/cs0830367.
    1. Vermeulen A., Wieme R., Robbrecht J., De Buyzere M., De Slypere J.P., Delanghe J. Normal reference values for creatine, creatinine, and carnitine are lower in vegetarians. Clin. Chem. 1989;35:1802–1803. doi: 10.1093/clinchem/35.8.1802.
    1. Blancquaert L., Baguet A., Bex T., Volkaert A., Everaert I., Delanghe J., Petrovic M., Vervaet C., De Henauw S., Constantin-Teodosiu D., et al. Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: A randomised trial. Br. J. Nutr. 2018;119:759–770. doi: 10.1017/S000711451800017X.
    1. Balsom P.D., Söderlund K., Ekblom B. Creatine in Humans with Special Reference to Creatine Supplementation. Sports Med. 1994;18:268–280. doi: 10.2165/00007256-199418040-00005.
    1. Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids. 2020;52:329–360. doi: 10.1007/s00726-020-02823-6.
    1. Casey A., Constantin-Teodosiu D., Howell S., Hultman E., Greenhaff P.L. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am. J. Physiol. Endocrinol. Metab. 1996;271:E31–E37. doi: 10.1152/ajpendo.1996.271.1.E31.
    1. Greenhaff P.L., Bodin K., Soderlund K., Hultman E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am. J. Physiol. Endocrinol. Metab. 1994;266:E725–E730. doi: 10.1152/ajpendo.1994.266.5.E725.
    1. Dechent P., Pouwels P.J.W., Wilken B., Hanefeld F., Frahm J. Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1999;277:R698–R704. doi: 10.1152/ajpregu.1999.277.3.R698.
    1. Kreider R., Willoughby D., Greenwood M., Parise G., Payne E.T. Effects of serum creatine supplementation on muscle creatine and phosphagen levels. J. Exerc. Physiol. Online. 2003;6:24–33.
    1. Schulze A. Creatine deficiency syndromes. Mol. Cell. Biochem. 2003;244:143–150. doi: 10.1023/A:1022443503883.
    1. Stockler-Ipsiroglu S., Apatean D., Battini R., DeBrosse S., Dessoffy K., Edvardson S., Eichler F., Johnston K., Koeller D.M., Nouioua S., et al. Arginine: Glycine amidinotransferase (AGAT) deficiency: Clinical features and long term outcomes in 16 patients diagnosed worldwide. Mol. Genet. Metab. 2015;116:252–259. doi: 10.1016/j.ymgme.2015.10.003.
    1. Stöckler-Ipsiroglu S., Battini R., DeGrauw T., Schulze A. Disorders of Creatine Metabolism. In: Blau N., Leonard J., Hoffmann G.F., Clarke J.T.R., editors. Physician’s Guide to the Treatment and Follow-Up of Metabolic Diseases. Springer; Berlin/Heidelberg, Germany: 2006. pp. 255–265.
    1. Mesa J.L.M., Ruiz J.R., Gonzalez-Gross M.M., Gutierrez Sainz A., Castillo Garzon M.J. Oral Creatine Supplementation and Skeletal Muscle Metabolism in Physical Exercise. Sports Med. 2002;32:903–944. doi: 10.2165/00007256-200232140-00003.
    1. Harris R.C., Almada A.L., Harris D.B., Dunnett M., Hespel P. The creatine content of Creatine Serum™ and the change in the plasma concentration with ingestion of a single dose. J. Sports Sci. 2004;22:851–857. doi: 10.1080/02640410310001658739.
    1. Brault J.J., Towse T.F., Slade J.M., Meyer R.A. Parallel Increases in Phosphocreatine and Total Creatine in Human Vastus Lateralis Muscle during Creatine Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2007;17:624–634. doi: 10.1123/ijsnem.17.6.624.
    1. Broxterman R.M., Layec G., Hureau T.J., Amann M., Richardson R.S. Skeletal muscle bioenergetics during all-out exercise: Mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. J. Appl. Physiol. 2017;122:1208–1217. doi: 10.1152/japplphysiol.01093.2016.
    1. Burnley M., Jones A.M. Oxygen uptake kinetics as a determinant of sports performance. Eur. J. Sport Sci. 2007;7:63–79. doi: 10.1080/17461390701456148.
    1. Sweeney H.L. The importance of the creatine kinase reaction: The concept of metabolic capacitance. Med. Sci. Sports Exerc. 1994;26:30–36. doi: 10.1249/00005768-199401000-00007.
    1. Francescato M.P., Cettolo V., di Prampero P.E. Influence of phosphagen concentration on phosphocreatine breakdown kinetics. Data from human gastrocnemius muscle. J. Appl. Physiol. 2008;105:158–164. doi: 10.1152/japplphysiol.00007.2008.
    1. Meyer R.A. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am. J. Physiol. Cell Physiol. 1988;254:C548–C553. doi: 10.1152/ajpcell.1988.254.4.C548.
    1. Willis W.T., Jackman M.R., Messer J.I., Kuzmiak-Glancy S., Glancy B. A Simple Hydraulic Analog Model of Oxidative Phosphorylation. Med. Sci. Sports Exerc. 2016;48:990–1000. doi: 10.1249/MSS.0000000000000884.
    1. Gonzalez-Freire M., Scalzo P., D’Agostino J., Moore Z.A., Diaz-Ruiz A., Fabbri E., Zane A., Chen B., Becker K.G., Lehrmann E., et al. Skeletal muscle ex vivo mitochondrial respiration parallels decline in vivo oxidative capacity, cardiorespiratory fitness, and muscle strength: The Baltimore Longitudinal Study of Aging. Aging Cell. 2018;17 doi: 10.1111/acel.12725.
    1. Jones A.M., Wilkerson D.P., Fulford J. Influence of dietary creatine supplementation on muscle phosphocreatine kinetics during knee-extensor exercise in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;296:R1078–R1087. doi: 10.1152/ajpregu.90896.2008.
    1. De Andrade Nemezio K.M., Bertuzzi R., Correia-Oliveira C.R., Gualano B., Bishop D.J., Lima-Silva A.E. Effect of Creatine Loading on Oxygen Uptake during a 1-km Cycling Time Trial. Med. Sci. Sports Exerc. 2015;47:2660–2668. doi: 10.1249/MSS.0000000000000718.
    1. Rigoulet M., Bouchez C.L., Paumard P., Ransac S., Cuvellier S., Duvezin-Caubet S., Mazat J.P., Devin A. Cell energy metabolism: An update. Biochim. Biophys. Acta BBA Bioenerg. 2020;1861 doi: 10.1016/j.bbabio.2020.148276.
    1. Sumien N., Shetty R.A., Gonzales E.B. Creatine, Creatine Kinase, and Aging. In: Harris J., Korolchuk V., editors. Biochemistry and Cell Biology of Ageing: Part I Biomedical Science. Springer; Singapore: 2018. pp. 145–168.
    1. Schlattner U., Kay L., Tokarska-Schlattner M. Mitochondrial Proteolipid Complexes of Creatine Kinase. In: Harris J., Boekema E., editors. Membrane Protein Complexes: Structure and Function. Springer; Singapore: 2018. pp. 365–408.
    1. Dzeja P.P., Terzic A. Phosphotransfer networks and cellular energetics. J. Exp. Biol. 2003;206:2039–2047. doi: 10.1242/jeb.00426.
    1. Bessman S.P., Carpenter C.L. The Creatine-Creatine Phosphate Energy Shuttle. Annu. Rev. Biochem. 1985;54:831–862. doi: 10.1146/annurev.bi.54.070185.004151.
    1. Kongas O., van Beek J. Creatine kinase in energy metabolic signaling in muscle. Nat. Preced. 2007 doi: 10.1038/npre.2007.1317.1.
    1. Fiedler G.B., Schmid A.I., Goluch S., Schewzow K., Laistler E., Niess F., Unger E., Wolzt M., Mirzahosseini A., Kemp G.J., et al. Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery. Sci. Rep. 2016;6 doi: 10.1038/srep32037.
    1. Barclay C.J. Energy demand and supply in human skeletal muscle. J. Muscle Res. Cell Motil. 2017;38:143–155. doi: 10.1007/s10974-017-9467-7.
    1. Uda K., Ellington W.R., Suzuki T. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution. Gene. 2012;497:214–227. doi: 10.1016/j.gene.2012.01.036.
    1. Bertin M., Pomponi S.M., Kokuhuta C., Iwasaki N., Suzuki T., Ellington W.R. Origin of the genes for the isoforms of creatine kinase. Gene. 2007;392:273–282. doi: 10.1016/j.gene.2007.01.007.
    1. Eppenberger H.M., Dawson D.M., Kaplan N.O. The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J. Biol. Chem. 1967;242:204–209. doi: 10.1016/S0021-9258(19)81449-7.
    1. Wallimann T., Tokarska-Schlattner M., Neumann D., Epand R.M., Epand R.F., Andres R.H., Widmer H.R., Hornemann T., Saks V., Agarkova I., et al. The Phosphocreatine Circuit: Molecular and Cellular Physiology of Creatine Kinases, Sensitivity to Free Radicals, and Enhancement by Creatine Supplementation. In: Saks V., editor. Molecular System Bioenergetics. Wiley-VCH; Weinheim, Germany: 2007. pp. 195–264.
    1. Ramírez Ríos S., Lamarche F., Cottet-Rousselle C., Klaus A., Tuerk R., Thali R., Auchli Y., Brunisholz R., Neumann D., Barret L., et al. Regulation of brain-type creatine kinase by AMP-activated protein kinase: Interaction, phosphorylation and ER localization. Biochim. Biophys. Acta BBA Bioenerg. 2014;1837:1271–1283. doi: 10.1016/j.bbabio.2014.03.020.
    1. McFarland E.W., Kushmerick M.J., Moerland T.S. Activity of creatine kinase in a contracting mammalian muscle of uniform fiber type. Biophys. J. 1994;67:1912–1924. doi: 10.1016/S0006-3495(94)80674-5.
    1. Wallimann T., Schlösser T., Eppenberger H.M. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J. Biol. Chem. 1984;259:5238–5246. doi: 10.1016/S0021-9258(17)42981-4.
    1. Fritz-Wolf K., Schnyder T., Wallimann T., Kabsch W. Structure of mitochondrial creatine kinase. Nature. 1996;381:341–345. doi: 10.1038/381341a0.
    1. Eder M., Fritz-Wolf K., Kabsch W., Wallimann T., Schlattner U. Crystal structure of human ubiquitous mitochondrial creatine kinase. Proteins. 2000;39:216–225. doi: 10.1002/(SICI)1097-0134(20000515)39:3<216::AID-PROT40>;2-#.
    1. Guzun R., Gonzalez-Granillo M., Karu-Varikmaa M., Grichine A., Usson Y., Kaambre T., Guerrero-Roesch K., Kuznetsov A., Schlattner U., Saks V. Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within Mitochondrial Interactosome. Biochim. Biophys. Acta BBA Biomembr. 2012;1818:1545–1554. doi: 10.1016/j.bbamem.2011.12.034.
    1. Wu C., Orozco C., Boyer J., Leglise M., Goodale J., Batalov S., Hodge C.L., Haase J., Janes J., Huss J.W., et al. BioGPS: An extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 2009;10 doi: 10.1186/gb-2009-10-11-r130.
    1. Glancy B., Hartnell L.M., Malide D., Yu Z.-X., Combs C.A., Connelly P.S., Subramaniam S., Balaban R.S. Mitochondrial reticulum for cellular energy distribution in muscle. Nature. 2015;523:617–620. doi: 10.1038/nature14614.
    1. Wallimann T. The extended, dynamic mitochondrial reticulum in skeletal muscle and the creatine kinase (CK)/phosphocreatine (PCr) shuttle are working hand in hand for optimal energy provision. J. Muscle Res. Cell Motil. 2015;36:297–300. doi: 10.1007/s10974-015-9427-z.
    1. Glancy B., Hartnell L.M., Combs C.A., Femnou A., Sun J., Murphy E., Subramaniam S., Balaban R.S. Power Grid Protection of the Muscle Mitochondrial Reticulum. Cell Rep. 2017;19:487–496. doi: 10.1016/j.celrep.2017.03.063.
    1. Saks V., Schlattner U., Tokarska-Schlattner M., Wallimann T., Bagur R., Zorman S., Pelosse M., Santos P.D., Boucher F., Kaambre T., et al. Systems Level Regulation of Cardiac Energy Fluxes Via Metabolic Cycles: Role of Creatine, Phosphotransfer Pathways, and AMPK Signaling. In: Aon M., Saks V., Schlattner U., editors. Systems Biology of Metabolic and Signaling Networks. Springer; Berlin/Heidelberg, Germany: 2014. pp. 261–320.
    1. Timohhina N., Guzun R., Tepp K., Monge C., Varikmaa M., Vija H., Sikk P., Kaambre T., Sackett D., Saks V. Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: Some evidence for mitochondrial interactosome. J. Bioenerg. Biomembr. 2009;41:259–275. doi: 10.1007/s10863-009-9224-8.
    1. Guzun R., Saks V. Application of the Principles of Systems Biology and Wiener’s Cybernetics for Analysis of Regulation of Energy Fluxes in Muscle Cells in Vivo. Int. J. Mol. Sci. 2010;11:982–1019. doi: 10.3390/ijms11030982.
    1. Saks V., Guzun R., Timohhina N., Tepp K., Varikmaa M., Monge C., Beraud N., Kaambre T., Kuznetsov A., Kadaja L., et al. Structure–function relationships in feedback regulation of energy fluxes in vivo in health and disease: Mitochondrial Interactosome. Biochim. Biophys. Acta BBA Bioenerg. 2010;1797:678–697. doi: 10.1016/j.bbabio.2010.01.011.
    1. Karo J., Peterson P., Vendelin M. Molecular Dynamics Simulations of Creatine Kinase and Adenine Nucleotide Translocase in Mitochondrial Membrane Patch. J. Biol. Chem. 2012;287:7467–7476. doi: 10.1074/jbc.M111.332320.
    1. Bonilla D.A., Marín E., Pérez A., Carbone L., Kammerer M., Vargas S., Lozano J., Barale A., Quiroga L., Mata F., et al. Thermogenesis and Obesity; A Brief Review and rs104894319 Polymorphism in Venezuelan Population. EC Nutr. 2018;13:4–16.
    1. Rousset S., Alves-Guerra M.C., Mozo J., Miroux B., Cassard-Doulcier A.M., Bouillaud F., Ricquier D. The Biology of Mitochondrial Uncoupling Proteins. Diabetes. 2004;53:S130–S135. doi: 10.2337/diabetes.53.2007.S130.
    1. Brand M.D., Esteves T.C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005;2:85–93. doi: 10.1016/j.cmet.2005.06.002.
    1. Ramsden D.B., Ho P.W.L., Ho J.W.M., Liu H.F., So D.H.F., Tse H.M., Chan K.H., Ho S.L. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): Structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav. 2012;2:468–478. doi: 10.1002/brb3.55.
    1. Krauss S., Zhang C.-Y., Lowell B.B. The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 2005;6:248–261. doi: 10.1038/nrm1592.
    1. Busiello R.A., Savarese S., Lombardi A. Mitochondrial uncoupling proteins and energy metabolism. Front. Physiol. 2015;6 doi: 10.3389/fphys.2015.00036.
    1. Pohl E.E., Rupprecht A., Macher G., Hilse K.E. Important Trends in UCP3 Investigation. Front. Physiol. 2019;10 doi: 10.3389/fphys.2019.00470.
    1. Skulachev V.P. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 1991;294:158–162. doi: 10.1016/0014-5793(91)80658-P.
    1. Ježek P., Engstová H., Žáčková M., Vercesi A.E., Costa A.D.T., Arruda P., Garlid K.D. Fatty acid cycling mechanism and mitochondrial uncoupling proteins. Biochim. Biophys. Acta BBA Bioenerg. 1998;1365:319–327. doi: 10.1016/S0005-2728(98)00084-X.
    1. Klingenberg M., Huang S.-G. Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta BBA Biomembr. 1999;1415:271–296. doi: 10.1016/S0005-2736(98)00232-6.
    1. Fedorenko A., Lishko P.V., Kirichok Y. Mechanism of Fatty-Acid-Dependent UCP1 Uncoupling in Brown Fat Mitochondria. Cell. 2012;151:400–413. doi: 10.1016/j.cell.2012.09.010.
    1. Macher G., Koehler M., Rupprecht A., Kreiter J., Hinterdorfer P., Pohl E.E. Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. Biochim. Biophys. Acta BBA Biomembr. 2018;1860:664–672. doi: 10.1016/j.bbamem.2017.12.001.
    1. Kazak L., Chouchani E.T., Jedrychowski M.P., Erickson B.K., Shinoda K., Cohen P., Vetrivelan R., Lu G.Z., Laznik-Bogoslavski D., Hasenfuss S.C., et al. A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat. Cell. 2015;163:643–655. doi: 10.1016/j.cell.2015.09.035.
    1. Kazak L., Chouchani E.T., Lu G.Z., Jedrychowski M.P., Bare C.J., Mina A.I., Kumari M., Zhang S., Vuckovic I., Laznik-Bogoslavski D., et al. Genetic Depletion of Adipocyte Creatine Metabolism Inhibits Diet-Induced Thermogenesis and Drives Obesity. Cell Metab. 2017;26:660–671.e663. doi: 10.1016/j.cmet.2017.08.009.
    1. Bertholet A.M., Kazak L., Chouchani E.T., Bogaczyńska M.G., Paranjpe I., Wainwright G.L., Bétourné A., Kajimura S., Spiegelman B.M., Kirichok Y. Mitochondrial Patch Clamp of Beige Adipocytes Reveals UCP1-Positive and UCP1-Negative Cells Both Exhibiting Futile Creatine Cycling. Cell Metab. 2017;25:811–822.e814. doi: 10.1016/j.cmet.2017.03.002.
    1. Kazak L., Roesler A. UCP1-independent thermogenesis. Biochem. J. 2020;477:709–725. doi: 10.1042/bcj20190463.
    1. Kazak L., Cohen P. Creatine metabolism: Energy homeostasis, immunity and cancer biology. Nat. Rev. Endocrinol. 2020;16:421–436. doi: 10.1038/s41574-020-0365-5.
    1. Ikeda K., Yamada T. UCP1 Dependent and Independent Thermogenesis in Brown and Beige Adipocytes. Front. Endocrinol. (Lausanne) 2020;11 doi: 10.3389/fendo.2020.00498.
    1. Chouchani E.T., Kajimura S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 2019;1:189–200. doi: 10.1038/s42255-018-0021-8.
    1. Wallimann T., Tokarska-Schlattner M., Kay L., Schlattner U. Role of creatine and creatine kinase in UCP1-independent adipocyte thermogenesis. Am. J. Physiol. Endocrinol. Metab. 2020;319:E944–E946. doi: 10.1152/ajpendo.00367.2020.
    1. Connell N.J., Doligkeit D., Andriessen C., Kornips-Moonen E., Bruls Y.M.H., Schrauwen-Hinderling V.B., van de Weijer T., van Marken-Lichtenbelt W.D., Havekes B., Kazak L., et al. No evidence for brown adipose tissue activation after creatine supplementation in adult vegetarians. Nat. Metab. 2021;3:107–117. doi: 10.1038/s42255-020-00332-0.
    1. Kraft T., Hornemann T., Stolz M., Nier V., Wallimann T. Coupling of creatine kinase to glycolytic enzymes at the sarcomeric I-band of skeletal muscle: A biochemical study in situ. J. Muscle Res. Cell Motil. 2000;21:691–703. doi: 10.1023/A:1005623002979.
    1. Westerblad H., Allen D.G., Lännergren J. Muscle Fatigue: Lactic Acid or Inorganic Phosphate the Major Cause? Physiology. 2002;17:17–21. doi: 10.1152/physiologyonline.2002.17.1.17.
    1. Wu F., Beard D.A. Roles of the creatine kinase system and myoglobin in maintaining energetic state in the working heart. BMC Syst. Biol. 2009;3 doi: 10.1186/1752-0509-3-22.
    1. Gerlach G., Hofer H.W. Interaction of immobilized phosphofructokinase with soluble muscle proteins. Biochim. Biophys. Acta BBA Gen. Subj. 1986;881:398–404. doi: 10.1016/0304-4165(86)90032-2.
    1. Mor I., Cheung E.C., Vousden K.H. Control of Glycolysis through Regulation of PFK1: Old Friends and Recent Additions. Cold Spring Harb. Symp. Quant. Biol. 2011;76:211–216. doi: 10.1101/sqb.2011.76.010868.
    1. Foucault G., Vacher M., Merkulova T., Keller A., Arrio-Dupont M. Presence of enolase in the M-band of skeletal muscle and possible indirect interaction with the cytosolic muscle isoform of creatine kinase. Biochem. J. 1999;338:115–121. doi: 10.1042/bj3380115.
    1. Brown K.S., Hettling H., van Beek J.H.G.M. Analyzing the Functional Properties of the Creatine Kinase System with Multiscale ‘Sloppy’ Modeling. PLoS Comput. Biol. 2011;7 doi: 10.1371/journal.pcbi.1002130.
    1. Bose S., French S., Evans F.J., Joubert F., Balaban R.S. Metabolic Network Control of Oxidative Phosphorylation. J. Biol. Chem. 2003;278:39155–39165. doi: 10.1074/jbc.M306409200.
    1. Saks V., Monge C., Guzun R. Philosophical Basis and Some Historical Aspects of Systems Biology: From Hegel to Noble—Applications for Bioenergetic Research. Int. J. Mol. Sci. 2009;10:1161–1192. doi: 10.3390/ijms10031161.
    1. Guzun R., Timohhina N., Tepp K., Monge C., Kaambre T., Sikk P., Kuznetsov A.V., Pison C., Saks V. Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Biochim. Biophys. Acta BBA Bioenerg. 2009;1787:1089–1105. doi: 10.1016/j.bbabio.2009.03.024.
    1. Klepinin A., Ounpuu L., Mado K., Truu L., Chekulayev V., Puurand M., Shevchuk I., Tepp K., Planken A., Kaambre T. The complexity of mitochondrial outer membrane permeability and VDAC regulation by associated proteins. J. Bioenerg. Biomembr. 2018;50:339–354. doi: 10.1007/s10863-018-9765-9.
    1. Anflous-Pharayra K., Cai Z.-J., Craigen W.J. VDAC1 serves as a mitochondrial binding site for hexokinase in oxidative muscles. Biochim. Biophys. Acta BBA Bioenerg. 2007;1767:136–142. doi: 10.1016/j.bbabio.2006.11.013.
    1. Pedersen P.L. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J. Bioenerg. Biomembr. 2007;39:211–222. doi: 10.1007/s10863-007-9094-x.
    1. Sestili P., Martinelli C., Colombo E., Barbieri E., Potenza L., Sartini S., Fimognari C. Creatine as an antioxidant. Amino Acids. 2011;40:1385–1396. doi: 10.1007/s00726-011-0875-5.
    1. Hofmann P. Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise. Sports. 2018;6:10. doi: 10.3390/sports6010010.
    1. Fadaka A., Ajiboye B., Ojo O., Adewale O., Olayide I., Emuowhochere R. Biology of glucose metabolization in cancer cells. J. Oncol. Sci. 2017;3:45–51. doi: 10.1016/j.jons.2017.06.002.
    1. Marchesi F., Vignali D., Manini B., Rigamonti A., Monti P. Manipulation of Glucose Availability to Boost Cancer Immunotherapies. Cancers Basel. 2020;12:2940. doi: 10.3390/cancers12102940.
    1. Balsom P.D., Söderlund K., Sjödin B., Ekblom B. Skeletal muscle metabolism during short duration high-intensity exercise: Influence of creatine supplementation. Acta Physiol. Scand. 1995;154:303–310. doi: 10.1111/j.1748-1716.1995.tb09914.x.
    1. Balsom P.D., Ekblom B., Söerlund K., Sjödln B., Hultman E. Creatine supplementation and dynamic high-intensity intermittent exercise. Scand. J. Med. Sci. Sports. 2007;3:143–149. doi: 10.1111/j.1600-0838.1993.tb00378.x.
    1. Dos Santos M.G. Estudio Del Metabolismo Energético Muscular Y De La Composición Corporal De Atletas Por Métodos No Destructivos. Universitat Autònoma de Barcelona; Barcelona, Spain: 2001.
    1. Ceddia R.B., Sweeney G. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells. J. Physiol. 2004;555:409–421. doi: 10.1113/jphysiol.2003.056291.
    1. Dobgenski V., Santos M., Kreider R. Effects of creatine supplementation in the concentrations of creatine kinase, creatinine, urea and lactate on male swimmers. J. Nutr. Health. 2016;2:1–5.
    1. Oliver J.M., Joubert D.P., Martin S.E., Crouse S.F. Oral Creatine Supplementation’s Decrease of Blood Lactate During Exhaustive, Incremental Cycling. Int. J. Sport Nutr. Exerc. Metab. 2013;23:252–258. doi: 10.1123/ijsnem.23.3.252.
    1. Storey K.B., Hochachka P.W. Activation of muscle glycolysis: A role for creatine phosphate in phosphofructokinase regulation. FEBS Lett. 1974;46:337–339. doi: 10.1016/0014-5793(74)80400-X.
    1. Kemp R.G. Inhibition of muscle pyruvate kinase by creatine phosphate. J. Biol. Chem. 1973;248:3963–3967. doi: 10.1016/S0021-9258(19)43826-X.
    1. Fu J.Y., Kemp R.G. Activation of Muscle Fructose 1,6-Diphosphatase by Creatine Phosphate and Citrate. J. Biol. Chem. 1973;248:1124–1125. doi: 10.1016/S0021-9258(19)44381-0.
    1. Ponticos M., Lu Q.L., Hardie D.G., Partridge T.A., Carling D. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 1998;17:1688–1699. doi: 10.1093/emboj/17.6.1688.
    1. Jørgensen S.B., Richter E.A., Wojtaszewski J.F.P. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J. Physiol. 2006;574:17–31. doi: 10.1113/jphysiol.2006.109942.
    1. Zhang L., Wang X., Li J., Zhu X., Gao F., Zhou G. Creatine Monohydrate Enhances Energy Status and Reduces Glycolysis via Inhibition of AMPK Pathway in Pectoralis Major Muscle of Transport-Stressed Broilers. J. Agric. Food Chem. 2017;65:6991–6999. doi: 10.1021/acs.jafc.7b02740.
    1. Taylor E.B., Ellingson W.J., Lamb J.D., Chesser D.G., Compton C.L., Winder W.W. Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate. Am. J. Physiol. Endocrinol. Metab. 2006;290:E661–E669. doi: 10.1152/ajpendo.00313.2005.
    1. Eijnde B.O., Derave W., Wojtaszewski J.F.P., Richter E.A., Hespel P. AMP kinase expression and activity in human skeletal muscle: Effects of immobilization, retraining, and creatine supplementation. J. Appl. Physiol. 2005;98:1228–1233. doi: 10.1152/japplphysiol.00665.2004.
    1. Gautel M., Djinović-Carugo K. The sarcomeric cytoskeleton: From molecules to motion. J. Exp. Biol. 2016;219:135–145. doi: 10.1242/jeb.124941.
    1. Puurand M., Tepp K., Timohhina N., Aid J., Shevchuk I., Chekulayev V., Kaambre T. Tubulin βII and βIII Isoforms as the Regulators of VDAC Channel Permeability in Health and Disease. Cells. 2019;8:239. doi: 10.3390/cells8030239.
    1. Kuznetsov A.V., Javadov S., Guzun R., Grimm M., Saks V. Cytoskeleton and regulation of mitochondrial function: The role of beta-tubulin II. Front. Physiol. 2013;4:82. doi: 10.3389/fphys.2013.00082.
    1. Raskin A., Lange S., Banares K., Lyon R.C., Zieseniss A., Lee L.K., Yamazaki K.G., Granzier H.L., Gregorio C.C., McCulloch A.D., et al. A Novel Mechanism Involving Four-and-a-half LIM Domain Protein-1 and Extracellular Signal-regulated Kinase-2 Regulates Titin Phosphorylation and Mechanics. J. Biol. Chem. 2012;287:29273–29284. doi: 10.1074/jbc.M112.372839.
    1. Henderson C.A., Gomez C.G., Novak S.M., Mi-Mi L., Gregorio C.C. Overview of the Muscle Cytoskeleton. Compr. Physiol. 2017;7:891–944. doi: 10.1002/cphy.c160033.
    1. Kaasik A., Veksler V., Boehm E., Novotova M., Minajeva A., Ventura-Clapier R.e. Energetic Crosstalk Between Organelles. Circ. Res. 2001;89:153–159. doi: 10.1161/hh1401.093440.
    1. Piquereau J., Veksler V., Novotova M., Ventura-Clapier R. Energetic Interactions Between Subcellular Organelles in Striated Muscles. Front. Cell Dev. Biol. 2020;8 doi: 10.3389/fcell.2020.581045.
    1. Kuznetsov A.V., Javadov S., Grimm M., Margreiter R., Ausserlechner M.J., Hagenbuchner J. Crosstalk between Mitochondria and Cytoskeleton in Cardiac Cells. Cells. 2020;9:222. doi: 10.3390/cells9010222.
    1. Muñoz-Lasso D.C., Romá-Mateo C., Pallardó F.V., Gonzalez-Cabo P. Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells. 2020;9:358. doi: 10.3390/cells9020358.
    1. Ross J.A., Levy Y., Ripolone M., Kolb J.S., Turmaine M., Holt M., Lindqvist J., Claeys K.G., Weis J., Monforte M., et al. Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy. Acta Neuropathol. 2019;138:477–495. doi: 10.1007/s00401-019-02034-8.
    1. Dowling P., Gargan S., Murphy S., Zweyer M., Sabir H., Swandulla D., Ohlendieck K. The Dystrophin Node as Integrator of Cytoskeletal Organization, Lateral Force Transmission, Fiber Stability and Cellular Signaling in Skeletal Muscle. Proteomes. 2021;9:9. doi: 10.3390/proteomes9010009.
    1. Lai W.-F., Wong W.-T. Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res. Rev. 2020;58 doi: 10.1016/j.arr.2020.101021.
    1. Perry R.L., Rudnick M.A. Molecular mechanisms regulating myogenic determination and differentiation. Front. Biosci. 2000;5:D750–D767. doi: 10.2741/A548.
    1. O’Connor R.S., Steeds C.M., Wiseman R.W., Pavlath G.K. Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion. J. Physiol. 2008;586:2841–2853. doi: 10.1113/jphysiol.2008.151027.
    1. Simionescu-Bankston A., Pichavant C., Canner J.P., Apponi L.H., Wang Y., Steeds C., Olthoff J.T., Belanto J.J., Ervasti J.M., Pavlath G.K. Creatine kinase B is necessary to limit myoblast fusion during myogenesis. Am. J. Physiol. Cell Physiol. 2015;308:C919–C931. doi: 10.1152/ajpcell.00029.2015.
    1. Lehka L., Rędowicz M.J. Mechanisms regulating myoblast fusion: A multilevel interplay. Semin. Cell Dev. Biol. 2020;104:81–92. doi: 10.1016/j.semcdb.2020.02.004.
    1. Stroud M.J., Banerjee I., Veevers J., Chen J. Linker of Nucleoskeleton and Cytoskeleton Complex Proteins in Cardiac Structure, Function, and Disease. Circ. Res. 2014;114:538–548. doi: 10.1161/CIRCRESAHA.114.301236.
    1. Spichal M., Fabre E. The Emerging Role of the Cytoskeleton in Chromosome Dynamics. Front. Genet. 2017;8 doi: 10.3389/fgene.2017.00060.
    1. Loo T.H., Ye X., Chai R.J., Ito M., Bonne G., Ferguson-Smith A.C., Stewart C.L. The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity. eLife. 2019;8 doi: 10.7554/eLife.49485.
    1. Piccus R., Brayson D. The nuclear envelope: LINCing tissue mechanics to genome regulation in cardiac and skeletal muscle. Biol. Lett. 2020;16 doi: 10.1098/rsbl.2020.0302.
    1. Brull A., Morales Rodriguez B., Bonne G., Muchir A., Bertrand A.T. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front. Physiol. 2018;9 doi: 10.3389/fphys.2018.01533.
    1. Starr D.A., Rose L.S. TorsinA regulates the LINC to moving nuclei. J. Cell Biol. 2017;216:543–545. doi: 10.1083/jcb.201701054.
    1. Dzeja P.P., Bortolon R., Perez-Terzic C., Holmuhamedov E.L., Terzic A. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. Proc. Natl. Acad. Sci. USA. 2002;99:10156–10161. doi: 10.1073/pnas.152259999.
    1. Dzeja P.P., Terzic A. Adenylate kinase and creatine kinase phosphotransfer in regulation of mitochondrial respiration and cellular energetic efficiency. In: Vial C., editor. Creatine Kinase. Nova Science Publishers; London, UK: 2006. pp. 195–221.
    1. Adam K., Ning J., Reina J., Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int. J. Mol. Sci. 2020;21:5848. doi: 10.3390/ijms21165848.
    1. Attwood P.V., Muimo R. The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases. Lab. Invest. 2017;98:283–290. doi: 10.1038/labinvest.2017.125.
    1. Macara I.G. Transport into and out of the Nucleus. Microbiol. Mol. Biol. Rev. 2001;65:570–594. doi: 10.1128/MMBR.65.4.570-594.2001.
    1. de Groof A.J.C., Fransen J.A.M., Errington R.J., Willems P.H.G.M., Wieringa B., Koopman W.J.H. The Creatine Kinase System Is Essential for Optimal Refill of the Sarcoplasmic Reticulum Ca2+ Store in Skeletal Muscle. J. Biol. Chem. 2002;277:5275–5284. doi: 10.1074/jbc.M108157200.
    1. Duke A.M., Steele D.S. Effects of creatine phosphate on Ca2+regulation by the sarcoplasmic reticulum in mechanically skinned rat skeletal muscle fibres. J. Physiol. 1999;517:447–458. doi: 10.1111/j.1469-7793.1999.0447t.x.
    1. Sistermans E.A., Klaassen C.H.W., Peters W., Swarts H.G.P., Jap P.H.K., De Pont J.J.H.H.M., Wieringa B. Co-localization and functional coupling of creatine kinase B and gastric H+/K+-ATPase on the apical membrane and the tubulovesicular system of parietal cells. Biochem. J. 1995;311:445–451. doi: 10.1042/bj3110445.
    1. Grosse R., Spitzer E., Kupriyanov V.V., Saks V.A., Repke K.R.H. Coordinate interplay between (Na+ + K+)-ATPase and creatine phosphokinase optimizes (Na+/K+)-antiport across the membrane of vesicles formed from the plasma membrane of cardiac muscle cell. Biochim. Biophys. Acta BBA Biomembr. 1980;603:142–156. doi: 10.1016/0005-2736(80)90397-1.
    1. Yang Y.-C., Fann M.-J., Chang W.-H., Tai L.-H., Jiang J.-H., Kao L.-S. Regulation of Sodium-Calcium Exchanger Activity by Creatine Kinase under Energy-compromised Conditions. J. Biol. Chem. 2010;285:28275–28285. doi: 10.1074/jbc.M110.141424.
    1. Kato Y., Miyakawa T., Tanokura M. Overview of the mechanism of cytoskeletal motors based on structure. Biophys. Rev. 2017;10:571–581. doi: 10.1007/s12551-017-0368-1.
    1. Jena B.P. Myosin: Cellular Molecular Motor. In: Jena B.P., editor. Cellular Nanomachines. Springer; Cham, Switzerland: 2020. pp. 79–89.
    1. Wickstead B. The evolutionary biology of dyneins. In: King S.M., editor. Dyneins. Academic Press; New York, NY, USA: 2018. pp. 100–138.
    1. Ali I., Yang W.-C. The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adhes. Migr. 2020;14:139–152. doi: 10.1080/19336918.2020.1810939.
    1. Schlattner U., Klaus A., Ramirez Rios S., Guzun R., Kay L., Tokarska-Schlattner M. Cellular compartmentation of energy metabolism: Creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids. 2016;48:1751–1774. doi: 10.1007/s00726-016-2267-3.
    1. Krause S.M., Jacobus W.E. Specific enhancement of the cardiac myofibrillar ATPase by bound creatine kinase. J. Biol. Chem. 1992;267:2480–2486. doi: 10.1016/S0021-9258(18)45904-2.
    1. Kuiper J.W.P., Pluk H., Oerlemans F., van Leeuwen F.N., de Lange F., Fransen J., Wieringa B. Creatine Kinase–Mediated ATP Supply Fuels Actin-Based Events in Phagocytosis. PLoS Biol. 2008;6 doi: 10.1371/journal.pbio.0060051.
    1. Aziz S.A., Kuiper J.W.P., van Horssen R., Oerlemans F., Peters W., van Dommelen M.M.T., te Lindert M.M., ten Hagen T.L.M., Janssen E., Fransen J.A.M., et al. Local ATP Generation by Brain-Type Creatine Kinase (CK-B) Facilitates Cell Motility. PLoS ONE. 2009;4 doi: 10.1371/journal.pone.0005030.
    1. Duran-Trio L., Fernandes-Pires G., Simicic D., Grosse J., Roux-Petronelli C., Bruce S.J., Binz P.-A., Sandi C., Cudalbu C., Braissant O. A new rat model of creatine transporter deficiency reveals behavioral disorder and altered brain metabolism. Sci. Rep. 2021;11 doi: 10.1038/s41598-020-80824-x.
    1. Hu W.-J., Zhou S.-M., Yang J.S., Meng F.-G. Computational Simulations to Predict Creatine Kinase-Associated Factors: Protein-Protein Interaction Studies of Brain and Muscle Types of Creatine Kinases. Enzym. Res. 2011;2011:1–12. doi: 10.4061/2011/328249.
    1. Wang Q., Qian W., Xu X., Bajpai A., Guan K., Zhang Z., Chen R., Flamini V., Chen W. Energy-Mediated Machinery Drives Cellular Mechanical Allostasis. Adv. Mater. 2019;31 doi: 10.1002/adma.201900453.
    1. Lee J.H., Jin H.E., Desai M.S., Ren S., Kim S., Lee S.W. Biomimetic sensor design. Nanoscale. 2015;7:18379–18391. doi: 10.1039/C5NR05226B.
    1. Deldicque L., Theisen D., Bertrand L., Hespel P., Hue L., Francaux M. Creatine enhances differentiation of myogenic C2C12 cells by activating both p38 and Akt/PKB pathways. Am. J. Physiol. Cell Physiol. 2007;293:C1263–C1271. doi: 10.1152/ajpcell.00162.2007.
    1. Sestili P., Barbieri E., Stocchi V. Effects of Creatine in Skeletal Muscle Cells and in Myoblasts Differentiating Under Normal or Oxidatively Stressing Conditions. Mini Rev. Med. Chem. 2015;16:4–11. doi: 10.2174/1389557515666150722102342.
    1. Gyoeva F.K. The role of motor proteins in signal propagation. Biochem. Mosc. 2014;79:849–855. doi: 10.1134/S0006297914090028.
    1. Solis M.Y., Artioli G.G., Gualano B. Potential of Creatine in Glucose Management and Diabetes. Nutrients. 2021;13:570. doi: 10.3390/nu13020570.
    1. Somwar R., Kim D.Y., Sweeney G., Huang C., Niu W., Lador C., Ramlal T., Klip A. GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: Potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem. J. 2001;359 doi: 10.1042/bj3590639.
    1. Niu W., Huang C., Nawaz Z., Levy M., Somwar R., Li D., Bilan P.J., Klip A. Maturation of the Regulation of GLUT4 Activity by p38 MAPK during L6 Cell Myogenesis. J. Biol. Chem. 2003;278:17953–17962. doi: 10.1074/jbc.M211136200.
    1. Kleinert M., Parker B.L., Fritzen A.M., Knudsen J.R., Jensen T.E., Kjøbsted R., Sylow L., Ruegg M., James D.E., Richter E.A. Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. J. Physiol. 2017;595:4845–4855. doi: 10.1113/JP274203.
    1. Sterling P. Allostasis: A model of predictive regulation. Physiol. Behav. 2012;106:5–15. doi: 10.1016/j.physbeh.2011.06.004.
    1. Rankin A., O’Donavon C., Madigan S.M., O’Sullivan O., Cotter P.D. ‘Microbes in sport’—The potential role of the gut microbiota in athlete health and performance. Br. J. Sports Med. 2017;51:698–699. doi: 10.1136/bjsports-2016-097227.
    1. Hiergeist A., Gläsner J., Reischl U., Gessner A. Analyses of Intestinal Microbiota: Culture versus Sequencing: Figure 1. ILAR J. 2015;56:228–240. doi: 10.1093/ilar/ilv017.
    1. Turer E., McAlpine W., Wang K.-w., Lu T., Li X., Tang M., Zhan X., Wang T., Zhan X., Bu C.-H., et al. Creatine maintains intestinal homeostasis and protects against colitis. Proc. Natl. Acad. Sci. USA. 2017;114:E1273–E1281. doi: 10.1073/pnas.1621400114.
    1. Marcobal A., Kashyap P.C., Nelson T.A., Aronov P.A., Donia M.S., Spormann A., Fischbach M.A., Sonnenburg J.L. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 2013;7:1933–1943. doi: 10.1038/ismej.2013.89.
    1. Savidge T. Predicting Inflammatory Bowel Disease Symptoms Onset: Nitrous Take on Gut Bacteria Is No Laughing Matter. Cell. Mol. Gastroenterol. Hepatol. 2021;11:661–662. doi: 10.1016/j.jcmgh.2020.09.011.
    1. Langille M.G.I., Meehan C.J., Koenig J.E., Dhanani A.S., Rose R.A., Howlett S.E., Beiko R.G. Microbial shifts in the aging mouse gut. Microbiome. 2014;2 doi: 10.1186/s40168-014-0050-9.
    1. O’Sullivan O., Cronin O., Clarke S.F., Murphy E.F., Molloy M.G., Shanahan F., Cotter P.D. Exercise and the microbiota. Gut Microbes. 2015;6:131–136. doi: 10.1080/19490976.2015.1011875.
    1. Ostojic S.M. Human gut microbiota as a source of guanidinoacetic acid. Med. Hypotheses. 2020;142 doi: 10.1016/j.mehy.2020.109745.
    1. Avgerinos K.I., Spyrou N., Bougioukas K.I., Kapogiannis D. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials. Exp. Gerontol. 2018;108:166–173. doi: 10.1016/j.exger.2018.04.013.
    1. Roschel H., Gualano B., Ostojic S.M., Rawson E.S. Creatine Supplementation and Brain Health. Nutrients. 2021;13:586. doi: 10.3390/nu13020586.
    1. Aliev M., Guzun R., Karu-Varikmaa M., Kaambre T., Wallimann T., Saks V. Molecular System Bioenergics of the Heart: Experimental Studies of Metabolic Compartmentation and Energy Fluxes versus Computer Modeling. Int. J. Mol. Sci. 2011;12:9296–9331. doi: 10.3390/ijms12129296.
    1. Mair J., Artner-Dworzak E., Dienstl A., Lechleitner P., Morass B., Smidt J., Wagner I., Wettach C., Puschendorf B. Early detection of acute myocardial infarction by measurement of mass concentration of creatine kinase-MB. Am. J. Cardiol. 1991;68:1545–1550. doi: 10.1016/0002-9149(91)90307-7.
    1. Hoag G.N., Singh R., Franks C.R., DeCoteau W.E. Creatine kinase isoenzymes in testicular tissue of normal subjects and in a case of lymphoblastic lymphosarcoma. Clin. Chem. 1980;26:1360–1361. doi: 10.1093/clinchem/26.9.1360.
    1. Nasrallah F., Hammami M., Omar S., Aribia H., Sanhaji H., Feki M. Semen Creatine and Creatine Kinase Activity as an Indicator of Sperm Quality. Clin. Lab. 2020;66 doi: 10.7754/Clin.Lab.2020.191248.
    1. Philip M., Snow R.J., Gatta P.A.D., Bellofiore N., Ellery S.J. Creatine metabolism in the uterus: Potential implications for reproductive biology. Amino Acids. 2020;52:1275–1283. doi: 10.1007/s00726-020-02896-3.
    1. Muccini A.M., Tran N.T., de Guingand D.L., Philip M., Della Gatta P.A., Galinsky R., Sherman L.S., Kelleher M.A., Palmer K.R., Berry M.J., et al. Creatine Metabolism in Female Reproduction, Pregnancy and Newborn Health. Nutrients. 2021;13:490. doi: 10.3390/nu13020490.
    1. Hemmer W., Riesinger I., Wallimann T., Eppenberger H.M., Quest A.F. Brain-type creatine kinase in photoreceptor cell outer segments: Role of a phosphocreatine circuit in outer segment energy metabolism and phototransduction. J. Cell Sci. 1993;106:671–683.
    1. Spicer S.S., Schulte B.A. Creatine kinase in epithelium of the inner ear. J. Histochem. Cytochem. 1992;40:185–192. doi: 10.1177/40.2.1313059.
    1. Acevedo C., Blanchard K., Bacigalupo J., Vergara C. Possible ATP trafficking by ATP-shuttles in the olfactory cilia and glucose transfer across the olfactory mucosa. FEBS Lett. 2019;593:601–610. doi: 10.1002/1873-3468.13346.
    1. Chen L., Roberts R., Friedman D.L. Expression of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in the fetal rat brain: Evidence for a nuclear energy shuttle. J. Comp. Neurol. 1995;363:389–401. doi: 10.1002/cne.903630305.
    1. Schlattner U., Möckli N., Speer O., Werner S., Wallimann T. Creatine Kinase and Creatine Transporter in Normal, Wounded, and Diseased Skin. J. Invest. Dermatol. 2002;118:416–423. doi: 10.1046/j.0022-202x.2001.01697.x.
    1. Lenz H., Schmidt M., Welge V., Schlattner U., Wallimann T., Elsässer H.-P., Wittern K.-P., Wenck H., Stäb F., Blatt T. The Creatine Kinase System in Human Skin: Protective Effects of Creatine Against Oxidative and UV Damage In Vitro and In Vivo. J. Invest. Dermatol. 2005;124:443–452. doi: 10.1111/j.0022-202X.2004.23522.x.
    1. Lyons G.E., Muhlebach S., Moser A., Masood R., Paterson B.M., Buckingham M.E., Perriard J.C. Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Development. 1991;113:1017–1029.
    1. Yamane A., Mayo M., Shuler C., Crowe D., Ohnuki Y., Dalrymple K., Saeki Y. Expression of myogenic regulatory factors during the development of mouse tongue striated muscle. Arch. Oral Biol. 2000;45:71–78. doi: 10.1016/S0003-9969(99)00105-3.
    1. Nguyen Q.G., Buskin J.N., Himeda C.L., Fabre-Suver C., Hauschka S.D. Transgenic and tissue culture analyses of the muscle creatine kinase enhancer Trex control element in skeletal and cardiac muscle indicate differences in gene expression between muscle types. Transgenic Res. 2003;12:337–349. doi: 10.1023/A:1023369225799.
    1. Gordon P.V., Keller T.C., 3rd Functional coupling to brush border creatine kinase imparts a selective energetic advantage to contractile ring myosin in intestinal epithelial cells. Cell Motil. Cytoskelet. 1992;21:38–44. doi: 10.1002/cm.970210105.
    1. Sistermans E.A., de Kok Y.J., Peters W., Ginsel L.A., Jap P.H., Wieringa B. Tissue- and cell-specific distribution of creatine kinase B: A new and highly specific monoclonal antibody for use in immunohistochemistry. Cell Tissue Res. 1995;280:435–446. doi: 10.1007/BF00307817.
    1. Mahajan V.B., Pai K.S., Lau A., Cunningham D.D. Creatine kinase, an ATP-generating enzyme, is required for thrombin receptor signaling to the cytoskeleton. Proc. Natl. Acad. Sci. USA. 2000;97:12062–12067. doi: 10.1073/pnas.97.22.12062.
    1. Pollard A.E., Martins L., Muckett P.J., Khadayate S., Bornot A., Clausen M., Admyre T., Bjursell M., Fiadeiro R., Wilson L., et al. AMPK activation protects against diet-induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat. Metab. 2019;1:340–349. doi: 10.1038/s42255-019-0036-9.
    1. Rahbani J.F., Roesler A., Hussain M.F., Samborska B., Dykstra C.B., Tsai L., Jedrychowski M.P., Vergnes L., Reue K., Spiegelman B.M., et al. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature. 2021;590:480–485. doi: 10.1038/s41586-021-03221-y.
    1. Takahashi M., Kishimoto H., Shirasaka Y., Inoue K. Functional characterization of monocarboxylate transporter 12 (SLC16A12/MCT12) as a facilitative creatine transporter. Drug Metab. Pharmacokinet. 2020;35:281–287. doi: 10.1016/j.dmpk.2020.01.008.
    1. Jomura R., Tanno Y., Akanuma S.-i., Kubo Y., Tachikawa M., Hosoya K.-i. Monocarboxylate transporter 12 as a guanidinoacetate efflux transporter in renal proximal tubular epithelial cells. Biochim. Biophys. Acta BBA Biomembr. 2020;1862 doi: 10.1016/j.bbamem.2020.183434.
    1. Verouti S.N., Lambert D., Mathis D., Pathare G., Escher G., Vogt B., Fuster D.G. Solute carrier SLC16A12 is critical for creatine and guanidinoacetate handling in the kidney. Am. J. Physiol. Ren. Physiol. 2021;320:F351–F358. doi: 10.1152/ajprenal.00475.2020.
    1. Tachikawa M., Fujinawa J., Takahashi M., Kasai Y., Fukaya M., Sakai K., Yamazaki M., Tomi M., Watanabe M., Sakimura K., et al. Expression and possible role of creatine transporter in the brain and at the blood-cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant. J. Neurochem. 2008;107:768–778. doi: 10.1111/j.1471-4159.2008.05652.x.
    1. Colas C., Banci G., Martini R., Ecker G.F. Studies of structural determinants of substrate binding in the Creatine Transporter (CreaT, SLC6A8) using molecular models. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-63189-z.
    1. Saks V., Oudman I., Clark J.F., Brewster L.M. The Effect of the Creatine Analogue Beta-guanidinopropionic Acid on Energy Metabolism: A Systematic Review. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0052879.
    1. Snow R.J., Murphy R.M. Creatine and the creatine transporter: A review. Mol. Cell. Biochem. 2001;224:169–181. doi: 10.1023/A:1011908606819.
    1. Xu W., Liu L., Gorman P.A., Sheer D., Emson P.C. Assignment of the human creatine transporter type 2 (SLC6A10) to chromosome band 16p11.2 by in situ hybridization. Cytogenet. Genome Res. 1997;76:19. doi: 10.1159/000134503.
    1. Eichler E. Duplication of a gene-rich cluster between 16p11.1 and Xq28: A novel pericentromeric-directed mechanism for paralogous genome evolution. Hum. Mol. Genet. 1996;5:899–912. doi: 10.1093/hmg/5.7.899.
    1. Iyer G.S., Krahe R., Goodwin L.A., Doggett N.A., Siciliano M.J., Funanage V.L., Proujansky R. Identification of a Testis-Expressed Creatine Transporter Gene at 16p11.2 and Confirmation of the X-Linked Locus to Xq28. Genomics. 1996;34:143–146. doi: 10.1006/geno.1996.0254.
    1. Bayou N., M’Rad R., Belhaj A., Daoud H., Zemni R., Briault S., Helayem M.B., Ben Jemaa L., Chaabouni H. The Creatine Transporter Gene Paralogous at 16p11.2 Is Expressed in Human Brain. Comp. Funct. Genom. 2008;2008:1–5. doi: 10.1155/2008/609684.
    1. Kumar R.A., KaraMohamed S., Sudi J., Conrad D.F., Brune C., Badner J.A., Gilliam T.C., Nowak N.J., Cook E.H., Jr., Dobyns W.B., et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 2008;17:628–638. doi: 10.1093/hmg/ddm376.
    1. Mayser W., Schloss P., Betz H. Primary structure and functional expression of a choline transporter expressed in the rat nervous system. FEBS Lett. 1992;305:31–36. doi: 10.1016/0014-5793(92)80649-2.
    1. Dodd J.R., Christie D.L. Substituted Cysteine Accessibility of the Third Transmembrane Domain of the Creatine Transporter. J. Biol. Chem. 2005;280:32649–32654. doi: 10.1074/jbc.M506723200.
    1. Barnwell L.F.S., Chaudhuri G., Townsel J.G. Cloning and sequencing of a cDNA encoding a novel member of the human brain GABA/noradrenaline neurotransmitter transporter family. Gene. 1995;159:287–288. doi: 10.1016/0378-1119(95)00104-E.
    1. Gonzalez A.M., Uhl G.R. ‘Choline/orphan V8-2-1/creatine transporter’ mRNA is expressed in nervous, renal and gastrointestinal systems. Mol. Brain Res. 1994;23:266–270. doi: 10.1016/0169-328X(94)90233-X.
    1. Guerrero-Ontiveros M.L., Wallimann T. Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: Down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol. Cell. Biochem. 1998;184:427–437. doi: 10.1023/A:1006895414925.
    1. Martínez-Muñoz C., Rosenberg E.H., Jakobs C., Salomons G.S. Identification, characterization and cloning of SLC6A8C, a novel splice variant of the creatine transporter gene. Gene. 2008;418:53–59. doi: 10.1016/j.gene.2008.04.003.
    1. Ndika J.D.T., Martinez-Munoz C., Anand N., van Dooren S.J.M., Kanhai W., Smith D.E.C., Jakobs C., Salomons G.S. Post-transcriptional regulation of the creatine transporter gene: Functional relevance of alternative splicing. Biochim. Biophys. Acta BBA Gen. Subj. 2014;1840:2070–2079. doi: 10.1016/j.bbagen.2014.02.012.
    1. Sitte H.H., Farhan H., Javitch J.A. Sodium-dependent neurotransmitter transporters: Oligomerization as a determinant of transporter function and trafficking. Mol. Interv. 2004;4:38–47. doi: 10.1124/mi.4.1.38.
    1. Peral M.J., García-Delgado M., Calonge M.L., Durán J.M., Horra M.C., Wallimann T., Speer O., Ilundáin A.A. Human, rat and chicken small intestinal Na+-Cl−-creatine transporter: Functional, molecular characterization and localization. J. Physiol. 2002;545:133–144. doi: 10.1113/jphysiol.2002.026377.
    1. Odoom J., Kemp G., Radda G. The regulation of total creatine content in a myoblast cell line. Mol. Cell. Biochem. 1996;158 doi: 10.1007/BF00225844.
    1. Pramod A.B., Foster J., Carvelli L., Henry L.K. SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Mol. Aspects Med. 2013;34:197–219. doi: 10.1016/j.mam.2012.07.002.
    1. Rudnick G., Krämer R., Blakely R.D., Murphy D.L., Verrey F. The SLC6 transporters: Perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflügers Archiv Eur. J. Physiol. 2013;466:25–42. doi: 10.1007/s00424-013-1410-1.
    1. Santacruz L., Darrabie M.D., Mishra R., Jacobs D.O. Removal of Potential Phosphorylation Sites does not Alter Creatine Transporter Response to PKC or Substrate Availability. Cell. Physiol. Biochem. 2015;37:353–360. doi: 10.1159/000430359.
    1. Derave W., Straumann N., Olek R.A., Hespel P. Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: Potential role of ROS. Am. J. Physiol. Endocrinol. Metab. 2006;291:E1250–E1257. doi: 10.1152/ajpendo.00060.2006.
    1. Shojaiefard M., Christie D.L., Lang F. Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem. Biophys. Res. Commun. 2005;334:742–746. doi: 10.1016/j.bbrc.2005.06.164.
    1. Kobayashi T., Cohen P. Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem. J. 1999;339:319–328. doi: 10.1042/bj3390319.
    1. Fezai M., Warsi J., Lang F. Regulation of the Na+,Cl- Coupled Creatine Transporter CreaT (SLC6A8) by the Janus Kinase JAK3. Neurosignals. 2015;23:11–19. doi: 10.1159/000442600.
    1. Almeida L.S., Salomons G.S., Hogenboom F., Jakobs C., Schoffelmeer A.N.M. Exocytotic release of creatine in rat brain. Synapse. 2006;60:118–123. doi: 10.1002/syn.20280.
    1. Brault J.J., Abraham K.A., Terjung R.L. Muscle creatine uptake and creatine transporter expression in response to creatine supplementation and depletion. J. Appl. Physiol. 2003;94:2173–2180. doi: 10.1152/japplphysiol.01171.2002.
    1. Tarnopolsky M., Parise G., Fu M.H., Brose A., Parshad A., Speer O., Wallimann T. Acute and moderate-term creatine monohydrate supplementation does not affect creatine transporter mRNA or protein content in either young or elderly humans. Mol. Cell. Biochem. 2003;244:159–166. doi: 10.1023/A:1022447604792.
    1. Jangid N., Surana P., Salmonos G., Jain V. Creatine transporter deficiency, an underdiagnosed cause of male intellectual disability. BMJ Case Rep. 2020;13 doi: 10.1136/bcr-2020-237542.
    1. Wang Q., Yang J., Liu Y., Li X., Luo F., Xie J. A novel SLC6A8 mutation associated with intellectual disabilities in a Chinese family exhibiting creatine transporter deficiency: Case report. BMC Med. Genet. 2018;19 doi: 10.1186/s12881-018-0707-5.
    1. Dunbar M., Jaggumantri S., Sargent M., Stockler-Ipsiroglu S., van Karnebeek C.D. Treatment of X-linked creatine transporter (SLC6A8) deficiency: Systematic review of the literature and three new cases. Mol. Genet. Metab. 2014;112:259–274. doi: 10.1016/j.ymgme.2014.05.011.
    1. Sharer J.D., Bodamer O., Longo N., Tortorelli S., Wamelink M.M., Young S. Laboratory diagnosis of creatine deficiency syndromes: A technical standard and guideline of the American College of Medical Genetics and Genomics. Genet. Med. 2017;19:256–263. doi: 10.1038/gim.2016.203.
    1. Kaviani M., Izadi A., Heshmati J. Would creatine supplementation augment exercise performance during a low carbohydrate high fat diet? Med. Hypotheses. 2021;146 doi: 10.1016/j.mehy.2020.110369.
    1. Ferretti R., Moura E.G., dos Santos V.C., Caldeira E.J., Conte M., Matsumura C.Y., Pertille A., Mosqueira M. High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGF-PI3K-AKT-mTOR pathway. PLoS ONE. 2018;13 doi: 10.1371/journal.pone.0199728.
    1. Mine M., Mizuguchi H., Takayanagi T. Kinetic analysis of the transphosphorylation with creatine kinase by pressure-assisted capillary electrophoresis/dynamic frontal analysis. Anal. Bioanal. Chem. 2021;413:1453–1460. doi: 10.1007/s00216-020-03110-9.

Source: PubMed

3
订阅