Radiologic Assessment of Osteosarcoma Lung Metastases: State of the Art and Recent Advances

Anna Maria Chiesa, Paolo Spinnato, Marco Miceli, Giancarlo Facchini, Anna Maria Chiesa, Paolo Spinnato, Marco Miceli, Giancarlo Facchini

Abstract

The lung is the most frequent site of osteosarcoma (OS) metastases, which are a critical point in defining a patient's prognosis. Chest computed tomography (CT) represents the gold standard for the detection of lung metastases even if its sensitivity widely ranges in the literature since lung localizations are often atypical. ESMO guidelines represent one of the major references for the follow-up program of OS patients. The development of new reconstruction techniques, such as the iterative method and the deep learning-based image reconstruction (DLIR), has led to a significant reduction of the radiation dose with the low-dose CT. The improvement of these techniques has great importance considering the young-onset of the disease and the strict chest surveillance during follow-up programs. The use of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT is still controversial, while volume doubling time (VDT) and computer-aided diagnosis (CAD) systems are recent diagnostic tools that could support radiologists for lung nodules evaluation. Their use, well-established for other malignancies, needs to be further evaluated, focusing on OS patients.

Keywords: computed tomography; lung; metastases; nodules; osteosarcoma.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chest computed tomography (CT) of a 36-year-old woman with osteosarcoma at baseline (panel (A,B)) with standard protocol (DLP = 248 mGy/cm) and at two-month follow-up (panel (C,D)) with full IR model-based (MBIR) algorithm (VEO) protocol (DLP = 45 mGy/cm) both well demonstrate a small solid nodule (arrows-diameter 2 mm). DLP = dose length product.
Figure 2
Figure 2
CT scan with nodule volume evaluation (mm3) and maximum diameters.
Figure 3
Figure 3
Computer-aided diagnosis (CAD) CT (A) figure nodule localizer (red), (B) CT scan, (C) CT scan nodule identification (red), (D) nodule volume rendering.

References

    1. Mirabello L., Troisi R.J., Savage S.A. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer. 2009;115:1531–1543. doi: 10.1002/cncr.24121.
    1. Isakoff M.S., Bielack S.S., Meltzer P., Gorlick R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015;33:3029–3035. doi: 10.1200/JCO.2014.59.4895.
    1. Link M.P., Gebhardt M.C., Meyers P.A. Osteosarcoma. In: Pizzo P.A., Poplack D.G., editors. Principles and Practice of Pediatric Oncology. 4th ed. Lippincott Williams and Wilkins; Baltimore, MD, USA: 2002. pp. 1051–1089.
    1. Kaste S.C., Pratt C.B., Cain A.M., Jones-Wallace D.J., Rao B.N. Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis: Imaging features. Cancer. 1999;86:1602–1608. doi: 10.1002/(SICI)1097-0142(19991015)86:8<1602::AID-CNCR31>;2-R.
    1. Daw N.C., Chou A.J., Jaffe N., Rao B.N., Billups C.A., Rodriguez-Galindo C., Meyers P.A., Huh W.W. Recurrent osteosarcoma with a single pulmonary metastasis: A multi-institutional review. Br. J. Cancer. 2015;112:278–282. doi: 10.1038/bjc.2014.585.
    1. Munajat I., Zulmi W., Norazman M.Z., Faisham W.W. Tumour volume and lung metastasis in patients with osteosarcoma. J. Orthop. Surg. 2008;16:182–185. doi: 10.1177/230949900801600211.
    1. Hauben E., Bielack S., Grimer R., Jundt G., Reichardt P., Sydes M., Taminiau A., Hogendoorn P. Clinico-histologic parameters of osteosarcoma patients with late relapse. Eur. J. Cancer. 2006;42:460–466. doi: 10.1016/j.ejca.2005.09.032.
    1. Junior R.Z.B., Camargo O.P. Prognostic factors in the survival of patients diagnosed with primary non-metastatic osteosarcoma with a poor response to neoadjuvant chemotherapy. Clinics. 2009;64:1177–1186. doi: 10.1590/S1807-59322009001200007.
    1. Smeland S., Bielack S.S., Whelan J., Bernstein M., Hogendoorn P., Krailo M.D., Gorlick R., Janeway K.A., Ingleby F.C., Anninga J., et al. Survival and prognosis with osteosarcoma: Outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer. 2019;109:36–50. doi: 10.1016/j.ejca.2018.11.027.
    1. Kim M.S., Lee S.-Y., Lee T.R., Cho W.H., Song W.S., Koh J.-S., Lee J.A., Yoo J.Y., Jeon D.-G. Prognostic nomogram for predicting the 5-year probability of developing metastasis after neo-adjuvant chemotherapy and definitive surgery for AJCC stage II extremity osteosarcoma. Ann. Oncol. 2009;20:955–960. doi: 10.1093/annonc/mdn723.
    1. Hunag X., Zhao J., Bai J., Shen H., Zhang B., Deng L., Sun C., Liu Y., Zhang J., Zheng J. Risk and clinicopathological features of osteosarcoma metastasis to the lung: A population-based study. J. Bone Oncol. 2019;16:100230. doi: 10.1016/j.jbo.2019.100230.
    1. Zhou H., Randall R.L., Brothman A.R., Maxwell T., Coffin C.M., Goldsby R.E. HER-2/neu expression in osteosarcoma increases risk of lung metastasis and can Be associated with gene amplification. J. Pediatric Hematol. Oncol. 2003;25:27–32. doi: 10.1097/00043426-200301000-00007.
    1. Wang S., Zheng S., Hu K., Sun H., Zhang J., Rong G., Gao J., Ding N., Gui B. A predictive model to estimate the pretest probability of metastasis in patients with osteosarcoma. Medicine. 2017;96:e5909. doi: 10.1097/MD.0000000000005909.
    1. Zhou Y., Lu Q., Xu J., Yan R., Zhu J., Xu J., Jiang X., Li J., Wu F. The effect of pathological fractures on the prognosis of patients with osteosarcoma: A metaanalysis of 14 studies. Oncotarget. 2017;8:73037–73049. doi: 10.18632/oncotarget.20375.
    1. Seo J.B., Im J.-G., Goo J.M., Chung M.J., Kim M.-Y. Atypical pulmonary metastases: Spectrum of radiologic Findings1. Radiographics. 2001;21:e17. doi: 10.1148/radiographics.21.2.g01mr17403.
    1. Brader P., Abramson S.J., Price A.P., Ishill N.M., Emily Z.C., Moskowitz C.S., La Quaglia M.P., Ginsberg M.S., Zabor E.C. Do characteristics of pulmonary nodules on computed tomography inchildren with known osteosarcoma help distinguish whether the nodules aremalignant or benign? J. Pediatric Surg. 2011;46:729–735. doi: 10.1016/j.jpedsurg.2010.11.027.
    1. CSilva T., Amaral J.G., Moineddin R., Doda W., Babyin P.S. CT characteristics of lung nodules present at diagnosis of extrapulmonary malignancy in children. AJR Am. J. Roentgenol. 2010;194:772–778. doi: 10.2214/AJR.09.2490.
    1. Picci P., Vanel D., Briccoli A., Talle K., Haakenaasen U., Malaguti C., Monti C., Ferrari C., Bacci G., Saeter G., et al. Computed tomography of pulmonary metastases from osteosarcoma: The less poor technique. A study of 51 patients with histological correlation. Ann. Oncol. 2001;12:1601–1604. doi: 10.1023/A:1013103511633.
    1. Dudeck O., Zeile M., Andreou D., Schnapauff D., Pech M., Wieners G., Ricke J., Reichardt P., Tunn P.-U. Computed tomographic criteria for the discrimination of subcentimeter lung nodules in patients with soft-tissue sarcomas. Clin. Imaging. 2011;35:174–179. doi: 10.1016/j.clinimag.2010.06.005.
    1. Rothermundt C., Seddon B.M., Dileo P., Strauss S.J., Coleman J., Briggs T.W., Haile S.R., Whelan J.S. Follow-up practices for high-grade extremity Osteosarcoma Rothermundt et al. BMC Cancer. 2016;16:301. doi: 10.1186/s12885-016-2333-y.
    1. Ciccarese F., Bazzocchi A., Ciminari R., Righi A., Rocca M., Rimondi E., Picci P., Reggiani M.L.B., Albisinni U., Zompatori M., et al. The many faces of pulmonary metastases of osteosarcoma: Retrospective study on 283 lesions submitted to surgery. Eur. J. Radiol. 2015;84:2679–2685. doi: 10.1016/j.ejrad.2015.09.022.
    1. Rimondi E., Pelotti P., Ciminari R. Spontaneous pneumothorax in patients with osteosarcoma treated by combined chemotherapy. Minerva Med. 1989;80:1215–1217.
    1. McCarville M.B., Kaste S.C., Cain A.M., Goloubeva O., Rao B.N., Pratt C.B. Prognostic factors and imaging patterns of recurrent pulmonary nodules after thoracotomy in children with osteosarcoma. Cancer. 2001;91:1170–1176. doi: 10.1002/1097-0142(20010315)91:6<1170::AID-CNCR1114>;2-B.
    1. Goel A., Christy M.E., Virgo K.S., Kraybill W.G., Johnson F.E. Costs of follow-up after potentially curative treatment for extremity soft-tissue sarcoma. Int. J. Oncol. 2004;25:429–435. doi: 10.3892/ijo.25.2.429.
    1. Vanel D., Henry-Amar M., Lumbroso J., Lemalet E., Couanet D., Piekarski J.D., Masselot J., Boddaert A., Kalifa C., Le Chevalier T., et al. Pulmonary evaluation of patients with osteosarcoma: Roles of standard radiography, tomography, CT, scintigraphy, and tomoscintigraphy. AJR Am. J. Roentgenol. 1984;143:519–523. doi: 10.2214/ajr.143.3.519.
    1. Fahimi J., Herring A., Harries A., Gonzales R., Alter H. Computed tomography use among children presenting to emergency departments with abdominal pain. Pediatrics. 2012;130:e1069–e1075. doi: 10.1542/peds.2012-0739.
    1. McCarville M.B., Lederman H.M., Santana V.M., Daw N.C., Shochat S.J., Li C.-S., Kaufman R.A. Distinguishing benign from malignant pulmonary nodules with helical chest CT in children with malignant solid tumors. Radiology. 2006;239:514–520. doi: 10.1148/radiol.2392050631.
    1. Kayton M.L., Huvos A.G., Casher J., Abramson S.J., Rosen N.S., Wexler L.H., Meyers P., LaQuaglia M.P. Computed tomographic scan of the chest underestimates the number of metastatic lesions in osteosarcoma. J. Pediatric Surg. 2006;41:200–206. doi: 10.1016/j.jpedsurg.2005.10.024.
    1. Shikada Y., Yano T., Maruyama R., Takenoyama M., Maehara Y. Effective utilization of chest x-ray for follow-up of metastatic lung tumor due to soft tissue sarcoma. Ann. Thorac. Cardiovasc. Surg. 2013;19:103–106. doi: 10.5761/atcs.oa.11.01867.
    1. Davis S.D. CT evaluation for pulmonary metastases in patients with extrathoracic malignancy. Radiology. 1991;180:1–12. doi: 10.1148/radiology.180.1.2052672.
    1. Puri A., Gulia A., Hawaldar R., Ranganathan P., Badwe R.A. Does intensity of surveillance affect survival after surgery for sarcomas? Results of a randomized noninferiority trial. Clin. Orthop. Relat. Res. 2014;472:1568–1575. doi: 10.1007/s11999-013-3385-9.
    1. Paioli A., Rocca M., Cevolani L., Rimondi E., Vanel D., Palmerini E., Cesari M., Longhi A., Eraldo A.M., Marchesi E., et al. Osteosarcoma follow-up: Chest X-ray or computed tomography? Clin. Sarcoma Res. 2017;7:3. doi: 10.1186/s13569-017-0067-5.
    1. Shields T.W. General features and complications of pulmonary resections. In: Shields T.W., editor. General Thoracic Surgery. 4th ed. Volume 1. Williams & Wilkins; Philadelphia, PA, USA: 1994. pp. 401–414.
    1. Bielack S.S., Hecker-Nolting S., Blattmann C., Kager L. Advances in the management of osteosarcoma [version 1; peer review: 2 approved]. Version 1. F1000Research. 2016;5:2767. doi: 10.12688/f1000research.9465.1.
    1. Meyer J.S., Nadel H.R., Marina N., Womer R.B., Brown K.L., Eary J.F., Gorlick R., Grier H.E., Randall R.L., Lawlor E.R., et al. Imaging guidelines for children with Ewing sarcoma and osteosarcoma: A report from the Children’s Oncology Group Bone Tumor Committee. Pediatric Blood Cancer. 2008;51:163–170. doi: 10.1002/pbc.21596.
    1. Parsons A.M., Detterbeck F.C., Parker L.A. Accuracy of helical CT in the detection of pulmonary metastases: Is intraoperative palpation still necessary? Ann. Thorac. Surg. 2004;78:1910–1918. doi: 10.1016/j.athoracsur.2004.05.065.
    1. Heaton T.E., Hammond W.J., Farber B.A., Pallos V., Meyers P.A., Chou A.J., Price A.P., LaQuaglia M.P. A 20-year retrospective analysis of CT-based pre-operative identification of pulmonary metastases in patients with osteosarcoma: A single-center review. J. Pediatric Surg. 2017;52:115–119. doi: 10.1016/j.jpedsurg.2016.10.034.
    1. Detterbeck F.C., Grodzki T., Gleeson F., Robert J.H. Imaging requirements in the practice of pulmonary metastasectomy. J. Thorac. Oncol. 2010;5(Suppl. 2):S134–S139. doi: 10.1097/JTO.0b013e3181dcf64d.
    1. Pfannschmidt J., Bischoff M., Muley T., Kunz J., Zamecnik P., A Schnabel P., Hoffmann H., Dienemann H., Heussel C.P. Diagnosis of pulmonary metastases with helical CT: The effect of imaging techniques. Thorac. Cardiovasc. Surg. 2008;56:471–475. doi: 10.1055/s-2008-1038887.
    1. Brenner D.J., Elliston C.D., Hall E.J., Berdon W.E. Estimated risks of radiation induced fatal cancer from pediatric CT. Am. J. Roentgenol. 2001;176:289–296. doi: 10.2214/ajr.176.2.1760289.
    1. Danley K., Sane N.P., Kent P.M. Radiation exposure in pediatric sarcoma patients receiving initial curative chemotherapy. J Pediatric Hematol. Oncol. 2020;42:e7–e11. doi: 10.1097/MPH.0000000000001677.
    1. Macias C.G., Sahouria J.J. The appropriate use of CT: Quality improvement and clinical decision-making in pediatric emergency medicine. Pediatric Radiol. 2011;41(Suppl. 2):498–504. doi: 10.1007/s00247-011-2102-7.
    1. Menoch M.J.A., Hirsh D.A., Khan N.S., Simon H.K., Sturm J.J. Trends in computed tomography utilization in the pediatric emergency department. Pediatrics. 2012;129:e690–e697. doi: 10.1542/peds.2011-2548.
    1. Deák Z., Grimm J.M., Treitl M., Geyer L.L., Linsenmaier U., Körner M., Reiser M.F., Wirth S. Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: An experimental clinical study. Radiology. 2013;266:197–206. doi: 10.1148/radiol.12112707.
    1. Silva A.C., Lawder H.J., Hara A., Kujak J., Pavlicek W. Innovations in CT dose reduction strategy: Application of the adaptive statistical iterative reconstruction algorithm. AJR Am. J. Roentgenol. 2010;194:191e9. doi: 10.2214/AJR.09.2953.
    1. Shin H.O., Falck C.V., Galanski M. Low-contrast detectability in volume rendering: A phantom study on multidetector-row spiral CT data. Eur. Radiol. 2004;14:341e9. doi: 10.1007/s00330-003-2084-4.
    1. Thibault J.-B. Veo: CT Model-Based Iterative Reconstruction. [(accessed on 10 September 2013)];2010 Available online: .
    1. Kim H.J., Yoo S.-Y., Jeon T.Y., Kim J.H. Model-based iterative reconstruction in ultra-low-dose pediatric chest CT: Comparison with adaptive statistical iterative reconstruction. Clin. Imaging. 2016;40:1018–1022. doi: 10.1016/j.clinimag.2016.06.006.
    1. Singh S., Kalra M.K., Gilman M.D., Hsieh J., Pien H.H., Digumarthy S.R., Shepard J.-A.O. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: A pilot study. Radiology. 2011;259:565–573. doi: 10.1148/radiol.11101450.
    1. Yamada Y., Jinzaki M., Tanami Y., Shiomi E., Sugiura H., Abe T., Kuribayashi S. Model based iterative reconstruction technique for ultralow-dose computed tomography of the lung: A pilot study. Investig. Radiol. 2012;47:482–489. doi: 10.1097/RLI.0b013e3182562a89.
    1. Gordic S., Morsbach F., Schmidt B., Allmendinger T., Flohr T., Husarik D., Baumueller S., Raupach R., Stolzmann P., Leschka S., et al. Ultra-low-dose chest computed tomography for pulmonary nodule detection: First performance evaluation of single energy scanning with spectral shaping. Investig. Radiol. 2014;49:465–473. doi: 10.1097/RLI.0000000000000037.
    1. Akagi M., Nakamura Y., Higaki T., Narita K., Honda Y., Zhou J., Yu Z., Akino N., Awai K. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur. Radiol. 2019;29:6163–6171. doi: 10.1007/s00330-019-06170-3.
    1. Kim J.H., Yoon H.J., Lee E., Kim I., Cha Y.K., Bak S.H. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: Emphasis on image quality and noise. Korean J. Radiol. 2020;21:e120. doi: 10.3348/kjr.2020.0116.
    1. Kempf-Bielack B., Bielack S.S., Jürgens H., Branscheid D., Berdel W.E., Exner G.U., Göbel U., Helmke K., Jundt G., Kabisch H., et al. Osteosarcoma relapse after combined modality therapy: An analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS) J. Clin. Oncol. 2005;23:559–568. doi: 10.1200/JCO.2005.04.063.
    1. Chen F., Miyahara R., Bando T., Okubo K., Watanabe K., Nakayama T., Toguchida J., Date H. Repeat resection of pulmonary metastasis is beneficial for patients with osteosarcoma of the extremities. Inst. Rep. Thorac. Oncol. Interact. Cardiovasc. Thoracic Surg. 2009;9:649–653. doi: 10.1510/icvts.2009.212498.
    1. Casali P., Bielack S., Abecassis N., Aro H., Bauer S., Biagini R., Bonvalot S., Boukovinas I., Bovee J.V.M.G., Brennan B., et al. Bone sarcomas: ESMO–PaedCan–EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018;29(Suppl. 4):iv79–iv95. doi: 10.1093/annonc/mdy310.
    1. Cipriano C., Brockman L., Romancik J., Hartemayer R., Ording J., Ginder C., Krier J., Gitelis S., Kent P. The clinical significance of initial pulmonary micronodules in young sarcoma patients. J. Pediatric Hematol. Oncol. 2015;37:548–553. doi: 10.1097/MPH.0000000000000393.
    1. Hayes S.A., Pietanza M.C., O’Driscoll D., Zheng J., Moskowitz C.S., Kris M.G., Ginsberg M.S. Comparison of CT volumetric measurement with RECIST response in patients with lung cancer. Eur. J. Radiol. 2016;85:524–533. doi: 10.1016/j.ejrad.2015.12.019.
    1. Oudkerk M., Devaraj A., Vliegenthart R., Henzler T., Prosch H., Heussel C.P., Bastarrika G., Sverzellati N., Mascalchi M., Delorme S., et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18:e754–e766. doi: 10.1016/S1470-2045(17)30861-6.
    1. Spinnato P. Low-dose computed tomography screening proposal for the “Big-3 Diseases”: Lung cancer, chronic obstructive pulmonary disease, and cardiovascular disease. Acad. Radiol. 2021;28:46–48. doi: 10.1016/j.acra.2020.07.035.
    1. Nakamura T., Matsumine A., Matsubara T., Asanuma K., Uchida A., Sudo A. Clinical impact of the tumor volume doubling time on sarcoma patients with lung metastases. Clin. Exp. Metastasis. 2011;28:819–825. doi: 10.1007/s10585-011-9413-9.
    1. Doi K. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graph. 2007;31:198–211. doi: 10.1016/j.compmedimag.2007.02.002.
    1. Zhang Y., Oikonomou A., Wong A., Haider M.A., Khalvati F. Radiomics-based prognosis analysis for non-small cell lung cancer. Sci. Rep. 2017;7:46349. doi: 10.1038/srep46349.
    1. Shariaty F., Mousavi M. Application of CAD systems for the automatic detection of lung nodules. Inform. Med. Unlocked. 2019;15:100173. doi: 10.1016/j.imu.2019.100173.
    1. Jacobs C., van Rikxoort E.M., Twellmann T., Scholten E.T., de Jong P.A., Kuhnigk J.M., Oudkerk M., de Koning H.J., Prokop M., Schaefer-Prokop C., et al. Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images. Med. Image Anal. 2014;18:374–384. doi: 10.1016/j.media.2013.12.001.
    1. Drew T., Vo M.L.-H., Olwal A., Jacobson F., Seltzer S.E., Wolfe J.M. Scanners and drillers: Characterizing expert visual search through volumetric images. J. Vis. 2013;13:1–13. doi: 10.1167/13.10.3.
    1. Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br. J. Radiol. 2005;78(Suppl. 1):s3–s19. doi: 10.1259/bjr/82933343.
    1. Van Ginneken B., Schaefer-Prokop C.M., Prokop M. Computer-aided diagnosis: How to move from the laboratory to the clinic. Radiology. 2011;261:719–732. doi: 10.1148/radiol.11091710.
    1. Jungheum C., Jihang K., Kyong J.L., Chang M.N., Sung H.Y., Hwayoung S., Junghoon K., Ye Ra C., Kyung H.L., Kyung W.L. Incidence lung cancer after a negative ct screening in the national lung screening trial: Deep learning-based detection of missed lung cancers. J. Clin. Med. 2020;9:3908. doi: 10.3390/jcm9123908.
    1. Douglas J.H., Marguerite T.P., Hedieh K., Barry L.S. PET with 18F-Fluorodeoxyglucose/Computed Tomography in the Management of Pediatric Sarcoma. PET Clin. 2020;15:333–347. doi: 10.1016/j.cpet.2020.03.008.
    1. Adler S., Seidel J., Choyke P., VKnopp M., Binzel K., Zhang J., Barker C., Conant S., Maass-Moreno R. Minimum lesion detectability as a measure of PET system performance. EJNMMI Phys. 2017;4:13. doi: 10.1186/s40658-017-0179-2.
    1. Polverari G., Ceci F., Passera R., Crane J., Du L., Li G., Fanti S., Bernthal N., Eilber F.C., Allen-Auerbach M., et al. [18F]FDG PET/CT for evaluating early response to neoadjuvant chemotherapy in pediatric patients with sarcoma: A prospective single-center trial. EJNMMI Res. 2020;10:122. doi: 10.1186/s13550-020-00715-0.
    1. Harrison D.J., Parisi M.T., Shulkin B.L. The role of 18F-FDG-PET/CT in pediatric sarcoma. Semin. Nucl. Med. 2017;47:229–241. doi: 10.1053/j.semnuclmed.2016.12.004.

Source: PubMed

3
订阅