New Predictive Biomarkers for Ovarian Cancer

Ghofraan Abdulsalam Atallah, Nor Haslinda Abd Aziz, Chew Kah Teik, Mohamad Nasir Shafiee, Nirmala Chandralega Kampan, Ghofraan Abdulsalam Atallah, Nor Haslinda Abd Aziz, Chew Kah Teik, Mohamad Nasir Shafiee, Nirmala Chandralega Kampan

Abstract

Ovarian cancer is the eighth-most common cause of death among women worldwide. In the absence of distinctive symptoms in the early stages, the majority of women are diagnosed in advanced stages of the disease. Surgical debulking and systemic adjuvant chemotherapy remain the mainstays of treatment, with the development of chemoresistance in up to 75% of patients with subsequent poor treatment response and reduced survival. Therefore, there is a critical need to revisit existing, and identify potential biomarkers that could lead to the development of novel and more effective predictors for ovarian cancer diagnosis and prognosis. The capacity of these biomarkers to predict the existence, stages, and associated therapeutic efficacy of ovarian cancer would enable improvements in the early diagnosis and survival of ovarian cancer patients. This review not only highlights current evidence-based ovarian-cancer-specific prognostic and diagnostic biomarkers but also provides an update on various technologies and methods currently used to identify novel biomarkers of ovarian cancer.

Keywords: DNA repair pathways; biomarkers; cell-cycle-related genes; ovarian cancer; tumour mutation burden.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Summary of the sensitivity and specificity of the most common ovarian cancer biomarkers at early stages (stage I–II) of the disease.
Figure 2
Figure 2
Summary of newly emerging ovarian cancer biomarkers highlighting their primary location in human body fluids.

References

    1. Jayson G.C., Kohn E.C., Kitchener H.C., Ledermann J.A. Ovarian cancer. Lancet. 2014;384:1376–1388. doi: 10.1016/S0140-6736(13)62146-7.
    1. Ries L.A.G., Kosary C.L., Hankey B.F., Miller B.A., Edwards B.K. SEER Cancer Statistics Review, 1973–1995. National Cancer Institute; Bethesda, MD, USA: 1998.
    1. Prat J. Pathology of borderline and invasive cancers. Best Pr. Res. Clin. Obstet. Gynaecol. 2017;41:15–30. doi: 10.1016/j.bpobgyn.2016.08.007.
    1. Carcangiu M.L., Kurman R.J., Carcangiu M.L., Herrington C.S. WHO Classification of Tumours of Female Reproductive Organs, International Agency for Research on Cancer. Wiley Online Library; Hoboken, NJ, USA: 2014.
    1. Grisham R.N. Low-Grade Serous Carcinoma of the Ovary. Oncology. 2016;30:650–652.
    1. Ferlay J., Steliarova-Foucher E., Lortet-Tieulent J., Rosso S., Coebergh J., Comber H., Forman D., Bray F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer. 2013;49:1374–1403. doi: 10.1016/j.ejca.2012.12.027.
    1. Klotz D.M., Wimberger P. Cells of origin of ovarian cancer: Ovarian surface epithelium or fallopian tube? Arch. Gynecol. Obstet. 2017;296:1055–1062. doi: 10.1007/s00404-017-4529-z.
    1. Kurman R.J., Shih I.-M. The Origin and Pathogenesis of Epithelial Ovarian Cancer: A Proposed Unifying Theory. Am. J. Surg. Pathol. 2010;34:433–443. doi: 10.1097/PAS.0b013e3181cf3d79.
    1. Ledermann J.A., Raja F.A., Fotopoulou C., Gonzalez-Martin A., Colombo N., Sessa C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013;24:vi24–vi32. doi: 10.1093/annonc/mdt333.
    1. A Doherty J., Peres L.C., Wang C., Way G.P., Greene C.S., Schildkraut J.M. Challenges and Opportunities in Studying the Epidemiology of Ovarian Cancer Subtypes. Curr. Epidemiol. Rep. 2017;4:211–220. doi: 10.1007/s40471-017-0115-y.
    1. Smolle E., Taucher V., Pichler M., Petru E., Lax S., Haybaeck J. Targeting Signaling Pathways in Epithelial Ovarian Cancer. Int. J. Mol. Sci. 2013;14:9536–9555. doi: 10.3390/ijms14059536.
    1. Norquist B.M., Garcia R.L., Allison K.H. The molecular pathogenesis of hereditary ovarian carcinoma: Alterations in the tubal epithelium of women with BRCA1 and BRCA2 mutations. Cancer. 2010;116:5261–5271. doi: 10.1002/cncr.25439.
    1. Press J.Z., Wurz K., Norquist B.M., Lee M.K., Pennil C., Garcia R., Welcsh P., Goff B.A., Swisher E.M. Identification of a Preneoplastic Gene Expression Profile in Tubal Epithelium of BRCA1 Mutation Carriers. Neoplasia. 2010;12:993–1002. doi: 10.1593/neo.101044.
    1. Press J.Z., De Luca A., Boyd N., Young S., Troussard A., Ridge Y., Kaurah P., Kalloger S., A Blood K., Smith M., et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer. 2008;8:17. doi: 10.1186/1471-2407-8-17.
    1. Tinelli A., Malvasi A., Leo G., Vergara D., Pisanò M., Ciccarese M., Chiuri V.E., Lorusso V. Hereditary ovarian cancers: From BRCA mutations to clinical management. A modern appraisal. Cancer Metastasis Rev. 2010;29:339–350. doi: 10.1007/s10555-010-9218-3.
    1. Scully R., Livingston D.M. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nat. Cell Biol. 2000;408:429–432. doi: 10.1038/35044000.
    1. Liang H., Tan A.R. PARP Inhibitors. Curr. Breast Cancer Rep. 2011;3:44–54. doi: 10.1007/s12609-010-0036-y.
    1. Mangerich A., Bürkle A. How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation. Int. J. Cancer. 2010;128:251–265. doi: 10.1002/ijc.25683.
    1. I Szabo C., King M.C. Inherited breast and ovarian cancer. Hum. Mol. Genet. 1995;4:1811–1817. doi: 10.1093/hmg/4.suppl_1.1811.
    1. Moore K., Colombo N., Scambia G., Kim B.-G., Oaknin A., Friedlander M., Lisyanskaya A., Floquet A., Leary A., Sonke G.S., et al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2018;379:2495–2505. doi: 10.1056/NEJMoa1810858.
    1. Nakayama K., Nakayama N., Kurman R.J., Cope L.M., Pohl G., Samuels Y., Velculescu V.E., Wang T.-L., Shih I.-M. Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol. Ther. 2006;5:779–785. doi: 10.4161/cbt.5.7.2751.
    1. Singer G., Oldt R., Cohen Y., Wang B.G., Sidransky D., Kurman R.J., Shih I.-M. Mutations in BRAF and KRAS Characterize the Development of Low-Grade Ovarian Serous Carcinoma. J. Natl. Cancer Inst. 2003;95:484–486. doi: 10.1093/jnci/95.6.484.
    1. Peyssonnaux C., Eychène A. The Raf/MEK/ERK pathway: New concepts of activation. Biol. Cell. 2001;93:53–62. doi: 10.1016/S0248-4900(01)01125-X.
    1. Allen L.F., Sebolt-Leopold J., Meyer M.B. Seminars in Oncology. Elsevier; Amsterdam, The Netherlands: 2003. CI-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK)
    1. Choi K.-C., Kang S.K., Tai C.-J. Follicle-stimulating hormone activates mitogen-activated protein kinase in preneoplastic and neoplastic ovarian surface epithelial cells. J. Clin. Endocrinol. Metab. 2002;87:2245–2253. doi: 10.1210/jcem.87.5.8506.
    1. Gershenson D. Gynecologic Oncology. Academic Press Inc.; Cambridge, MA, USA: Elsevier Science; San Diego, CA, USA: 2020. A Randomized Phase II/III Study to Assess the Efficacy of Trametinib in Patientswith Recurrent or Progressive Low-Grade Serous Ovarian or Peritoneal Cancer; p. 92101. 525 B ST, STE 1900.
    1. Farley J.H., Brady W.E., Vathipadiekal V., Lankes H.A., Coleman R.L., Morgan M.A., Mannel R.S., Yamada S.D., Mutch D.G., Rodgers W.H., et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: An open-label, single-arm, phase 2 study. Lancet Oncol. 2013;14:134–140. doi: 10.1016/S1470-2045(12)70572-7.
    1. Zeineldin R., Muller C.Y., Stack M.S., Hudson L.G. Targeting the EGF Receptor for Ovarian Cancer Therapy. J. Oncol. 2009;2010:1–11. doi: 10.1155/2010/414676.
    1. Fontanini G., Vignati S., Bigini D., Mussi A., Lucchi H., Angeletti C., Pingitore R., Pepe S., Basolo F., Bevilacqua G. Epidermal growth factor receptor (EGFr) expression in non-small cell lung carcinomas correlates with metastatic involvement of hilar and mediastinal lymph nodes in the squamous subtype. Eur. J. Cancer. 1995;31:178–183. doi: 10.1016/0959-8049(93)00421-M.
    1. Jorissen R.N. Epidermal growth factor receptor: Mechanisms of activation and signalling. Exp. Cell Res. 2003;284:31–53. doi: 10.1016/S0014-4827(02)00098-8.
    1. Casanova M.L., Larcher F., Casanova B., Murillas R., Fernández-Aceñero M.J., Villanueva C., Martínez-Palacio J., Ullrich A., Conti C.J., Jorcano J.L. A critical role for ras-mediated, epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis. Cancer Res. 2002;62:3402–3407.
    1. A Altomare D., Wang H.Q., Skele K.L., De Rienzo A., Klein-Szanto A.J., Godwin A.K., Testa J.R. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene. 2004;23:5853–5857. doi: 10.1038/sj.onc.1207721.
    1. Harandi A., Zaidi A.S., Stocker A.M., Laber D.A. Clinical Efficacy and Toxicity of Anti-EGFR Therapy in Common Cancers. J. Oncol. 2009;2009:1–14. doi: 10.1155/2009/567486.
    1. Kobayashi M., Sawada K., Kimura T. Potential of Integrin Inhibitors for Treating Ovarian Cancer: A Literature Review. Cancers. 2017;9:83. doi: 10.3390/cancers9070083.
    1. Sawada K., Ohyagi-Hara C., Kimura T., Morishige K.-I. Integrin Inhibitors as a Therapeutic Agent for Ovarian Cancer. J. Oncol. 2011;2012:1–6. doi: 10.1155/2012/915140.
    1. Delie F., Petignat P., Cohen M. GRP78 Protein Expression in Ovarian Cancer Patients and Perspectives for a Drug-Targeting Approach. J. Oncol. 2012;2012:1–5. doi: 10.1155/2012/468615.
    1. Matrone A., Grossi V., Chiacchiera F., Fina E., Cappellari M., Caringella A.M., Di Naro E., Loverro G., Simone C. p38α Is Required for Ovarian Cancer Cell Metabolism and Survival. Int. J. Gynecol. Cancer. 2010;20:203–211. doi: 10.1111/IGC.0b013e3181c8ca12.
    1. Grossi V., Simone C. Special Agents Hunting down Women Silent Killer: The Emerging Role of the p38αKinase. J. Oncol. 2012;2012:1–7. doi: 10.1155/2012/382159.
    1. Bast R.C., Jr., Siegal F.P. Elevation of serum CA 125 prior to diagnosis of an epithelial ovarian carcinoma. Gynecol. Oncol. 1985;22:115–120. doi: 10.1016/0090-8258(85)90015-0.
    1. Paramasivam S., Tripcony L., Crandon A., Quinn M., Hammond I., Marsden D., Proietto A., Davy M., Carter J., Nicklin J., et al. Prognostic Importance of Preoperative CA125 in International Federation of Gynecology and Obstetrics Stage I Epithelial Ovarian Cancer: An Australian Multicenter Study. J. Clin. Oncol. 2005;23:5938–5942. doi: 10.1200/JCO.2005.08.151.
    1. Coticchia C.M., Yang J., Moses M.A. Ovarian cancer biomarkers: Current options and future promise. J. Natl. Compr. Cancer Netw. 2008;6:795–802. doi: 10.6004/jnccn.2008.0059.
    1. Bao L.H., Sakaguchi H., Fujimoto J., Tamaya T. Osteopontin in metastatic lesions as a prognostic marker in ovarian cancers. J. Biomed. Sci. 2007;14:373–381. doi: 10.1007/s11373-006-9143-1.
    1. Ye B., Skates S., Mok S.C., Horick N.K., Rosenberg H.F., Vitonis A., Edwards D., Sluss P., Han W.K., Berkowitz R.S., et al. Proteomic-Based Discovery and Characterization of Glycosylated Eosinophil-Derived Neurotoxin and COOH-Terminal Osteopontin Fragments for Ovarian Cancer in Urine. Clin. Cancer Res. 2006;12:432–441. doi: 10.1158/1078-0432.CCR-05-0461.
    1. Brakora K., Lee H., Yusuf R., Sullivan L., Harris A.L., Colella T., Seiden M.V. Utility of osteopontin as a biomarker in recurrent epithelial ovarian cancer. Gynecol. Oncol. 2004;93:361–365. doi: 10.1016/j.ygyno.2004.01.050.
    1. A Borgoño C., Grass L., Soosaipillai A., Yousef G.M., Petraki C., Howarth D.H.C., Fracchioli S., Katsaros D., Diamandis E.P. Human kallikrein 14: A new potential biomarker for ovarian and breast cancer. Cancer Res. 2003;63:9032–9041.
    1. Yousef G.M., ScorilasP A., Katsaros D., Fracchioli S., Iskander L., Borgono C., De La Longrais I.A.R., Puopolo M., Massobrio M., Diamandis E.P. Prognostic Value of the Human Kallikrein Gene 15 Expression in Ovarian Cancer. J. Clin. Oncol. 2003;21:3119–3126. doi: 10.1200/JCO.2003.09.111.
    1. Tanaka Y., Kobayashi H., Suzuki M., Kanayama N., Suzuki M., Terao T. Upregulation of bikunin in tumor-infiltrating macrophages as a factor of favorable prognosis in ovarian cancer. Gynecol. Oncol. 2004;94:725–734. doi: 10.1016/j.ygyno.2004.06.012.
    1. Tanaka Y., Kobayashi H., Suzuki M., Kanayama N., Suzuki M., Yamakawa T., Morishita H., Terao T. Reduced bikunin gene expression as a factor of poor prognosis in ovarian carcinoma. Cancer. 2003;98:424–430. doi: 10.1002/cncr.11506.
    1. Matsuzaki H., Kobayashi H., Yagyu T., Wakahara K., Kondo T., Kurita N., Sekino H., Inagaki K., Suzuki M., Kanayama N., et al. Plasma Bikunin As a Favorable Prognostic Factor in Ovarian Cancer. J. Clin. Oncol. 2005;23:1463–1472. doi: 10.1200/JCO.2005.03.010.
    1. Drapkin R., Von Horsten H.H., Lin Y., Mok S.C., Crum C.P., Welch W.R., Hecht J.L. Human Epididymis Protein 4 (HE4) Is a Secreted Glycoprotein that Is Overexpressed by Serous and Endometrioid Ovarian Carcinomas. Cancer Res. 2005;65:2162–2169. doi: 10.1158/0008-5472.CAN-04-3924.
    1. Moore R.G., Miller M.C., DiSilvestro P., Landrum L.M., Gajewski W., Ball J.J., Skates S.J. Evaluation of the Diagnostic Accuracy of the Risk of Ovarian Malignancy Algorithm in Women With a Pelvic Mass. Obstet. Gynecol. 2011;118:280–288. doi: 10.1097/AOG.0b013e318224fce2.
    1. Hellström I., Raycraft J., Hayden-Ledbetter M., A Ledbetter J., Schummer M., McIntosh M., Drescher C., Urban N., Hellström K.E. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 2003;63:3695–3700.
    1. Yamamoto S., Konishi I., Mandai M., Kuroda H., Komatsu T., Nanbu K., Sakahara H., Mori T. Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: Correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br. J. Cancer. 1997;76:1221–1227. doi: 10.1038/bjc.1997.537.
    1. Hefler L.A., Zeillinger R., Grimm C., Sood A.K., Cheng W.-F., Gadducci A., Tempfer C.B.B., Reinthaller A. Preoperative serum vascular endothelial growth factor as a prognostic parameter in ovarian cancer. Gynecol. Oncol. 2006;103:512–517. doi: 10.1016/j.ygyno.2006.03.058.
    1. Sriram K.B., Relan V., E Clarke B., E Duhig E., A Yang I., Bowman R.V., Lee Y.C.G., Fong K.M. Diagnostic molecular biomarkers for malignant pleural effusions. Futur. Oncol. 2011;7:737–752. doi: 10.2217/fon.11.45.
    1. Mok S.C., Chao J., Skates S., Wong K.-K., Yiu G.K., Muto M.G., Berkowitz R.S., Cramer D.W. Prostasin, a Potential Serum Marker for Ovarian Cancer: Identification Through Microarray Technology. J. Natl. Cancer Inst. 2001;93:1458–1464. doi: 10.1093/jnci/93.19.1458.
    1. Costa F.P., Rodrigues-Junior V., Zelmanowicz A., Svedman C., Devenz G., Alves S., Da Silva A.S.M., Garicochea B. Prostasin, a potential tumor marker in ovarian cancer: A pilot study. Clinics. 2009;64:641–644. doi: 10.1590/S1807-59322009000700006.
    1. Li X.-H., Chen X.-J., Ou W.-B., Zhang Q., Lv Z.-R., Zhan Y., Ma L., Huang T., Yan Y.-B., Zhou H.-M. Knockdown of creatine kinase B inhibits ovarian cancer progression by decreasing glycolysis. Int. J. Biochem. Cell Biol. 2013;45:979–986. doi: 10.1016/j.biocel.2013.02.003.
    1. Ghafoor A., Thomas A., Hassan R. Targeting mesothelin in ovarian cancer. Oncotarget. 2018;9:36050–36051. doi: 10.18632/oncotarget.26350.
    1. Kreitman R.J., Hassan R., Fitzgerald D.J., Pastan I. Phase I Trial of Continuous Infusion Anti-Mesothelin Recombinant Immunotoxin SS1P. Clin. Cancer Res. 2009;15:5274–5279. doi: 10.1158/1078-0432.CCR-09-0062.
    1. Macuks R., Baidekalna I., Gritcina J., Avdejeva A., Donina S. Apolipoprotein A1 and Transferrin as Biomarkers in Ovarian Cancer Diagnostics. Acta Chir. Latv. 2010;10:16. doi: 10.2478/v10163-011-0003-3.
    1. Zamanian-Daryoush M., DiDonato J.A. Apolipoprotein A-I and Cancer. Front. Pharmacol. 2015;6 doi: 10.3389/fphar.2015.00265.
    1. Zhang Z., Bast R.C., Yu Y., Li J., Sokoll L.J., Rai A.J., Rosenzweig J.M., Cameron B., Wang Y.Y., Meng X.-Y., et al. Three Biomarkers Identified from Serum Proteomic Analysis for the Detection of Early Stage Ovarian Cancer. Cancer Res. 2004;64:5882–5890. doi: 10.1158/0008-5472.CAN-04-0746.
    1. Liu L., Liu J., Dai S., Wang X., Wu S., Wang J., Huang L., Xiao X., He D. Reduced transthyretin expression in sera of lung cancer. Cancer Sci. 2007;98:1617–1624. doi: 10.1111/j.1349-7006.2007.00576.x.
    1. Rastogi M., Gupta S., Sachan M. Biomarkers towards Ovarian Cancer Diagnostics: Present and Future Prospects. Braz. Arch. Biol. Technol. 2016;59:59. doi: 10.1590/1678-4324-2016160070.
    1. Yin B.W., Lloyd K.O. Molecular cloning of the CA125 ovarian cancer antigen identification as a new mucin, MUC16. J. Biol. Chem. 2001;276:27371–27375. doi: 10.1074/jbc.M103554200.
    1. Kampan N.C., Madondo M.T., Reynolds J., Hallo J., McNally O.M., Jobling T.W., Stephens A.N., Quinn M.A., Plebanski M. Pre-operative sera interleukin-6 in the diagnosis of high-grade serous ovarian cancer. Sci. Rep. 2020;10:1–15. doi: 10.1038/s41598-020-59009-z.
    1. Chen Y.-L., Chiang Y.-C., Huang C.-Y., Lin H.-W., Chen C.-A., Hsieh C.-Y., Cheng W.-F. Serous ovarian carcinoma patients with high alpha-folate receptor had reducing survival and cytotoxic chemo-response. Mol. Oncol. 2011;6:360–369. doi: 10.1016/j.molonc.2011.11.010.
    1. Wong K., Cheng R.S., Mok S.C. Identification of Differentially Expressed Genes from Ovarian Cancer Cells by MICROMAX™ cDNA Microarray System. Biotechniques. 2001;30:670–675. doi: 10.2144/01303dd05.
    1. Kim J.-H., Skates S.J., Uede T., Wong K., Schorge J.O., Feltmate C.M., Berkowitz R.S., Cramer D.W., Mok S.C. Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA. 2002;287:1671–1679. doi: 10.1001/jama.287.13.1671.
    1. Diamandis E.P., Yousef G.M. Human Tissue Kallikreins: A Family of New Cancer Biomarkers. Clin. Chem. 2002;48:1198–1205. doi: 10.1093/clinchem/48.8.1198.
    1. Wang P., Magdolen V., Seidl C., Dorn J., Drecoll E., Kotzsch M., Yang F., Schmitt M., Schilling O., Rockstroh A., et al. Kallikrein-related peptidases 4, 5, 6 and 7 regulate tumour-associated factors in serous ovarian cancer. Br. J. Cancer. 2018;119:1–9. doi: 10.1038/s41416-018-0260-1.
    1. Luo L.Y., Katsaros D., Scorilas A., Fracchioli S., Piccinno R., Longrais I.A.R.D.L., Howarth D.J., Diamandis E.P. Prognostic value of human kallikrein 10 expression in epithelial ovarian carcinoma. Clin. Cancer Res. 2001;7:2372–2379.
    1. Schummer M., Ng W.V., E Bumgarner R., Nelson P.S., Schummer B., Bednarski D.W., Hassell L., Baldwin R.L., Karlan B.Y., Hood L. Comparative hybridization of an array of 21 500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene. 1999;238:375–385. doi: 10.1016/S0378-1119(99)00342-X.
    1. Lu R., Sun X., Xiao R., Zhou L., Gao X., Guo L. Human epididymis protein 4 (HE4) plays a key role in ovarian cancer cell adhesion and motility. Biochem. Biophys. Res. Commun. 2012;419:274–280. doi: 10.1016/j.bbrc.2012.02.008.
    1. Huhtinen K., Suvitie P., Hiissa J., Junnila J., Huvila J., Kujari H., Setala M., Härkki P., Jalkanen J., Fraser J.K., et al. Serum HE4 concentration differentiates malignant ovarian tumours from ovarian endometriotic cysts. Br. J. Cancer. 2009;100:1315–1319. doi: 10.1038/sj.bjc.6605011.
    1. Chung A.S., Ferrara N. Developmental and Pathological Angiogenesis. Annu. Rev. Cell Dev. Biol. 2011;27:563–584. doi: 10.1146/annurev-cellbio-092910-154002.
    1. A Nagy J., Masse E.M., Herzberg K.T., Meyers M.S., Yeo K.T., Yeo T.K., Sioussat T.M., Dvorak H.F. Pathogenesis of ascites tumor growth: Vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Res. 1995;55:360–368.
    1. Hartenbach E.M., A Olson T., Goswitz J.J., Mohanraj D., Twiggs L.B., Carson L.F., Ramakrishnan S. Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Lett. 1997;121:169–175. doi: 10.1016/S0304-3835(97)00350-9.
    1. Konstantinopoulos P.A., Lheureux S., Moore K.N. PARP Inhibitors for Ovarian Cancer: Current Indications, Future Combinations, and Novel Assets in Development to Target DNA Damage Repair. Am. Soc. Clin. Oncol. Educ. Book. 2020;40:e116–e131. doi: 10.1200/EDBK_288015.
    1. Cramer D.W., Bast R.C., Berg C.D., Diamandis E.P., Godwin A.K., Hartge P., Lokshin A.E., Lu K.H., McIntosh M.W., Mor G., et al. Ovarian Cancer Biomarker Performance in Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Specimens. Cancer Prev. Res. 2011;4:365–374. doi: 10.1158/1940-6207.CAPR-10-0195.
    1. Yu J., Chao L., Chao J. Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. J. Biol. Chem. 1994;269:18843–18848. doi: 10.1016/S0021-9258(17)32244-5.
    1. Tamir A., Gangadharan A., Balwani S., Tanaka T., Patel U., Hassan A., Benke S., Agas A., D’Agostino J., Shin D., et al. The serine protease prostasin (PRSS8) is a potential biomarker for early detection of ovarian cancer. J. Ovarian Res. 2016;9:1–13. doi: 10.1186/s13048-016-0228-9.
    1. Huddleston H.G., Wong K., Welch W.R., Berkowitz R.S., Mok S.C. Clinical applications of microarray technology: Creatine kinase B is an up-regulated gene in epithelial ovarian cancer and shows promise as a serum marker. Gynecol. Oncol. 2005;96:77–83. doi: 10.1016/j.ygyno.2004.08.047.
    1. Chang K., Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc. Natl. Acad. Sci. USA. 1996;93:136–140. doi: 10.1073/pnas.93.1.136.
    1. Hassan R., Thomas A., Alewine C., Le D.T., Jaffee E.M., Pastan I. Mesothelin Immunotherapy for Cancer: Ready for Prime Time? J. Clin. Oncol. 2016;34:4171–4179. doi: 10.1200/JCO.2016.68.3672.
    1. Quanz M., Hagemann U.B., Zitzmann-Kolbe S., Stelte-Ludwig B., Golfier S., Elbi C., Mumberg D., Ziegelbauer K., Schatz C.A. Anetumab ravtansine inhibits tumor growth and shows additive effect in combination with targeted agents and chemotherapy in mesothelin-expressing human ovarian cancer models. Oncotarget. 2018;9:34103–34121. doi: 10.18632/oncotarget.26135.
    1. Gadomska H., Grzechocińska B., Janecki J., Nowicka G., Powolny M., Marianowski L. Serum lipids concentration in women with benign and malignant ovarian tumours. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005;120:87–90. doi: 10.1016/j.ejogrb.2004.02.045.
    1. Pal M.K., Rashid M., Bisht M. Multiplexed magnetic nanoparticle-antibody conjugates (MNPs-ABS) based prognostic detection of ovarian cancer biomarkers, CA125, β-2M and ApoA1 using fluorescence spectroscopy with comparison of surface plasmon resonance (SPR) analysis. Biosens. Bioelectron. 2015;73:146–152. doi: 10.1016/j.bios.2015.05.051.
    1. Kozak K.R., Su F., Whitelegge J.P., Faull K., Reddy S., Farias-Eisner R. Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteom. 2005;5:4589–4596. doi: 10.1002/pmic.200500093.
    1. Kim Y.-W., Bee S.M. Development of multiplexed bead-based immunoassays for the detection of early stage ovarian cancer using a combination of serum biomarkers. PLoS ONE. 2012;7:e44960. doi: 10.1371/journal.pone.0044960.
    1. Fassl S., Leisser C., Maier S. Transferrin ensures survival of ovarian carcinoma cells when apoptosis is induced by TNF α, FasL, TRAIL, or Myc. Oncogene. 2003;22:8343–8355. doi: 10.1038/sj.onc.1207047.
    1. Ahmed N., Oliva K.T., Barker G., Hoffmann P., Reeve S., Smith I.A., Quinn M.A., Rice G.E. Proteomic tracking of serum protein isoforms as screening biomarkers of ovarian cancer. Proteomics. 2005;5:4625–4636. doi: 10.1002/pmic.200401321.
    1. Clarke C.H., Yip C., Badgwell D., Fung E.T., Coombes K.R., Zhang Z., Lu K.H., Bast R.C. Proteomic biomarkers apolipoprotein A1, truncated transthyretin and connective tissue activating protein III enhance the sensitivity of CA125 for detecting early stage epithelial ovarian cancer. Gynecol. Oncol. 2011;122:548–553. doi: 10.1016/j.ygyno.2011.06.002.
    1. Zheng X., Chen S., Li L., Liu X., Liu X., Dai S., Zhang P., Lu H., Lin Z., Yu Y., et al. Evaluation of HE4 and TTR for diagnosis of ovarian cancer: Comparison with CA125. J. Gynecol. Obstet. Hum. Reprod. 2018;47:227–230. doi: 10.1016/j.jogoh.2018.03.010.
    1. Su F., Lang J., Kumar A., Ng C., Hsieh B., Suchard M.A., Reddy S.T., Farias-Eisner R. Validation of Candidate Serum Ovarian Cancer Biomarkers for Early Detection. Biomark. Insights. 2007;2:369–375. doi: 10.1177/117727190700200011.
    1. Suzuki S., Moore D.H., Ginzinger D.G., E Godfrey T., Barclay J., Powell B., Pinkel D., Zaloudek C., Lu K., Mills G., et al. An approach to analysis of large-scale correlations between genome changes and clinical endpoints in ovarian cancer. Cancer Res. 2000;60:5382–5385.
    1. Kiechle M., Jacobson A. Comparative genomic hybridization detects genetic imbalances in primary ovarian carcinomas as correlated with grade of differentiation. Cancer. 2001;91:534–540. doi: 10.1002/1097-0142(20010201)91:3<534::AID-CNCR1031>;2-T.
    1. Schwartz D.R., Kardia S.L.R., A Shedden K., Kuick R., Michailidis G., Taylor J.M.G., Misek D.E., Wu R., Zhai Y., Darrah D.M., et al. Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res. 2002;62:4722–4729.
    1. Spentzos D., Levine D.A., Ramoni M.F., Joseph M., Gu X., Boyd J., Libermann T.A., Cannistra S.A. Gene Expression Signature With Independent Prognostic Significance in Epithelial Ovarian Cancer. J. Clin. Oncol. 2004;22:4700–4710. doi: 10.1200/JCO.2004.04.070.
    1. Garzon R., Fabbri M., Cimmino A., Calin G.A., Croce C.M. MicroRNA expression and function in cancer. Trends Mol. Med. 2006;12:580–587. doi: 10.1016/j.molmed.2006.10.006.
    1. Petricoin E.F., Ardekani A.M., Hitt B.A., Levine P.J., Fusaro V.A., Steinberg S.M., Mills G.B., Simone C., Fishman D.A., Kohn E.C., et al. Use of Proteomic Patterns in Serum to Identify Ovarian Cancer. Obstet. Gynecol. Surv. 2002;57:352–353. doi: 10.1097/00006254-200206000-00015.
    1. Gortzak-Uzan L., Ignatchenko A., Evangelou A.I., Agochiya M., Brown K.A., St.Onge P., Kireeva I., Schmitt-Ulms G., Brown T.J., Murphy J., et al. A Proteome Resource of Ovarian Cancer Ascites: Integrated Proteomic and Bioinformatic Analyses To Identify Putative Biomarkers. J. Proteome Res. 2008;7:339–351. doi: 10.1021/pr0703223.
    1. Zowczak M., Iskra M., Torlinski L., Cofta S. Analysis of Serum Copper and Zinc Concentrations in Cancer Patients. Biol. Trace Element Res. 2001;82:1–8. doi: 10.1385/BTER:82:1-3:001.
    1. Wang Y., Sun Z., Li A., Zhang Y. Association between serum zinc levels and lung cancer: A meta-analysis of observational studies. World J. Surg. Oncol. 2019;17:1–8. doi: 10.1186/s12957-019-1617-5.
    1. Baxter E., Caddick M., Dragovic B. Garnet: A Rock-Forming Mineral Petrochronometer. Rev. Miner. Geochem. 2017;83:469–533. doi: 10.2138/rmg.2017.83.15.
    1. Jalalian S.H., Ramezani M., Abnous K., Taghdisi S.M. Exosomes, new biomarkers in early cancer detection. Anal. Biochem. 2019;571:1–13. doi: 10.1016/j.ab.2019.02.013.
    1. Li N., Zhan X. Identification of clinical trait–related lncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer. EPMA J. 2019;10:273–290. doi: 10.1007/s13167-019-00175-0.
    1. Steffensen K.D., Alvero A.B., Yang Y., Waldstrøm M., Hui P., Holmberg J.C., Silasi D.-A., Jakobsen A., Rutherford T., Mor G. Prevalence of Epithelial Ovarian Cancer Stem Cells Correlates with Recurrence in Early-Stage Ovarian Cancer. J. Oncol. 2011;2011:1–12. doi: 10.1155/2011/620523.
    1. Townsend D.M., Tew K.D., Tapiero H. The importance of glutathione in human disease. Biomed. Pharmacother. 2003;57:145–155. doi: 10.1016/S0753-3322(03)00043-X.
    1. Olivares M., Uauy R. Limits of metabolic tolerance to copper and biological basis for present recommendations and regulations. Am. J. Clin. Nutr. 1996;63:846S–852S. doi: 10.1093/ajcn/63.5.846.
    1. Toubhans B., Gourlan A., Telouk P., Lutchman-Singh K., Francis L., Conlan R., Margarit L., Gonzalez D., Charlet L. Cu isotope ratios are meaningful in ovarian cancer diagnosis. J. Trace Elements Med. Biol. 2020;62:126611. doi: 10.1016/j.jtemb.2020.126611.
    1. Zhang X., Yuan X., Shi H., Wu L., Qian H., Xu W. Exosomes in cancer: Small particle, big player. J. Hematol. Oncol. 2015;8:1–13. doi: 10.1186/s13045-015-0181-x.
    1. Greening D.W., Gopal S.K., Xu R., Simpson R.J., Chen W. Exosomes and their roles in immune regulation and cancer. Semin. Cell Dev. Biol. 2015;40:72–81. doi: 10.1016/j.semcdb.2015.02.009.
    1. Mathivanan S., Ji H., Simpson R.J. Exosomes: Extracellular organelles important in intercellular communication. J. Proteom. 2010;73:1907–1920. doi: 10.1016/j.jprot.2010.06.006.
    1. Chan Y.-K., Zhang H., Liu P., Tsao S.-W., Lung M.L., Mak N.-K., Wong R.N.-S., Yue P.Y.-K., Tsao G.S.-W. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int. J. Cancer. 2015;137:1830–1841. doi: 10.1002/ijc.29562.
    1. del Conde I., Shrimpton C.N. Tissue-factor–bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106:1604–1611. doi: 10.1182/blood-2004-03-1095.
    1. Théry C. Exosomes: Secreted vesicles and intercellular communications. F1000 Biol. Rep. 2011;3:15. doi: 10.3410/B3-15.
    1. Azmi A.S., Bao B., Sarkar F.H. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev. 2013;32:623–642. doi: 10.1007/s10555-013-9441-9.
    1. Paggetti J., Haderk F., Seiffert M., Janji B., Distler U., Ammerlaan W., Kim Y.J., Adam J., Lichter P., Solary E., et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126:1106–1117. doi: 10.1182/blood-2014-12-618025.
    1. Went P.T., Lugli A., Meier S., Bundi M., Mirlacher M., Sauter G., Dirnhofer S. Frequent EpCam protein expression in human carcinomas. Hum. Pathol. 2004;35:122–128. doi: 10.1016/j.humpath.2003.08.026.
    1. Golubnitschaja O., Baban B., Boniolo G., Wang W., Bubnov R., Kapalla M., Krapfenbauer K., Mozaffari M.S., Costigliola V. Medicine in the early twenty-first century: Paradigm and anticipation-EPMA position paper 2016. EPMA J. 2016;7:1–13. doi: 10.1186/s13167-016-0072-4.
    1. Janssens J.P., Schuster K., Voss A. Preventive, predictive, and personalized medicine for effective and affordable cancer care. EPMA J. 2018;9:113–123. doi: 10.1007/s13167-018-0130-1.
    1. Wang H., Fu Z., Dai C., Cao J., Liu X., Xu J., Lv M., Gu Y., Zhang Y.G.J., Hua X., et al. LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer. Sci. Rep. 2016;6:38983. doi: 10.1038/srep38983.
    1. Anaya J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ Comput. Sci. 2016;2:e67. doi: 10.7717/peerj-cs.67.
    1. Chang M.-C., Chen C.-A. Mesothelin enhances invasion of ovarian cancer by inducing MMP-7 through MAPK/ERK and JNK pathways. Biochem. J. 2012;442:293–302. doi: 10.1042/BJ20110282.
    1. Huang R., Li X., Holm R., Trope C.G., Nesland J.M., Suo Z. The expression of aldehyde dehydrogenase 1 (ALDH1) in ovarian carcinomas and its clinicopathological associations: A retrospective study. BMC Cancer. 2015;15:502. doi: 10.1186/s12885-015-1513-5.
    1. Dainty L.A., Risinger J.I., Morrison C., Chandramouli G., Bidus M.A., Zahn C., Rose G.S., Fowler J., Berchuck A., Maxwell G.L. Overexpression of folate binding protein and mesothelin are associated with uterine serous carcinoma. Gynecol. Oncol. 2007;105:563–570. doi: 10.1016/j.ygyno.2006.10.063.
    1. Kelemen L.E. The role of folate receptor α in cancer development, progression and treatment: Cause, consequence or innocent bystander? Int. J. Cancer. 2006;119:243–250. doi: 10.1002/ijc.21712.
    1. Rahilly M., Carder P.J., Al Nafussi A., Harrison D.J. Distribution of glutathione S-transferase isoenzymes in human ovary. Reproduction. 1991;93:303–311. doi: 10.1530/jrf.0.0930303.
    1. Coughlin S.S., Hall I.J. Glutathione S-transferase polymorphisms and risk of ovarian cancer: A HuGE review. Genet. Med. 2002;4:250–257. doi: 10.1097/00125817-200207000-00003.
    1. Beeghly A., Katsaros D., Chen H., Fracchioli S., Zhang Y., Massobrio M., Risch H., Jones B., Yu H. Glutathione S-transferase polymorphisms and ovarian cancer treatment and survival. Gynecol. Oncol. 2006;100:330–337. doi: 10.1016/j.ygyno.2005.08.035.
    1. Zhang T., Xu J., Deng S., Zhou F., Li J. Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data. PLoS ONE. 2018;13:e0196351. doi: 10.1371/journal.pone.0196351.
    1. Häusler S.F.M., Keller A., A Chandran P., Ziegler K., Zipp K., Heuer S., Krockenberger M., Engel J.B., Hönig A., Scheffler M., et al. Whole blood-derived miRNA profiles as potential new tools for ovarian cancer screening. Br. J. Cancer. 2010;103:693–700. doi: 10.1038/sj.bjc.6605833.

Source: PubMed

3
订阅