New imaging modalities in bone

James F Griffith, Harry K Genant, James F Griffith, Harry K Genant

Abstract

The digital era has witnessed an exponential growth in bone imaging as new modalities and analytic techniques improve the potential for noninvasive study of bone anatomy, physiology, and pathophysiology. Bone imaging very much lends itself to input across medical and engineering disciplines. It is in part a reflection of this multidisciplinary input that developments in the field of bone imaging over the past 30 years have in some respects outshone those in many other fields of medicine. These developments have resulted in much deeper knowledge of bone macrostructure and microstructure in osteoporosis and a much better understanding of the subtle changes that occur with age, concurrent disease, and treatment. This new knowledge is already being translated into improved day-to day clinical care with better recognition, treatment, and monitoring of the osteoporotic process. As "the more you know, the more you know you don't know" certainly holds true with osteoporosis and bone disease, there is little doubt that further advances in bone imaging and analytical techniques will continue to hold center stage in osteoporosis and related research.

Figures

Fig. 1
Fig. 1
Volumetric quantitative CT of the lumbar spine with automated anatomic coordinates outlining the periosteal, endosteal, and juxta-endosteal (“peeled”) contours of the vertebral body. Several different volume of interests (VOIs) can be evaluated, such as the total, trabecular, peeled, elliptical, and Pacman VOIs in the axial plane, as well as the superior, mid-vertebral, and inferior VOIs in the sagittal plane. (Image courtesy of Klaus Engelke)
Fig. 2
Fig. 2
Volumetric quantitative CT provides a basis for finite element analysis of the proximal femur. Note how stress distribution as related to color code is highest along the inferomedial aspect of the femoral neck and proximal shaft. (Image courtesy of Klaus Engelke)
Fig. 3
Fig. 3
High-resolution peripheral quantitative CT (XtremeCT; Scanco Medical, Brüttisellen, Switzerland) of the distal radius. a, Systemic lupus erythematosus (SLE) patient on steroids without vertebral fracture. b, SLE patient on steroids with vertebral fracture. Note the relative deterioration in trabecular architecture and thinning with increased porosity of cortex in the patient with vertebral fracture compared with the patient without vertebral fracture. (Image courtesy of Edmund Li)
Fig. 4
Fig. 4
High-resolution in vivo MRI of the distal radius and ulna. The circle in the midportion of the distal radius represents an area selected for virtual core biopsy as shown. (Image courtesy of Felix Wehrli)

References

    1. Link TM. The Founder’s Lecture 2009: advances in imaging of osteoporosis and osteoarthritis. Skeletal Radiol. 2010;39:943–55. doi: 10.1007/s00256-010-0987-0.
    1. Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39:1173–81. doi: 10.1016/j.bone.2006.06.001.
    1. Cummings SR, Cawthon PM, Ensrud KE, Cauley JA, Fink HA, Orwoll ES, et al. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res. 2006;21:1550–6. doi: 10.1359/jbmr.060708.
    1. Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, et al. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res. 2007;22:1781–90. doi: 10.1359/jbmr.070712.
    1. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20:1185–94. doi: 10.1359/JBMR.050304.
    1. Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML, et al. International society for clinical densitometry 2007 adult and pediatric official positions. Bone. 2008;43:1115–21. doi: 10.1016/j.bone.2008.08.106.
    1. Kanis JA, Johansson H, Oden A, McCloskey EV. Assessment of fracture risk. Eur J Radiol. 2009;71:392–7. doi: 10.1016/j.ejrad.2008.04.061.
    1. Dasher LG, Newton CD, Lenchik L. Dual X-ray absorptiometry in today’s clinical practice. Radiol Clin North Am. 2010;48:541–60. doi: 10.1016/j.rcl.2010.02.019.
    1. Genant HK, Li J, Wu CY, Shepherd JA. Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom. 2000;3:281–90. doi: 10.1385/JCD:3:3:281.
    1. McCloskey EV, Vasireddy S, Threlkeld J, Eastaugh J, Parry A, Bonnet N, et al. Vertebral fracture assessment (VFA) with a densitometer predicts future fractures in elderly women unselected for osteoporosis. J Bone Miner Res. 2008;23:1561–8. doi: 10.1359/jbmr.080515.
    1. Rüegsegger P, Elsasser U, Anliker M, Gnehm H, Kind H, Prader A. Quantification of bone mineralization using computed tomography. Radiology. 1976;121:93–7.
    1. Genant HK, Boyd DP. Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol. 1977;12:545–51. doi: 10.1097/00004424-197711000-00015.
    1. Genant HK, Cann CE, Pozzi-Mucelli RS, Kanter AS. Vertebral mineral determination by quantitative computed tomography: clinical feasibility and normative data. J Comput Assist Tomogr. 1983;7:554. doi: 10.1097/00004728-198306000-00046.
    1. Heuck AF, Block J, Glueer CC, Steiger P, Genant HK. Mild versus definite osteoporosis: comparison of bone densitometry techniques using different statistical models. J Bone Miner Res. 1989;4:891–900. doi: 10.1002/jbmr.5650040614.
    1. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, et al. PaTH Study Investigators. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003;349:1207–15. doi: 10.1056/NEJMoa031975.
    1. McCollough CH, Guimarães L, Fletcher JG. In defense of body CT. AJR Am J Roentgenol. 2009;193:28–39. doi: 10.2214/AJR.09.2754.
    1. • Mueller DK, Kutscherenko A, Bartel H, Vlassenbroek A, Ourednicek P, Erckenbrecht J. Phantom-less QCT BMD system as screening tool for osteoporosis without additional radiation. Eur J Radiol. 2010 Mar 9. [Epub ahead of print]. This study presents a comprehensive analysis of the precision and clinical applicability of phantom-less QCT analyses that can be applied in cross-sectional observational studies even retrospectively, but are not recommended for longitudinal study.
    1. Budoff MJ, Hamirani YS, Gao YL, Ismaeel H, Flores FR, Child J, et al. Measurement of thoracic bone mineral density with quantitative CT. Radiology. 2010;257:434–40. doi: 10.1148/radiol.10100132.
    1. Bauer JS, Henning TD, Müeller D, Lu Y, Majumdar S, Link TM. Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: conversion factors. AJR Am J Roentgenol. 2007;188:1294–301. doi: 10.2214/AJR.06.1006.
    1. Lee CI, Forman HP. What we can and cannot see coming. Radiology. 2010;257:313–14. doi: 10.1148/radiol.10101437.
    1. Rachidi M, Marchadier A, Gadois C, Lespessailles E, Chappard C, Benhamou CL. Laws’ masks descriptors applied to bone texture analysis: an innovative and discriminant tool in osteoporosis. Skeletal Radiol. 2008;37:541–8. doi: 10.1007/s00256-008-0463-2.
    1. Issever AS, Link TM, Kentenich M, Rogalla P, Burghardt AJ, Kazakia GJ, et al. Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. Eur Radiol. 2010;20:458–68. doi: 10.1007/s00330-009-1571-7.
    1. Graeff C, Timm W, Nickelsen TN, Farrerons J, Marin F, Barker C, et al. Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res. 2007;22:1426–33. doi: 10.1359/jbmr.070603.
    1. Kang Y, Engelke K, Fuchs C, Kalender WA. An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph. 2005;29:533–41. doi: 10.1016/j.compmedimag.2005.05.002.
    1. Engelke K, Mastmeyer A, Bousson V, Fuerst T, Laredo JD, Kalender WA. Reanalysis precision of 3D quantitative computed tomography (QCT) of the spine. Bone. 2009;44:566–72. doi: 10.1016/j.bone.2008.11.008.
    1. Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, et al. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006;17:855–64. doi: 10.1007/s00198-006-0074-5.
    1. Engelke K, Fuerst T, Dasic G, Davies RY, Genant HK. Regional distribution of spine and hip QCT BMD responses after one year of once-monthly ibandronate in postmenopausal osteoporosis. Bone. 2010;46:1626–32. doi: 10.1016/j.bone.2010.03.003.
    1. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitrovertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–50. doi: 10.1016/S8756-3282(03)00210-2.
    1. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–33. doi: 10.1016/S0021-9290(97)00123-1.
    1. MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42:1203–13. doi: 10.1016/j.bone.2008.01.017.
    1. •• Christiansen BA, Kopperdahl DL, Kiel DP, Keaveny TM, Bouxsein ML. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res. 2010 Nov 18. [Epub ahead of print]. This study explored how structural changes influence bone strength as assessed by FEA. It showed how increased vertebral body fragility in older women occurs as a result of trabecular thinning being accompanied by cortical thinning, while in men, vertebral cortical bone is less affected. In other words, it showed how males and females lose bone differently with age, with females having a relatively greater degree of vertebral body cortical bone loss that contributes to an increased prevalence of vertebral fracture.
    1. Melton LJ, 3rd, Riggs BL, Keaveny TM, Achenbach SJ, Kopperdahl D, Camp JJ, et al. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res. 2010;25:1922–30. doi: 10.1002/jbmr.150.
    1. Mawatari T, Miura H, Hamai S, Shuto T, Nakashima Y, Okazaki K, et al. Vertebral strength changes in rheumatoid arthritis patients treated with alendronate, as assessed by finite element analysis of clinical computed tomography scans: a prospective randomized clinical trial. Arthritis Rheum. 2008;58:3340–9. doi: 10.1002/art.23988.
    1. Keaveny TM, Donley D, Hoffmann P, Mitlak B, Glass E, San Martin J. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res. 2007;22:149–57. doi: 10.1359/jbmr.061011.
    1. Graeff C, Chevalier Y, Charlebois M, Varga P, Pahr D, Nickelsen TN, et al. Improvements in vertebral body strength under teriparatide treatment assessed in vivo by finite element analysis: results from the EUROFORS study. J Bone Miner Res. 2009;24:1672–80. doi: 10.1359/jbmr.090416.
    1. Keaveny TM, Kopperdahl DL, Melton LJ, 3rd, Hoffmann PF, Amin S, Riggs BL, et al. Age-dependence of femoral strength in white women and men. J Bone Miner Res. 2010;25:994–1001. doi: 10.1002/jbmr.231.
    1. Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, Osteoporotic Fractures in Men Study Group et al. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009;24:475–83. doi: 10.1359/jbmr.081201.
    1. Borggrefe J, Graeff C, Nickelsen TN, Marin F, Glüer CC. Quantitative computed tomographic assessment of the effects of 24 months of teriparatide treatment on 3D femoral neck bone distribution, geometry, and bone strength: results from the EUROFORS study. J Bone Miner Res. 2010;25:472–81. doi: 10.1359/jbmr.090820.
    1. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, et al. A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23:205–14. doi: 10.1359/jbmr.071020.
    1. Engelke K, Libanati C, Liu Y, Wang H, Austin M, Fuerst T, et al. Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA) Bone. 2009;45:110–18. doi: 10.1016/j.bone.2009.03.669.
    1. Genant HK, Engelke K, Hanley DA, Brown JP, Omizo M, Bone HG, et al. Denosumab improves density and strength parameters as measured by QCT of the radius in postmenopausal women with low bone mineral density. Bone. 2010;47:131–9. doi: 10.1016/j.bone.2010.04.594.
    1. Wang YX, Griffith JF, Zhou H, Choi KC, Hung VW, Yeung DK, et al. Rat lumbar vertebrae bone densitometry using multidetector CT. Eur Radiol. 2009;19:882–90. doi: 10.1007/s00330-008-1219-z.
    1. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90:6508–15. doi: 10.1210/jc.2005-1258.
    1. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25:882–90.
    1. Burghardt AJ, Dais KA, Masharani U, Link TM, Majumdar S. In vivo quantification of intra-cortical porosity in human cortical bone using hr-pQCT in patients with type II diabetes. J Bone Miner Res. 2008;23:S450.
    1. Li EK, Zhu TY, Tam LS, Hung VW, Griffith JF, Li TK, et al. Bone microarchitecture assessment by high-resolution peripheral quantitative computed tomography in patients with systemic lupus erythematosus taking corticosteroids. J Rheumatol. 2010;37:1473–9. doi: 10.3899/jrheum.091231.
    1. Hinshaw WS, Bottomley PA, Holland GN. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature. 1977;270(22–29):722–3. doi: 10.1038/270722a0.
    1. Ludescher B, Martirosian P, Lenk S, Machann J, Dammann F, Schick F, et al. High-resolution magnetic resonance imaging of trabecular bone in the wrist at 3 tesla: initial results. Acta Radiol. 2005;46:306–9. doi: 10.1080/02841850510021076.
    1. Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, et al. Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology. 2006;239:488–96. doi: 10.1148/radiol.2392050574.
    1. Wehrli FW, Gomberg B, Saha P, Song H, Hwang S, Snyder P. Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res. 2001;16:1520–31. doi: 10.1359/jbmr.2001.16.8.1520.
    1. Wehrli FW, Leonard MB, Saha PK, Gomberg BR. Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging. 2004;20:83–9. doi: 10.1002/jmri.20085.
    1. Kazakia GJ, Hyun B, Burghardt AJ, Krug R, Newitt DC, de Papp AE, et al. In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res. 2008;23:463–74. doi: 10.1359/jbmr.071116.
    1. Techawiboonwong A, Song HK, Wehrli FW. In vivo MRI of submillisecond T(2) species with two-dimensional and three-dimensional radial sequences and applications to the measurement of cortical bone water. NMR Biomed. 2008;21:59–70. doi: 10.1002/nbm.1179.
    1. Cao H, Ackerman JL, Hrovat MI, Graham L, Glimcher MJ, Wu Y. Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms. Magn Reson Med. 2008;60:1433–43. doi: 10.1002/mrm.21771.
    1. Cao H, Nazarian A, Ackerman JL, Snyder BD, Rosenberg AE, Nazarian RM, et al. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models. Bone. 2010;46:1582–90. doi: 10.1016/j.bone.2010.02.020.
    1. Wu Y, Hrovat MI, Ackerman JL, Reese TG, Cao H, Ecklund K, et al. Bone matrix imaged in vivo by water- and fat-suppressed proton projection MRI (WASPI) of animal and human subjects. J Magn Reson Imaging. 2010;31:954–63. doi: 10.1002/jmri.22130.
    1. Gehlbach S, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood J. Recognition of vertebral fracture in a clinical setting. Osteoporos Int. 2000;11:577–82. doi: 10.1007/s001980070078.
    1. Williams AL, Al-Busaidi A, Sparrow PJ, Adams JE, Whitehouse RW. Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur J Radiol. 2009;69:179–83. doi: 10.1016/j.ejrad.2007.08.028.
    1. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8:1137–48. doi: 10.1002/jbmr.5650080915.
    1. Grigoryan M, Guermazi A, Roemer FW, Delmas PD, Genant HK. Recognizing and reporting osteoporotic vertebral fractures. Eur Spine J. 2003;12(Suppl 2):S104–12. doi: 10.1007/s00586-003-0613-0.
    1. Link TM, Guglielmi G, van Kuijk C, Adams JE. Radiologic assessment of osteoporotic vertebral fractures: diagnostic and prognostic implications. Eur Radiol. 2005;15:1521–32. doi: 10.1007/s00330-005-2773-2.

Source: PubMed

3
订阅