The Sixth Edition of the WHO Manual for Human Semen Analysis: A Critical Review and SWOT Analysis

Florence Boitrelle, Rupin Shah, Ramadan Saleh, Ralf Henkel, Hussein Kandil, Eric Chung, Paraskevi Vogiatzi, Armand Zini, Mohamed Arafa, Ashok Agarwal, Florence Boitrelle, Rupin Shah, Ramadan Saleh, Ralf Henkel, Hussein Kandil, Eric Chung, Paraskevi Vogiatzi, Armand Zini, Mohamed Arafa, Ashok Agarwal

Abstract

Semen analysis is the cornerstone of male fertility evaluation with WHO guidelines providing the basis for procedural standardization and reference values worldwide. The first WHO manual was published in 1980, and five editions have been subsequently released over the last four decades. The 6th Edition was published in July 2021. In this review, we identify the key changes of this 6th Edition. Additionally, we evaluate the utility of this 6th Edition in clinical practice using SWOT (strengths, weaknesses, opportunities, and threats) analysis. This new Edition has made the analysis of basic semen parameters more robust, taking into account the criticisms and grey areas of the previous editions. The tests assessing sperm DNA fragmentation and seminal oxidative stress are well-described. The main novelty is that this latest edition abandons the notion of reference thresholds, suggesting instead to replace them with "decision limits". While this seems attractive, no decision limits are proposed for either basic semen parameters, or for extended or advanced parameters. This critical review of the 6th Edition of the WHO laboratory manual combined with a SWOT analysis summarizes the changes and novelties present in this new Edition and provides an in-depth analysis that could help its global use in the coming years.

Keywords: SWOT; WHO laboratory manual 6th Edition; oxidative stress; semen; sperm; sperm DNA fragmentation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
SWOT (“strengths” (S), “weaknesses” (W), “opportunities” (O) and “threats” (T)) analysis of the 6th Edition of the WHO manual for human semen analysis. SA: semen analysis. SDF: sperm DNA fragmentation. FISH: fluorescent in situ hybridization. OS: oxidative stress.

References

    1. World Health Organization Towards more objectivity in diagnosis and management of male fertility. Int. J. Androl. 1987;7:1–53.
    1. Boivin J., Bunting L., Collins J.A., Nygren K.G. International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Hum. Reprod. 2007;22:1506–1512. doi: 10.1093/humrep/dem046.
    1. [(accessed on 3 December 2021)]. Available online: .
    1. Patel A.S., Leong J.Y., Ramasamy R. Prediction of male infertility by the World Health Organization laboratory manual for assessment of semen analysis: A systematic review. Arab. J. Urol. 2018;16:96–102. doi: 10.1016/j.aju.2017.10.005.
    1. Agarwal A., Baskaran S., Parekh N., Cho C.L., Henkel R., Vij S., Arafa M., Kumar M., Selvar P., Shah R. Male infertility. Lancet. 2021;397:319–333. doi: 10.1016/S0140-6736(20)32667-2.
    1. Agarwal A., Mulgund A., Hamada A., Chyatte M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015;13:37. doi: 10.1186/s12958-015-0032-1.
    1. Levine H., Jørgensen N., Martino-Andrade A., Mendiola J., Weksler-Derri D., Mindlis I., Pinotti R., Swan S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum. Reprod. Update. 2017;23:646–659. doi: 10.1093/humupd/dmx022.
    1. Barratt C.L.R., Björndahl L., De Jonge C.J., Lamb D.J., Martini F.O., McLachlan R., Oates R.D., Van Der Poel S., John B.S., Sigman M., et al. The diagnosis of male infertility: An analysis of the evidence to support the development of global WHO guidance—Challenges and future research opportunities. Hum. Reprod. Update. 2017;23:660–680. doi: 10.1093/humupd/dmx021.
    1. Guzick D.S., Overstreet J.W., Factor-Litvak P., Brazil C.K., Nakajima S.T., Coutifaris C., Carson S.A., Cisneros P., Steinkampf M.P., Hill J.A., et al. Sperm Morphology, Motility, and Concentration in Fertile and Infertile Men. N. Engl. J. Med. 2001;345:1388–1393. doi: 10.1056/NEJMoa003005.
    1. Schlegel P.N., Sigman M., Collura B., De Jonge C.J., Eisenberg M.L., Lamb D.J., Mulhall J.P., Niederberger C., Sandlow J.I., Sokol R.Z., et al. Diagnosis and treatment of infertility in men: AUA/ASRM guideline part I. Fertil. Steril. 2021;115:54–61. doi: 10.1016/j.fertnstert.2020.11.015.
    1. World Health Organization . WHO Laboratory Manual for the Examination and Processing of Human Semen. 6th ed. WHO Press; Geneva, Switzerland: 2021. [(accessed on 3 December 2021)]. Available online: .
    1. Kandil H., Agarwal A., Saleh R., Boitrelle F., Arafa M., Vogiatzi P., Henkel R., Zini A., Shah R. Editorial Commentary on Draft of World Health Organization Sixth Edition Laboratory Manual for the Examination and Processing of Human Semen. World J. Men’s Health. 2021;39:577. doi: 10.5534/wjmh.210074.
    1. Agarwal A., Finelli R., Selvam M.K.P., Leisegang K., Majzoub A., Tadros N., Ko E., Parekh N., Henkel R., Durairajanayagam D., et al. A Global Survey of Reproductive Specialists to Determine the Clinical Utility of Oxidative Stress Testing and Antioxidant Use in Male Infertility. World J. Men’s Health. 2021;39:470–488. doi: 10.5534/wjmh.210025.
    1. World Health Organization . WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. WHO Press; Geneva, Switzerland: 2010.
    1. Cooper T.G., Noonan E., Von Eckardstein S., Auger J., Gordon Baker H.W., Behre H.M., Haugen T.B., Kruger T., Wang C., Mbizvo M.T., et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Updat. 2009;16:231–245. doi: 10.1093/humupd/dmp048.
    1. Esteves S.C., Zini A., Aziz N., Alvarez J.G., Sabanegh E.S., Jr., Agarwal A. Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology. 2012;79:16–22. doi: 10.1016/j.urology.2011.08.003.
    1. Björndahl L. What is normal semen quality? On the use and abuse of reference limits for the interpretation of semen analysis results. Hum. Fertil. 2011;14:179–186. doi: 10.3109/14647273.2011.580823.
    1. Campbell M.J., Lotti F., Baldi E., Schlatt S., Festin M.P.R., Björndahl L., Toskin I., Barratt C.L.R. Distribution of semen examination results 2020—A follow up of data collated for the WHO semen analysis manual. Andrology. 2021;9:817–822. doi: 10.1111/andr.12983.
    1. Mortimer D. Practical Laboratory Andrology. Oxford University Press; New York, NY, USA: 1994. 393p
    1. World Health Organization . WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction. 4th ed. Cambridge University Press; Cambridge, UK: 1999. pp. 96–99.
    1. Aitken R.J., Sutton M., Warner P., Richardson D.W. Relationship between the movement characteristics of human spermatozoa and their ability to penetrate cervical mucus and zona-free hamster oocytes. Reproduction. 1985;73:441–449. doi: 10.1530/jrf.0.0730441.
    1. Mortimer D., Pandya I.J., Sawers R.S. Relationship between human sperm motility characteristics and sperm penetration into human cervical mucus in vitro. Reproduction. 1986;78:93–102. doi: 10.1530/jrf.0.0780093.
    1. Barratt C., McLeod I., Dunphy B., Cooke I. Prognostic value of two putative sperm function tests: Hypo-osmotic swelling and bovine sperm mucus penetration test (Penetrak) Hum. Reprod. 1992;7:1240–1244. doi: 10.1093/oxfordjournals.humrep.a137834.
    1. Björndahl L. The usefulness and significance of assessing rapidly progressive spermatozoa. Asian, J. Androl. 2010;12:33–35. doi: 10.1038/aja.2008.50.
    1. Bollendorf A., Check J.H., Lurie D. Evaluation of the effect of the absence of sperm with rapid and linear progressive motility on subsequent pregnancy rates following intrauterine insemination or in vitro fertilization. J. Androl. 1996;17:550–557.
    1. Comhaire F.H., Vermeulen L., Hinting A., Schoonjans F. Accuracy of sperm characteristics in predicting the in vitro fertilizing capacity of semen. J. Assist. Reprod. Genet. 1988;5:326–331. doi: 10.1007/BF01129567.
    1. Eliasson R. Semen analysis with regard to sperm number, sperm morphology and functional aspects. Asian J. Androl. 2010;12:26–32. doi: 10.1038/aja.2008.58.
    1. Irvine D., Aitken R.J. Predictive value of in-vitro sperm function tests in the context of an AID service. Hum. Reprod. 1986;1:539–545. doi: 10.1093/oxfordjournals.humrep.a136470.
    1. Sifer C., Sasportes T., Barraud V., Poncelet C., Rudant J., Porcher R., Cedrin-Durnerin I., Martin-Pont B., Hugues J., Wolf J. World Health Organization grade ‘a’ motility and zona-binding test accurately predict IVF outcome for mild male factor and unexplained infertilities. Hum. Reprod. 2005;20:2769–2775. doi: 10.1093/humrep/dei118.
    1. Van den Bergh M., Emiliani S., Biramane J., Vannin A.S., Englert Y. A first prospective study of the individual straight line velocity of the spermatozoon and its influences on the fertilization rate after intracytoplasmic sperm injection. Hum Reprod. 1998;13:3103–3107. doi: 10.1093/humrep/13.11.3103.
    1. Ward W.S. Function of sperm chromatin structural elements in fertilization and development. Mol. Hum. Reprod. 2009;16:30–36. doi: 10.1093/molehr/gap080.
    1. Miyamoto T., Minase G., Shin T., Ueda H., Okada H., Sengoku K. Human male infertility and its genetic causes. Reprod. Med. Biol. 2017;16:81–88. doi: 10.1002/rmb2.12017.
    1. Godo A., Blanco J., Vidal F., Sandalinas M., Garcia-Guixé E., Anton E. Altered segregation pattern and numerical chromosome abnormalities interrelate in spermatozoa from Robertsonian translocation carriers. Reprod. Biomed. Online. 2015;31:79–88. doi: 10.1016/j.rbmo.2015.04.003.
    1. Wang B., Nie B., Tang D., Li R., Liu X., Song J., Wang W., Liu Z. Analysis of meiotic segregation patterns and interchromosomal effects in sperm from 13 robertsonian translocations. Balk. J. Med. Genet. 2017;20:43–50. doi: 10.1515/bjmg-2017-0003.
    1. Magli M.C., Crippa A., Benincasa M., Terzuoli G., Azzena S., Maresca L., Albanese C., Colombo F., Ferraretti A.P., Gianaroli L. Sperm chromosome abnormalities in patients with normal karyotype and in translocation carriers: Clinical relevance for assisted reproductive technology. Reprod. Biomed. Online. 2020;41:1055–1069. doi: 10.1016/j.rbmo.2020.08.005.
    1. Hwang K., Weedin J.W., Lamb D.J. The use of fluorescent in situ hybridization in male infertility. Ther. Adv. Urol. 2010;2:157–169. doi: 10.1177/1756287210373758.
    1. Kohn T.P., Kohn J.R., Darilek S., Ramasamy R., Lipshultz L. Genetic counseling for men with recurrent pregnancy loss or recurrent implantation failure due to abnormal sperm chromosomal aneuploidy. J. Assist. Reprod Genet. 2016;33:571–576. doi: 10.1007/s10815-016-0702-8.
    1. Donkin I., Barrès R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 2018;14:1–11. doi: 10.1016/j.molmet.2018.02.006.
    1. Sies H. Biochemistry of oxidative stress. Chem. Int. Ed. Engl. 1986;25:1058–1071. doi: 10.1002/anie.198610581.
    1. Aitken R.J., West K.M. Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. Int. J. Androl. 1990;13:433–451. doi: 10.1111/j.1365-2605.1990.tb01051.x.
    1. Aitken R. A free radical theory of male infertility. Reprod. Fertil. Dev. 1994;6:19–23. doi: 10.1071/RD9940019.
    1. Agarwal A., Said T. Oxidative stress, DNA damage and apoptosis in male infertility: A clinical approach. BJU Int. 2005;95:503–507. doi: 10.1111/j.1464-410X.2005.05328.x.
    1. Agarwal A., Prabakaran S., Allamaneni S.S. Relationship between oxidative stress, varicocele and infertility: A meta-analysis. Reprod. Biomed. Online. 2006;12:630–633. doi: 10.1016/S1472-6483(10)61190-X.
    1. Saleh R., Agarwal A., Kandirali E., Sharma R., Thomas A.J., Nada E., Evenson D.P., Alvarez J.G. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil. Steril. 2002;78:1215–1224. doi: 10.1016/S0015-0282(02)04237-1.
    1. Ramalho-Santos S.A.A.P.J.O.J., Amaral S., Oliveira P. Diabetes and the Impairment of Reproductive Function: Possible Role of Mitochondria and Reactive Oxygen Species. Curr. Diabetes Rev. 2008;4:46–54. doi: 10.2174/157339908783502398.
    1. Leisegang K., Sengupta P., Agarwal A., Henkel R. Obesity and male infertility: Mechanisms and management. Andrology. 2021;53:e13617. doi: 10.1111/and.13617.
    1. Cicek O.S.Y., Kaya G., Alyuruk B., Doger E., Girisen T., Filiz S. The association of seminal oxidation reduction potential with sperm parameters in patients with unexplained and male factor infertility. Int. Braz. J. Urol. 2021;47:112–119. doi: 10.1590/s1677-5538.ibju.2019.0751.
    1. Garcia-Segura S., Ribas-Maynou J., Lara-Cerrillo S., Garcia-Peiró A., Castel A., Benet J., Oliver-Bonet M. Relationship of Seminal Oxidation-Reduction Potential with Sperm DNA Integrity and pH in Idiopathic Infertile Patients. Biology. 2020;9:262. doi: 10.3390/biology9090262.
    1. Aitken R., De Iuliis G. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 2010;16:3–13. doi: 10.1093/molehr/gap059.
    1. ElBardisi H., Finelli R., Agarwal A., Majzoub A., Henkel R., Arafa M. Predictive value of oxidative stress testing in semen for sperm DNA fragmentation assessed by sperm chromatin dispersion test. Andrology. 2019;8:610–617. doi: 10.1111/andr.12743.
    1. Ferramosca A., Provenzano S.P., Montagna D.D., Coppola L., Zara V. Oxidative Stress Negatively Affects Human Sperm Mitochondrial Respiration. Urology. 2013;82:78–83. doi: 10.1016/j.urology.2013.03.058.
    1. Gualtieri R., Kalthur G., Barbato V., Longobardi S., Di Rella F., Adiga S., Talevi R. Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development. Antioxidants. 2021;10:1025. doi: 10.3390/antiox10071025.
    1. Koppers A.J., De Iuliis G.N., Finnie J.M., McLaughlin E.A., Aitken R.J. Significance of Mitochondrial Reactive Oxygen Species in the Generation of Oxidative Stress in Spermatozoa. J. Clin. Endocrinol. Metab. 2008;93:3199–3207. doi: 10.1210/jc.2007-2616.
    1. Lewis S.E., Aitken R.J., Conner S.J., De Iuliis G., Evenson D.P., Henkel R., Giwercman A., Gharagozloo P. The impact of sperm DNA damage in assisted conception and beyond: Recent advances in diagnosis and treatment. Reprod. Biomed. Online. 2013;27:325–337. doi: 10.1016/j.rbmo.2013.06.014.
    1. Morris A., Siebert I., Agarwal A., Henkel R. Prediction of successful ICSI cycles by Oxidation-reduction potential (ORP) and sperm DNA fragmentation (SDF) analysis. A Prospective study. Hum. Reprod. 2019;34((Suppl. 1)):i8.
    1. Softness K.A., Trussler J.T., Carrasquillo R.J. Advanced sperm testing. Curr. Opin. Urol. 2020;30:290–295. doi: 10.1097/MOU.0000000000000761.
    1. Agarwal A., Arafa M., Chandrakumar R., Majzoub A., Alsaid S., ElBardisi H. A multicenter study to evaluate oxidative stress by oxidation-reduction potential, a reliable and reproducible method. Andrology. 2017;5:939–945. doi: 10.1111/andr.12395.
    1. Agarwal A., Roychoudhury S., Sharma R., Gupta S., Majzoub A., Sabanegh E. Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: Clinical utility in male factor infertility. Reprod. Biomed. Online. 2017;34:48–57. doi: 10.1016/j.rbmo.2016.10.008.
    1. Karabulut S., Korkmaz O., Yılmaz E., Keskin I. Seminal oxidation–reduction potential as a possible indicator of impaired sperm parameters in Turkish population. Andrology. 2021;53:e13956. doi: 10.1111/and.13956.
    1. Nakamura H., Hosono T., Taniguchi T., Kumasawa K., Goa S., Ono M., Kimura T. Prediction of pregnancy after frozen-thawed embryo transfer via in vivo intrauterine oxidation-reduction potential measurements: A pilot study. Reprod. Med. Biol. 2018;17:255–261. doi: 10.1002/rmb2.12098.
    1. Kuroda S., Takeshima T., Takeshima K., Usui K., Yasuda K., Sanjo H., Kawahara T., Uemura H., Murase M., Yumura Y. Early and late paternal effects of reactive oxygen species in semen on embryo development after intracytoplasmic sperm injection. Syst. Biol. Reprod. Med. 2020;66:122–128. doi: 10.1080/19396368.2020.1720865.
    1. Rhemrev J.P., Menkveld R., Roseboom T.J., Van Overveld F.W., Teerlink T., Lombard C., Vermeiden J.P. The acrosome index, radical buffer capacity and number of isolated progressively motile spermatozoa predict IVF results. Hum. Reprod. 2001;16:1885–1892. doi: 10.1093/humrep/16.9.1885.
    1. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. 5th ed. Oxford University Press; New York, NY, USA: 2015.
    1. Agarwal A., Selvam M.K., Arafa M., Okada H., Homa S., Killeen A., Balaban B., Saleh R., Armagan A., Roychoudhury S., et al. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS in males with abnormal semen. Asian J. Androl. 2019;21:565–569. doi: 10.4103/aja.aja_5_19.
    1. Aitken R., Wingate J.K., De Iuliis G., McLaughlin E. Analysis of lipid peroxidation in human spermatozoa using BODIPY C11. Mol. Hum. Reprod. 2007;13:203–211. doi: 10.1093/molehr/gal119.
    1. Agarwal A., Henkel R., Sharma R., Tadros N.N., Sabanegh E. Determination of seminal oxidation-reduction potential (ORP) as an easy and cost-effective clinical marker of male infertility. Andrology. 2017;50:e12914. doi: 10.1111/and.12914.
    1. Tanaka T., Kobori Y., Terai K., Inoue Y., Osaka A., Yoshikawa N., Shimomura Y., Suzuki K., Minami T., Iwahata T., et al. Seminal oxidation–reduction potential and sperm DNA fragmentation index increase among infertile men with varicocele. Hum. Fertil. 2020;2020:1–5. doi: 10.1080/14647273.2020.1712747.
    1. McDowell S., Kroon B., Ford E., Hook Y., Glujovsky D., Yazdani A. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst. Rev. 2014;7:CD010461. doi: 10.1002/14651858.CD010461.pub2.
    1. Teoli D., Sanvictores T., An J. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. SWOT Analysis.

Source: PubMed

3
订阅