Cardiac biomarkers in pediatric heart disease: A state of art review

Benedict A Fernandes, Kevin O Maher, Shriprasad R Deshpande, Benedict A Fernandes, Kevin O Maher, Shriprasad R Deshpande

Abstract

Every year there are more than 11000 hospitalizations related to heart failure in children resulting in significant morbidity and mortality. Over the last two decades, our understanding, diagnosis and management of pediatric heart failure is evolving but our ability to prognosticate outcomes in pediatric heart acute heart failure is extremely limited due to lack of data. In adult heart failure patients, the role of cardiac biomarkers has exponentially increased over the last two decades. Current guidelines for management of heart failure emphasize the role of cardiac biomarkers in diagnosis, management and prognostication of heart failure. It is also noteworthy that these biomarkers reflect important biological processes that also open up the possibility of therapeutic targets. There is however, a significant gap present in the pediatric population with regards to biomarkers in pediatric heart failure. Here, we seek to review available data regarding cardiac biomarkers in the pediatric population and also explore some of the emerging biomarkers from adult literature that may be pertinent to pediatric heart failure.

Keywords: Biomarkers; Cardiac; Congenital heart disease; Outcomes; Pediatric heart failure.

Conflict of interest statement

Conflict-of-interest statement: None of the authors have any conflicts of interest to declare. No financial or intellectual conflicts to disclose.

References

    1. Rossano JW, Kim JJ, Decker JA, Price JF, Zafar F, Graves DE, Morales DL, Heinle JS, Bozkurt B, Towbin JA, et al. Prevalence, morbidity, and mortality of heart failure-related hospitalizations in children in the United States: a population-based study. J Card Fail. 2012;18:459–470.
    1. Nandi D, Lin KY, O’Connor MJ, Elci OU, Kim JJ, Decker JA, Price JF, Zafar F, Morales DL, Denfield SW, et al. Hospital Charges for Pediatric Heart Failure-Related Hospitalizations from 2000 to 2009. Pediatr Cardiol. 2016;37:512–518.
    1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:e240–e327.
    1. Rubattu S, Sciarretta S, Valenti V, Stanzione R, Volpe M. Natriuretic peptides: an update on bioactivity, potential therapeutic use, and implication in cardiovascular diseases. Am J Hypertens. 2008;21:733–741.
    1. De Bold AJ. Heart atria granularity effects of changes in water-electrolyte balance. Proc Soc Exp Biol Med. 1979;161:508–511.
    1. De Bold AJ. On the shoulders of giants: the discovery of atrial natriuretic factor. Can J Physiol Pharmacol. 1987;65:2007–2012.
    1. Koch A, Singer H. Normal values of B type natriuretic peptide in infants, children, and adolescents. Heart. 2003;89:875–878.
    1. Mir TS, Laux R, Hellwege HH, Liedke B, Heinze C, von Buelow H, Läer S, Weil J. Plasma concentrations of aminoterminal pro atrial natriuretic peptide and aminoterminal pro brain natriuretic peptide in healthy neonates: marked and rapid increase after birth. Pediatrics. 2003;112:896–899.
    1. Nir A, Bar-Oz B, Perles Z, Brooks R, Korach A, Rein AJ. N-terminal pro-B-type natriuretic peptide: reference plasma levels from birth to adolescence. Elevated levels at birth and in infants and children with heart diseases. Acta Paediatr. 2004;93:603–607.
    1. Cantinotti M, Storti S, Parri MS, Prontera C, Murzi B, Clerico A. Reference intervals for brain natriuretic peptide in healthy newborns and infants measured with an automated immunoassay platform. Clin Chem Lab Med. 2010;48:697–700.
    1. Cantinotti M, Passino C, Storti S, Ripoli A, Zyw L, Clerico A. Clinical relevance of time course of BNP levels in neonates with congenital heart diseases. Clin Chim Acta. 2011;412:2300–2304.
    1. Maher KO, Reed H, Cuadrado A, Simsic J, Mahle WT, Deguzman M, Leong T, Bandyopadhyay S. B-type natriuretic peptide in the emergency diagnosis of critical heart disease in children. Pediatrics. 2008;121:e1484–e1488.
    1. Das S, Chanani NK, Deshpande S, Maher KO. B-type natriuretic peptide in the recognition of critical congenital heart disease in the newborn infant. Pediatr Emerg Care. 2012;28:735–738.
    1. Koulouri S, Acherman RJ, Wong PC, Chan LS, Lewis AB. Utility of B-type natriuretic peptide in differentiating congestive heart failure from lung disease in pediatric patients with respiratory distress. Pediatr Cardiol. 2004;25:341–346.
    1. Cohen S, Springer C, Avital A, Perles Z, Rein AJ, Argaman Z, Nir A. Amino-terminal pro-brain-type natriuretic peptide: heart or lung disease in pediatric respiratory distress? Pediatrics. 2005;115:1347–1350.
    1. Holmgren D, Westerlind A, Lundberg PA, Wåhlander H. Increased plasma levels of natriuretic peptide type B and A in children with congenital heart defects with left compared with right ventricular volume overload or pressure overload. Clin Physiol Funct Imaging. 2005;25:263–269.
    1. Attridge JT, Kaufman DA, Lim DS. B-type natriuretic peptide concentrations to guide treatment of patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed. 2009;94:F178–F182.
    1. Niedner MF, Foley JL, Riffenburgh RH, Bichell DP, Peterson BM, Rodarte A. B-type natriuretic peptide: perioperative patterns in congenital heart disease. Congenit Heart Dis. 2010;5:243–255.
    1. Cantinotti M, Giordano R, Scalese M, Molinaro S, Della Pina F, Storti S, Arcieri L, Murzi B, Marotta M, Pak V, et al. Prognostic role of BNP in children undergoing surgery for congenital heart disease: analysis of prediction models incorporating standard risk factors. Clin Chem Lab Med. 2015;53:1839–1846.
    1. Bobik L, Kovacikova L, Zahorec M, Danova K. Preoperative NT-proBNP values in patients with atrioventricular septal defect and its role as a predictor of early postoperative course. Bratisl Lek Listy. 2015;116:648–653.
    1. Huang SC, Wu ET, Ko WJ, Lai LP, Hsu J, Chang CI, Chiu IS, Wang SS, Wu MH, Lin FY, et al. Clinical implication of blood levels of B-type natriuretic peptide in pediatric patients on mechanical circulatory support. Ann Thorac Surg. 2006;81:2267–2272.
    1. Rossano JW, Shaddy RE. Heart failure in children: etiology and treatment. J Pediatr. 2014;165:228–233.
    1. Mir TS, Marohn S, Läer S, Eiselt M, Grollmus O, Weil J. Plasma concentrations of N-terminal pro-brain natriuretic peptide in control children from the neonatal to adolescent period and in children with congestive heart failure. Pediatrics. 2002;110:e76.
    1. Ohuchi H, Takasugi H, Ohashi H, Okada Y, Yamada O, Ono Y, Yagihara T, Echigo S. Stratification of pediatric heart failure on the basis of neurohormonal and cardiac autonomic nervous activities in patients with congenital heart disease. Circulation. 2003;108:2368–2376.
    1. Law YM, Hoyer AW, Reller MD, Silberbach M. Accuracy of plasma B-type natriuretic peptide to diagnose significant cardiovascular disease in children: the Better Not Pout Children! Study. J Am Coll Cardiol. 2009;54:1467–1475.
    1. Price JF, Thomas AK, Grenier M, Eidem BW, O’Brian Smith E, Denfield SW, Towbin JA, Dreyer WJ. B-type natriuretic peptide predicts adverse cardiovascular events in pediatric outpatients with chronic left ventricular systolic dysfunction. Circulation. 2006;114:1063–1069.
    1. Bryant J, Picot J, Baxter L, Levitt G, Sullivan I, Clegg A. Use of cardiac markers to assess the toxic effects of anthracyclines given to children with cancer: a systematic review. Eur J Cancer. 2007;43:1959–1966.
    1. Lan YT, Chang RK, Alejos JC, Burch C, Wetzel GT. B-type natriuretic peptide in children after cardiac transplantation. J Heart Lung Transplant. 2004;23:558–563.
    1. Lindblade CL, Chun DS, Darragh RK, Caldwell RL, Murphy DJ, Schamberger MS. Value of plasma B-type natriuretic peptide as a marker for rejection in pediatric heart transplant recipients. Am J Cardiol. 2005;95:909–911.
    1. Rossano JW, Denfield SW, Kim JJ, Price JF, Jefferies JL, Decker JA, Smith EO, Clunie SK, Towbin JA, Dreyer WJ. B-type natriuretic peptide is a sensitive screening test for acute rejection in pediatric heart transplant patients. J Heart Lung Transplant. 2008;27:649–654.
    1. Sparks JD, Boston U, Eghtesady P, Canter CE. B-type natriuretic peptide trends after pediatric heart transplantation. Pediatr Transplant. 2014;18:477–484.
    1. Kurotobi S, Kawakami N, Shimizu K, Aoki H, Nasuno S, Takahashi K, Kogaki S, Ozono K. Brain natriuretic peptide as a hormonal marker of ventricular diastolic dysfunction in children with Kawasaki disease. Pediatr Cardiol. 2005;26:425–430.
    1. Iwashima S, Ishikawa T. B-type natriuretic peptide and N-terminal pro-BNP in the acute phase of Kawasaki disease. World J Pediatr. 2013;9:239–244.
    1. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, Rouleau JL, Lee RT. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106:2961–2966.
    1. Weinberg EO, Shimpo M, Hurwitz S, Tominaga S, Rouleau JL, Lee RT. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107:721–726.
    1. Januzzi JL, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, O’Donoghue M, Sakhuja R, Chen AA, van Kimmenade RR, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50:607–613.
    1. Parikh RH, Seliger SL, Christenson R, Gottdiener JS, Psaty BM, deFilippi CR. Soluble ST2 for Prediction of Heart Failure and Cardiovascular Death in an Elderly, Community-Dwelling Population. J Am Heart Assoc. 2016;5:pii: e003188.
    1. Dupuy AM, Curinier C, Kuster N, Huet F, Leclercq F, Davy JM, Cristol JP, Roubille F. Multi-Marker Strategy in Heart Failure: Combination of ST2 and CRP Predicts Poor Outcome. PLoS One. 2016;11:e0157159.
    1. Meeusen JW, Johnson JN, Gray A, Wendt P, Jefferies JL, Jaffe AS, Donato LJ, Saenger AK. Soluble ST2 and galectin-3 in pediatric patients without heart failure. Clin Biochem. 2015;48:1337–1340.
    1. Mathews LR, Lott JM, Isse K, Lesniak A, Landsittel D, Demetris AJ, Sun Y, Mercer DF, Webber SA, Zeevi A, et al. Elevated ST2 Distinguishes Incidences of Pediatric Heart and Small Bowel Transplant Rejection. Am J Transplant. 2016;16:938–950.
    1. Chida A, Sato H, Shintani M, Nakayama T, Kawamura Y, Furutani Y, Inai K, Saji T, Matsuoka R, Nonoyama S, et al. Soluble ST2 and N-terminal pro-brain natriuretic peptide combination. Useful biomarker for predicting outcome of childhoodpulmonary arterial hypertension. Circ J. 2014;78:436–442.
    1. Hauser JA, Demyanets S, Rusai K, Goritschan C, Weber M, Panesar D, Rindler L, Taylor AM, Marculescu R, Burch M, et al. Diagnostic performance and reference values of novel biomarkers of paediatric heart failure. Heart. 2016;102:1633–1639.
    1. Koitabashi N, Arai M, Kogure S, Niwano K, Watanabe A, Aoki Y, Maeno T, Nishida T, Kubota S, Takigawa M, et al. Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis. Hypertension. 2007;49:1120–1127.
    1. Koitabashi N, Arai M, Niwano K, Watanabe A, Endoh M, Suguta M, Yokoyama T, Tada H, Toyama T, Adachi H, et al. Plasma connective tissue growth factor is a novel potential biomarker of cardiac dysfunction in patients with chronic heart failure. Eur J Heart Fail. 2008;10:373–379.
    1. Behnes M, Brueckmann M, Lang S, Weiß C, Ahmad-Nejad P, Neumaier M, Borggrefe M, Hoffmann U. Connective tissue growth factor (CTGF/CCN2): diagnostic and prognostic value in acute heart failure. Clin Res Cardiol. 2014;103:107–116.
    1. Li G, Song X, Xia J, Li J, Jia P, Chen P, Zhao J, Liu B. The diagnostic value of plasma N-terminal connective tissue growth factor levels in children with heart failure. Cardiol Young. 2016 Mar 16; Epub ahead of print.
    1. Li G, Tang L, Jia P, Zhao J, Liu D, Liu B. Elevated Plasma Connective Tissue Growth Factor Levels in Children with Pulmonary Arterial Hypertension Associated with Congenital Heart Disease. Pediatr Cardiol. 2016;37:714–721.
    1. Sun YP, Wang WD, Ma SC, Wang LY, Qiao LY, Zhang LP. Changes of heart-type fatty acid-binding protein in children with chronic heart failure and its significance. Zhongguo Dangdai Erke Zazhi. 2013;15:99–101.
    1. Sun YP, Wang WD, Wang JJ, Wang LY. Levels of serum heart-type fatty acid-binding protein and its clinical significance in children with Kawasaki disease. Zhongguo Dangdai Erke Zazhi. 2008;10:136–138.
    1. Gegenhuber A, Struck J, Dieplinger B, Poelz W, Pacher R, Morgenthaler NG, Bergmann A, Haltmayer M, Mueller T. Comparative evaluation of B-type natriuretic peptide, mid-regional pro-A-type natriuretic peptide, mid-regional pro-adrenomedullin, and Copeptin to predict 1-year mortality in patients with acute destabilized heart failure. J Card Fail. 2007;13:42–49.
    1. Khan SQ, O’Brien RJ, Struck J, Quinn P, Morgenthaler N, Squire I, Davies J, Bergmann A, Ng LL. Prognostic value of midregional pro-adrenomedullin in patients with acute myocardial infarction: the LAMP (Leicester Acute Myocardial Infarction Peptide) study. J Am Coll Cardiol. 2007;49:1525–1532.
    1. Zhang F, Li X, Ochs T, Chen L, Liao Y, Tang C, Jin H, Du J. Midregional pro-adrenomedullin as a predictor for therapeutic response to midodrine hydrochloride in children with postural orthostatic tachycardia syndrome. J Am Coll Cardiol. 2012;60:315–320.
    1. Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, Ponikowski P, Filippatos GS, Rozentryt P, Drexler H, et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1054–1060.
    1. Kempf T, Wollert KC. Growth-differentiation factor-15 in heart failure. Heart Fail Clin. 2009;5:537–547.
    1. Raedle-Hurst TM, Koenigstein K, Gruenhage F, Raedle J, Herrmann E, Abdul-Khaliq H. Growth differentiation factor 15--an early marker of abnormal function of the Fontan circuit in patients with univentricular hearts. Am Heart J. 2010;160:1105–1112.
    1. Zeng X, Li L, Wen H, Bi Q. Growth-differentiation factor 15 as a predictor of mortality in patients with heart failure: a meta-analysis. J Cardiovasc Med (Hagerstown) 2016 Jul 22; Epub ahead of print.

Source: PubMed

3
订阅