Optoacoustic Imaging in Inflammation

Adrian P Regensburger, Emma Brown, Gerhard Krönke, Maximilian J Waldner, Ferdinand Knieling, Adrian P Regensburger, Emma Brown, Gerhard Krönke, Maximilian J Waldner, Ferdinand Knieling

Abstract

Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of "light in" and "sound out" offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications.

Keywords: MSOT; PAI; RSOM; acute inflammation; chronic inflammation; imaging inflammation; molecular imaging; optoacoustics; photoacoustics.

Conflict of interest statement

A.P.R., M.J.W., and F.K. are co-inventors, together with iThera Medical GmbH, Munich, Germany, on an EU patent application (EP 19 163 304.9) relating to a device and a method for analyzing optoacoustic data, an optoacoustic system, and a computer program. A.P.R. and F.K. received travel support from iThera Medical GmbH, Munich, Germany. A.P.R. reports lecture fees from Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany. F.K. reports lecture fees from Siemens Healthcare GmbH, Erlangen, Germany outside the submitted work. All other authors declare no competing interests.

Figures

Figure 4
Figure 4
Multispectral optoacoustic tomography (MSOT) of intestinal inflammation using hemoglobin as a surrogate for disease activity. The technique enables hybrid imaging together with B-mode ultrasound imaging (RUCT). (A) MSOT imaging of the liver in humans enabling the generation of signals for different subcellular compounds; (B) S = serosa, M = muscularis mucosa, Sm = submucosa, Mu = mucosa, L = lumen, RUCT = reflectance ultrasound computed tomography. Figure (A) reproduced and modified from [131]. (https://creativecommons.org/licenses/by/4.0/ (accessed on 9 April 2021)).
Figure 1
Figure 1
Absorption coefficients (µa in cm−1) versus wavelength (in nm) for different optoacoustic imaging molecules and tissue. Spectra were derived from existing data as indicated: melanin (https://omlc.org/spectra/melanin/mua.html as derived from [15,16,17,18]), oxy- (HbO2) and deoxyhemoglobin (HbR) (https://omlc.org/spectra/hemoglobin/summary.html), (bulk) lipid (https://omlc.org/spectra/fat/fat.txt as derived from [19]), water (https://omlc.org/spectra/water/data/hale73.txt derived from [20]), aorta tissue (https://omlc.org/spectra/aorta/oraevsky_a.txt derived from [21]), and collagen (extracted from [22]). All databases accessed on 9 April 2021.
Figure 2
Figure 2
Inflammation is a multistep process triggered by a variety of causes and agents. This results in acute and/or chronic inflammation, which leads to host response in terms of cell recruitment, adaptions of the vasculature, and changes of the tissue composition and extracellular matrix. All of these aspects pose possible targets for opto-/photoacoustic imaging. Figure created with BioRender.com.
Figure 3
Figure 3
Raster-scanning optoacoustic mesoscopy enables a precise visualization of microvasculature. Depending on the detection frequencies, larger (11–33 MHz, in red) or smaller (33–99 MHz, in green) vessels can be resolved. White square indicates magnified area. Scale bar indicates 1 mm.
Figure 5
Figure 5
Raster-scanning optoacoustic mesoscopy (RSOM) of murine paw vasculature and the potential imaging readouts for inflammation. (a) Shows the hemoglobin signal representing the vascular network, which can be used to identify changes in blood volume; (b) multi-wavelength illumination enables the separation of melanin and hemoglobin signals; (c) further unmixing enables the visualization of oxygenation status of hemoglobin. Scale bar indicates 1mm.
Figure 6
Figure 6
Optoacoustic imaging (OAI) of muscle degeneration in Duchenne muscular dystrophy. (A) Shows signals derived from wild-type (WT) and Duchenne muscular dystrophy (DMD) transgenic pigs; (B) demonstrates ex vivo tissue changes and expansion of extracellular matrix and collagens in diseased tissues as a possible correlate of OAI signals; (C) signals derived from healthy volunteers (HV) and pediatric patients with DMD at different anatomical positions. RUCT and RUCT/MSOT merged images shown. RUCT = reflectance ultrasound computed tomography, MSOT = multispectral optoacoustic tomography. Signals unmixed for hemoglobin and collagen. Figure modified with permission from [94]. This image is not published under the terms of the CC-BY license. For permission to reuse, please see [72].
Figure 7
Figure 7
Tomographic optoacoustic imaging of indocyanine perfusion kinetics in murine kidneys. (a) Cross-sectional optoacoustic images over time of mouse kidneys at 800 nm after ICG injection; (b) the absorption difference with the single-wavelength image before injection to show increased ICG perfusion over time. Adapted with permission from [95]. This image is not published under the terms of the CC-BY license. © The Optical Society.

References

    1. Wilting J., Becker J., Buttler K., Weich H.A. Lymphatics and inflammation. Curr. Med. Chem. 2009;16:4581–4592. doi: 10.2174/092986709789760751.
    1. Gupta S.C., Kunnumakkara A.B., Aggarwal S., Aggarwal B.B. Inflammation, a Double-Edge Sword for Cancer and Other Age-Related Diseases. Front. Immunol. 2018;9:2160. doi: 10.3389/fimmu.2018.02160.
    1. Karin M., Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature. 2016;529:307–315. doi: 10.1038/nature17039.
    1. Hammoud D.A. Molecular Imaging of Inflammation: Current Status. J. Nucl. Med. 2016;57:1161–1165. doi: 10.2967/jnumed.115.161182.
    1. Willmann J.K., van Bruggen N., Dinkelborg L.M., Gambhir S.S. Molecular imaging in drug development. Nat. Rev. Drug Discov. 2008;7:591–607. doi: 10.1038/nrd2290.
    1. Manohar S., Razansky D. Photoacoustics: A historical review. Adv. Opt. Photon. 2016;8:586–617. doi: 10.1364/AOP.8.000586.
    1. Wang L.V., Hu S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science. 2012;335:1458–1462. doi: 10.1126/science.1216210.
    1. Ntziachristos V., Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT) Chem. Rev. 2010;110:2783–2794. doi: 10.1021/cr9002566.
    1. Tzoumas S., Deliolanis N., Morscher S., Ntziachristos V. Unmixing Molecular Agents From Absorbing Tissue in Multispectral Optoacoustic Tomography. IEEE Trans. Med. Imaging. 2014;33:48–60. doi: 10.1109/TMI.2013.2279994.
    1. Zeng L., Ma G., Lin J., Huang P. Photoacoustic Probes for Molecular Detection: Recent Advances and Perspectives. Small. 2018;14:e1800782. doi: 10.1002/smll.201800782.
    1. Bayer C.L., Joshi P.P., Emelianov S.Y. Photoacoustic imaging: A potential tool to detect early indicators of metastasis. Expert Rev. Med. Devices. 2013;10:125–134. doi: 10.1586/erd.12.62.
    1. Zhang C., Kimura R., Abou-Elkacem L., Levi J., Xu L., Gambhir S.S. A Cystine Knot Peptide Targeting Integrin alphavbeta6 for Photoacoustic and Fluorescence Imaging of Tumors in Living Subjects. J. Nucl. Med. 2016;57:1629–1634. doi: 10.2967/jnumed.115.169383.
    1. De la Zerda A., Bodapati S., Teed R., May S.Y., Tabakman S.M., Liu Z., Khuri-Yakub B.T., Chen X., Dai H., Gambhir S.S. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano. 2012;6:4694–4701. doi: 10.1021/nn204352r.
    1. Zackrisson S., van de Ven S., Gambhir S.S. Light in and sound out: Emerging translational strategies for photoacoustic imaging. Cancer Res. 2014;74:979–1004. doi: 10.1158/0008-5472.CAN-13-2387.
    1. Jacques S.L., McAuliffe D.J. The melanosome: Threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation. Photochem. Photobiol. 1991;53:769–775. doi: 10.1111/j.1751-1097.1991.tb09891.x.
    1. Jacques S., Glickman R., Schwartz J. Internal Absorption Coefficient and Threshold for Pulsed Laser Disruption of Melanosomes Isolated from Retinal Pigment Epithelium. Volume 2681 SPIE; Bellingham, WA, USA: 1996.
    1. Sliney D.H., Palmisano W.A. The evaluation of laser hazards. Am. Ind. Hyg. Assoc. J. 1968;29:425–431. doi: 10.1080/00028896809343029.
    1. Goldman L. The skin. Arch. Environ. Health. 1969;18:434–436. doi: 10.1080/00039896.1969.10665432.
    1. Van Veen R.L.P., Sterenborg H.J.C.M., Pifferi A., Torricelli A., Cubeddu R. Determination of VIS-NIR absorption coefficients of mammalian fat, with time- and spatially resolved diffuse reflectance and transmission spectroscopy; Proceedings of the Biomedical Topical Meeting; Miami Beach, FL, USA. 14 April 2004; p. SF4.
    1. Hale G.M., Querry M.R. Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. Appl. Opt. 1973;12:555–563. doi: 10.1364/AO.12.000555.
    1. Oraevsky A.A., Jacques S.L., Pettit G.H., Saidi I.S., Tittel F.K., Henry P.D. XeCl laser ablation of atherosclerotic aorta: Optical properties and energy pathways. Lasers Surg. Med. 1992;12:585–597. doi: 10.1002/lsm.1900120604.
    1. Sekar S.K., Bargigia I., Mora A.D., Taroni P., Ruggeri A., Tosi A., Pifferi A., Farina A. Diffuse optical characterization of collagen absorption from 500 to 1700 nm. J. Biomed. Opt. 2017;22:15006. doi: 10.1117/1.JBO.22.1.015006.
    1. Oraevsky A., Jacques S., Esenaliev R., Tittel F. Laser-Based Optoacoustic Imaging in Biological Tissues. Volume 2134 SPIE; Bellingham, WA, USA: 1994.
    1. Steinberg I., Huland D.M., Vermesh O., Frostig H.E., Tummers W.S., Gambhir S.S. Photoacoustic clinical imaging. Photoacoustics. 2019;14:77–98. doi: 10.1016/j.pacs.2019.05.001.
    1. Thomas R.J., Rockwell B.A., Marshall W.J., Aldrich R.C., Gorschboth M.F., Zimmerman S.A., Rockwell R.J. A procedure for the estimation of intrabeam hazard distances and optical density requirements under the ANSI Z136.1-2000 Standard. J. Laser Appl. 2004;16:167–177. doi: 10.2351/1.1771301.
    1. Wang X., Xie X., Ku G., Wang L.V., Stoica G. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 2006;11:024015. doi: 10.1117/1.2192804.
    1. Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;1:602–631. doi: 10.1098/rsfs.2011.0028.
    1. Attia A.B.E., Balasundaram G., Moothanchery M., Dinish U.S., Bi R., Ntziachristos V., Olivo M. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics. 2019;16:100144. doi: 10.1016/j.pacs.2019.100144.
    1. Zhang H.F., Maslov K., Stoica G., Wang L.V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006;24:848–851. doi: 10.1038/nbt1220.
    1. Park S., Lee C., Kim J., Kim C. Acoustic resolution photoacoustic microscopy. Biomed. Eng. Lett. 2014;4:213–222. doi: 10.1007/s13534-014-0153-z.
    1. Hu S., Wang L.V. Photoacoustic imaging and characterization of the microvasculature. J. Biomed. Opt. 2010;15:011101. doi: 10.1117/1.3281673.
    1. Zhang H.F., Maslov K., Wang L.V. In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nat. Protoc. 2007;2:797–804. doi: 10.1038/nprot.2007.108.
    1. Omar M., Aguirre J., Ntziachristos V. Optoacoustic mesoscopy for biomedicine. Nat. Biomed. Eng. 2019 doi: 10.1038/s41551-019-0377-4.
    1. Razansky D., Buehler A., Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc. 2011;6:1121–1129. doi: 10.1038/nprot.2011.351.
    1. Brecht H.P., Su R., Fronheiser M., Ermilov S.A., Conjusteau A., Oraevsky A.A. Whole-body three-dimensional optoacoustic tomography system for small animals. J. Biomed. Opt. 2009;14:064007. doi: 10.1117/1.3259361.
    1. Ntziachristos V., Razansky D. Optical and opto-acoustic imaging. Mol. Imaging Oncol. 2013;187:133–150. doi: 10.1007/978-3-642-10853-2_4.
    1. Schellenberg M.W., Hunt H.K. Hand-held optoacoustic imaging: A review. Photoacoustics. 2018;11:14–27. doi: 10.1016/j.pacs.2018.07.001.
    1. Stewart A.G., Beart P.M. Inflammation: Maladies, models, mechanisms and molecules. Br. J. Pharm. 2016;173:631–634. doi: 10.1111/bph.13389.
    1. Glass C.K., Saijo K., Winner B., Marchetto M.C., Gage F.H. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–934. doi: 10.1016/j.cell.2010.02.016.
    1. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485.
    1. Galli S.J., Tsai M., Piliponsky A.M. The development of allergic inflammation. Nature. 2008;454:445–454. doi: 10.1038/nature07204.
    1. Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. doi: 10.1038/nature01322.
    1. Eming S.A., Wynn T.A., Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356:1026–1030. doi: 10.1126/science.aam7928.
    1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–435. doi: 10.1038/nature07201.
    1. Nathan C., Ding A. Nonresolving inflammation. Cell. 2010;140:871–882. doi: 10.1016/j.cell.2010.02.029.
    1. Cox B., Laufer J.G., Arridge S.R., Beard P.C. Quantitative spectroscopic photoacoustic imaging: A review. J. Biomed. Opt. 2012;17:061202. doi: 10.1117/1.JBO.17.6.061202.
    1. Wang L., Lei P., Wen X., Zhang P., Yang S. Tapered fiber-based intravascular photoacoustic endoscopy for high-resolution and deep-penetration imaging of lipid-rich plaque. Opt. Express. 2019;27:12832–12840. doi: 10.1364/OE.27.012832.
    1. Iskander-Rizk S., Wu M., Springeling G., van Beusekom H.M.M., Mastik F., Te Lintel Hekkert M., Beurskens R., Hoogendoorn A., Hartman E.M.J., van der Steen A.F.W., et al. In vivo intravascular photoacoustic imaging of plaque lipid in coronary atherosclerosis. EuroIntervention. 2019;15:452–456. doi: 10.4244/EIJ-D-19-00318.
    1. Hui J., Cao Y., Zhang Y., Kole A., Wang P., Yu G., Eakins G., Sturek M., Chen W., Cheng J.X. Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. Sci. Rep. 2017;7:1417. doi: 10.1038/s41598-017-01649-9.
    1. Cao Y., Hui J., Kole A., Wang P., Yu Q., Chen W., Sturek M., Cheng J.X. High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design. Sci. Rep. 2016;6:25236. doi: 10.1038/srep25236.
    1. Sangha G.S., Phillips E.H., Goergen C.J. In vivo photoacoustic lipid imaging in mice using the second near-infrared window. Biomed. Opt. Express. 2017;8:736–742. doi: 10.1364/BOE.8.000736.
    1. Sangha G.S., Goergen C.J. Label-free photoacoustic and ultrasound imaging for murine atherosclerosis characterization. APL Bioeng. 2020;4:026102. doi: 10.1063/1.5142728.
    1. Sethuraman S., Amirian J.H., Litovsky S.H., Smalling R.W., Emelianov S.Y. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt. Express. 2008;16:3362–3367. doi: 10.1364/OE.16.003362.
    1. Wang B., Karpiouk A., Yeager D., Amirian J., Litovsky S., Smalling R., Emelianov S. Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood. Opt. Lett. 2012;37:1244–1246. doi: 10.1364/OL.37.001244.
    1. Wang B., Karpiouk A., Yeager D., Amirian J., Litovsky S., Smalling R., Emelianov S. In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis. Ultrasound Med. Biol. 2012;38:2098–2103. doi: 10.1016/j.ultrasmedbio.2012.08.006.
    1. Xie Z., Yang Y., He Y., Shu C., Chen D., Zhang J., Chen J., Liu C., Sheng Z., Liu H., et al. In vivo assessment of inflammation in carotid atherosclerosis by noninvasive photoacoustic imaging. Theranostics. 2020;10:4694–4704. doi: 10.7150/thno.41211.
    1. Liu Y., Hanley T., Chen H., Long S.R., Gambhir S.S., Cheng Z., Wu J.C., Fakhri G.E., Anvari B., Zaman R.T. Non-Invasive Photoacoustic Imaging of In Vivo Mice with Erythrocyte Derived Optical Nanoparticles to Detect CAD/MI. Sci. Rep. 2020;10:5983. doi: 10.1038/s41598-020-62868-1.
    1. Wang B., Yantsen E., Larson T., Karpiouk A.B., Sethuraman S., Su J.L., Sokolov K., Emelianov S.Y. Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett. 2009;9:2212–2217. doi: 10.1021/nl801852e.
    1. Taruttis A., Timmermans A.C., Wouters P.C., Kacprowicz M., van Dam G.M., Ntziachristos V. Optoacoustic Imaging of Human Vasculature: Feasibility by Using a Handheld Probe. Radiology. 2016;281:256–263. doi: 10.1148/radiol.2016152160.
    1. Masthoff M., Helfen A., Claussen J., Roll W., Karlas A., Becker H., Gabriels G., Riess J., Heindel W., Schafers M., et al. Multispectral optoacoustic tomography of systemic sclerosis. J. Biophotonics. 2018;11:e201800155. doi: 10.1002/jbio.201800155.
    1. Ivankovic I., Mercep E., Schmedt C.G., Dean-Ben X.L., Razansky D. Real-time Volumetric Assessment of the Human Carotid Artery: Handheld Multispectral Optoacoustic Tomography. Radiology. 2019;291:181325. doi: 10.1148/radiol.2019181325.
    1. Karlas A., Fasoula N.A., Paul-Yuan K., Reber J., Kallmayer M., Bozhko D., Seeger M., Eckstein H.H., Wildgruber M., Ntziachristos V. Cardiovascular optoacoustics: From mice to men—A review. Photoacoustics. 2019;14:19–30. doi: 10.1016/j.pacs.2019.03.001.
    1. Ida T., Iwazaki H., Kawaguchi Y., Kawauchi S., Ohkura T., Iwaya K., Tsuda H., Saitoh D., Sato S., Iwai T. Burn depth assessments by photoacoustic imaging and laser Doppler imaging. Wound Repair Regen. 2016;24:349–355. doi: 10.1111/wrr.12374.
    1. Vionnet L., Gateau J., Schwarz M., Buehler A., Ermolayev V., Ntziachristos V. 24-MHz scanner for optoacoustic imaging of skin and burn. IEEE Trans. Med. Imaging. 2014;33:535–545. doi: 10.1109/TMI.2013.2289930.
    1. Zhang H.F., Maslov K., Stoica G., Wang L.V. Imaging acute thermal burns by photoacoustic microscopy. J. Biomed. Opt. 2006;11:054033. doi: 10.1117/1.2355667.
    1. Guo Z., Li Z., Deng Y., Chen S.L. Photoacoustic microscopy for evaluating a lipopolysaccharide-induced inflammation model in mice. J. Biophotonics. 2019;12:e201800251. doi: 10.1002/jbio.201800251.
    1. Ning X., Lee S., Wang Z., Kim D., Stubblefield B., Gilbert E., Murthy N. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat. Mater. 2011;10:602–607. doi: 10.1038/nmat3074.
    1. Zlitni A., Gowrishankar G., Steinberg I., Haywood T., Sam Gambhir S. Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections. Nat. Commun. 2020;11:1250. doi: 10.1038/s41467-020-14985-8.
    1. Aguirre J., Hindelang B., Berezhnoi A., Darsow U., Lauffer F., Eyerich K., Biedermann T., Ntziachristos V. Assessing nailfold microvascular structure with ultra-wideband raster-scan optoacoustic mesoscopy. Photoacoustics. 2018;10:31–37. doi: 10.1016/j.pacs.2018.02.002.
    1. Aguirre J., Schwarz M., Soliman D., Buehler A., Omar M., Ntziachristos V. Broadband mesoscopic optoacoustic tomography reveals skin layers. Opt. Lett. 2014;39:6297–6300. doi: 10.1364/OL.39.006297.
    1. Boehncke W.H., Schon M.P. Psoriasis. Lancet. 2015;386:983–994. doi: 10.1016/S0140-6736(14)61909-7.
    1. Aguirre J., Schwarz M., Garzorz N., Omar M., Buehler A., Eyerich K., Ntziachristos V. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng. 2017;1:0068. doi: 10.1038/s41551-017-0068.
    1. Yew Y.W., Dinish U.S., Yu Kuan A.H., Li X., Dev K., Ebrahim Attia A.B., Bi R., Moothanchery M., Balasundaram G., Aguirre J., et al. Raster-scanning optoacoustic mesoscopy (RSOM) imaging as an objective disease severity tool in atopic dermatitis patients. J. Am. Acad. Dermatol. 2020;84:1121–1123. doi: 10.1016/j.jaad.2020.06.045.
    1. Yew Y.W., Dinish U.S., Choi E.C.E., Bi R., Ho C.J.H., Dev K., Li X., Attia A.B.E., Wong M.K.W., Balasundaram G., et al. Investigation of morphological, vascular and biochemical changes in the skin of an atopic dermatitis (AD) patient in response to dupilumab using raster scanning optoacoustic mesoscopy (RSOM) and handheld confocal Raman spectroscopy (CRS) J. Dermatol. Sci. 2019;95:123–125. doi: 10.1016/j.jdermsci.2019.07.003.
    1. Brillant N., Elmasry M., Burton N.C., Rodriguez J.M., Sharkey J.W., Fenwick S., Poptani H., Kitteringham N.R., Goldring C.E., Kipar A., et al. Dynamic and accurate assessment of acetaminophen-induced hepatotoxicity by integrated photoacoustic imaging and mechanistic biomarkers in vivo. Toxicol. Appl. Pharm. 2017;332:64–74. doi: 10.1016/j.taap.2017.07.019.
    1. Wu Y., Sun L., Zeng F., Wu S. A conjugated-polymer-based ratiometric nanoprobe for evaluating in-vivo hepatotoxicity induced by herbal medicine via MSOT imaging. Photoacoustics. 2019;13:6–17. doi: 10.1016/j.pacs.2018.11.002.
    1. Sun L., Wu Y., Chen J., Zhong J., Zeng F., Wu S. A Turn-On Optoacoustic Probe for Imaging Metformin-Induced Upregulation of Hepatic Hydrogen Sulfide and Subsequent Liver Injury. Theranostics. 2019;9:77–89. doi: 10.7150/thno.30080.
    1. Huang Y., Qi Y., Zhan C., Zeng F., Wu S. Diagnosing Drug-Induced Liver Injury by Multispectral Optoacoustic Tomography and Fluorescence Imaging Using a Leucine-Aminopeptidase-Activated Probe. Anal. Chem. 2019;91:8085–8092. doi: 10.1021/acs.analchem.9b00107.
    1. Van den Berg P.J., Bansal R., Daoudi K., Steenbergen W., Prakash J. Preclinical detection of liver fibrosis using dual-modality photoacoustic/ultrasound system. Biomed. Opt. Express. 2016;7:5081–5091. doi: 10.1364/BOE.7.005081.
    1. Zhu Y., Johnson L.A., Huang Z., Rubin J.M., Yuan J., Lei H., Ni J., Wang X., Higgins P.D.R., Xu G. Identifying intestinal fibrosis and inflammation by spectroscopic photoacoustic imaging: An animal study. Biomed. Opt. Express. 2018;9:1590–1600. doi: 10.1364/BOE.9.001590.
    1. Lei H., Johnson L.A., Liu S., Moons D.S., Ma T., Zhou Q., Rice M.D., Ni J., Wang X., Higgins P.D., et al. Characterizing intestinal inflammation and fibrosis in Crohn’s disease by photoacoustic imaging: Feasibility study. Biomed. Opt. Express. 2016;7:2837–2848. doi: 10.1364/BOE.7.002837.
    1. Kempski K.M., Wiacek A., Graham M., Gonzalez E., Goodson B., Allman D., Palmer J., Hou H., Beck S., He J., et al. In vivo photoacoustic imaging of major blood vessels in the pancreas and liver during surgery. J. Biomed. Opt. 2019;24:1–12. doi: 10.1117/1.JBO.24.12.121905.
    1. Yang J.M., Favazza C., Chen R., Yao J., Cai X., Maslov K., Zhou Q., Shung K.K., Wang L.V. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 2012;18:1297–1302. doi: 10.1038/nm.2823.
    1. Knieling F., Neufert C., Hartmann A., Claussen J., Urich A., Egger C., Vetter M., Fischer S., Pfeifer L., Hagel A., et al. Multispectral Optoacoustic Tomography for Assessment of Crohn’s Disease Activity. N. Engl. J. Med. 2017;376:1292–1294. doi: 10.1056/NEJMc1612455.
    1. Waldner M.J., Knieling F., Egger C., Morscher S., Claussen J., Vetter M., Kielisch C., Fischer S., Pfeifer L., Hagel A., et al. Multispectral Optoacoustic Tomography in Crohn’s Disease: Noninvasive Imaging of Disease Activity. Gastroenterology. 2016;151:238–240. doi: 10.1053/j.gastro.2016.05.047.
    1. Beziere N., von Schacky C., Kosanke Y., Kimm M., Nunes A., Licha K., Aichler M., Walch A., Rummeny E.J., Ntziachristos V., et al. Optoacoustic imaging and staging of inflammation in a murine model of arthritis. Arthritis Rheumatol. 2014;66:2071–2078. doi: 10.1002/art.38642.
    1. Fournelle M., Bost W., Tarner I.H., Lehmberg T., Weiß E., Lemor R., Dinser R. Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis. Nanomed. Nanotechnol. Biol. Med. 2012;8:346–354. doi: 10.1016/j.nano.2011.06.020.
    1. Zhao C., Zhang R., Luo Y., Liu S., Tang T., Yang F., Zhu L., He X., Yang M., Jiang Y. Multimodal VEGF-Targeted Contrast-Enhanced Ultrasound and Photoacoustic Imaging of Rats with Inflammatory Arthritis: Using Dye-VEGF-Antibody-Loaded Microbubbles. Ultrasound Med. Biol. 2020;46:2400–2411. doi: 10.1016/j.ultrasmedbio.2020.05.007.
    1. Hallasch S., Giese N., Stoffels I., Klode J., Sondermann W. Multispectral optoacoustic tomography might be a helpful tool for noninvasive early diagnosis of psoriatic arthritis. Photoacoustics. 2021;21:100225. doi: 10.1016/j.pacs.2020.100225.
    1. Jo J., Xu G., Schiopu E., Chamberland D., Gandikota G., Wang X. Imaging of enthesitis by an LED-based photoacoustic system. J. Biomed. Opt. 2020;25 doi: 10.1117/1.JBO.25.12.126005.
    1. Daoudi K., Kersten B.E., van den Ende C.H.M., van den Hoogen F.H.J., Vonk M.C., de Korte C.L. Photoacoustic and high-frequency ultrasound imaging of systemic sclerosis patients. Arthritis Res. 2021;23:22. doi: 10.1186/s13075-020-02400-y.
    1. Park S.J., Ho C.J.H., Arai S., Samanta A., Olivo M., Chang Y.T. Visualizing Alzheimer’s Disease Mouse Brain with Multispectral Optoacoustic Tomography using a Fluorescent probe, CDnir7. Sci. Rep. 2019;9:12052. doi: 10.1038/s41598-019-48329-4.
    1. Ichkova A., Rodriguez-Grande B., Zub E., Saudi A., Fournier M.L., Aussudre J., Sicard P., Obenaus A., Marchi N., Badaut J. Early cerebrovascular and long-term neurological modifications ensue following juvenile mild traumatic brain injury in male mice. Neurobiol. Dis. 2020;141:104952. doi: 10.1016/j.nbd.2020.104952.
    1. Regensburger A.P., Fonteyne L.M., Jungert J., Wagner A.L., Gerhalter T., Nagel A.M., Heiss R., Flenkenthaler F., Qurashi M., Neurath M.F., et al. Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat. Med. 2019;25:1905–1915. doi: 10.1038/s41591-019-0669-y.
    1. Buehler A., Herzog E., Razansky D., Ntziachristos V. Video rate optoacoustic tomography of mouse kidney perfusion. Opt. Lett. 2010;35:2475–2477. doi: 10.1364/OL.35.002475.
    1. Pan W., Peng W., Ning F., Zhang Y., Wang Y., Xie W., Zhang J., Xin H., Li C., Zhang X. Non-invasive detection of the early phase of kidney injury by photoacoustic/computed tomography imaging. Nanotechnology. 2018;29:265101. doi: 10.1088/1361-6528/aabcee.
    1. Hysi E., He X., Fadhel M.N., Zhang T., Krizova A., Ordon M., Farcas M., Pace K.T., Mintsopoulos V., Lee W.L., et al. Photoacoustic imaging of kidney fibrosis for assessing pretransplant organ quality. JCI Insight. 2020;5 doi: 10.1172/jci.insight.136995.
    1. Lawrence D.J., Escott M.E., Myers L., Intapad S., Lindsey S.H., Bayer C.L. Spectral photoacoustic imaging to estimate in vivo placental oxygenation during preeclampsia. Sci. Rep. 2019;9:558. doi: 10.1038/s41598-018-37310-2.
    1. Yamaleyeva L.M., Brosnihan K.B., Smith L.M., Sun Y. Preclinical Ultrasound-Guided Photoacoustic Imaging of the Placenta in Normal and Pathologic Pregnancy. Mol. Imaging. 2018;17:1536012118802721. doi: 10.1177/1536012118802721.
    1. Huda K., Wu C., Sider J.G., Bayer C.L. Spherical-view photoacoustic tomography for monitoring in vivo placental function. Photoacoustics. 2020;20:100209. doi: 10.1016/j.pacs.2020.100209.
    1. Hacker L., Brunker J., Smith E.S.J., Quiros-Gonzalez I., Bohndiek S.E. Photoacoustics resolves species-specific differences in hemoglobin concentration and oxygenation. J. Biomed. Opt. 2020;25 doi: 10.1117/1.JBO.25.9.095002.
    1. Laufer J., Elwell C., Delpy D., Beard P. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: Accuracy and resolution. Phys. Med. Biol. 2005;50:4409–4428. doi: 10.1088/0031-9155/50/18/011.
    1. Laufer J., Delpy D., Elwell C., Beard P. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: Application to the measurement of blood oxygenation and haemoglobin concentration. Phys. Med. Biol. 2007;52:141–168. doi: 10.1088/0031-9155/52/1/010.
    1. David H., Ughetto A., Gaudard P., Plawecki M., Paiyabhroma N., Zub E., Colson P., Richard S., Marchi N., Sicard P. Experimental Myocardial Infarction Elicits Time-Dependent Patterns of Vascular Hypoxia in Peripheral Organs and in the Brain. Front. Cardiovasc. Med. 2020;7:615507. doi: 10.3389/fcvm.2020.615507.
    1. Brown E., Brunker J., Bohndiek S.E. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis. Models Mech. 2019;12 doi: 10.1242/dmm.039636.
    1. Galanzha E.I., Zharov V.P. In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters. Cytom. A. 2011;79:746–757. doi: 10.1002/cyto.a.21133.
    1. Van den Berg P.J., Daoudi K., Steenbergen W. Review of photoacoustic flow imaging: Its current state and its promises. Photoacoustics. 2015;3:89–99. doi: 10.1016/j.pacs.2015.08.001.
    1. Brunker J., Beard P. Velocity measurements in whole blood using acoustic resolution photoacoustic Doppler. Biomed. Opt. Express. 2016;7:2789–2806. doi: 10.1364/BOE.7.002789.
    1. Zharov V.P., Galanzha E.I., Shashkov E.V., Kim J.W., Khlebtsov N.G., Tuchin V.V. Photoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo. J. Biomed. Opt. 2007;12:051503. doi: 10.1117/1.2793746.
    1. Cai C., Carey K.A., Nedosekin D.A., Menyaev Y.A., Sarimollaoglu M., Galanzha E.I., Stumhofer J.S., Zharov V.P. In vivo photoacoustic flow cytometry for early malaria diagnosis. Cytom. A. 2016;89:531–542. doi: 10.1002/cyto.a.22854.
    1. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005;352:1685–1695. doi: 10.1056/NEJMra043430.
    1. Stary H.C., Chandler A.B., Dinsmore R.E., Fuster V., Glagov S., Insull W., Jr., Rosenfeld M.E., Schwartz C.J., Wagner W.D., Wissler R.W. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arter. Thromb. Vasc. Biol. 1995;15:1512–1531. doi: 10.1161/01.ATV.15.9.1512.
    1. Park Y.M. CD36, a scavenger receptor implicated in atherosclerosis. Exp. Mol. Med. 2014;46:e99. doi: 10.1038/emm.2014.38.
    1. Mahmood S.S., Levy D., Vasan R.S., Wang T.J. The Framingham Heart Study and the epidemiology of cardiovascular disease: A historical perspective. Lancet. 2014;383:999–1008. doi: 10.1016/S0140-6736(13)61752-3.
    1. Bi R., Dinish U.S., Goh C.C., Imai T., Moothanchery M., Li X., Kim J.Y., Jeon S., Pu Y., Kim C., et al. In vivo label-free functional photoacoustic monitoring of ischemic reperfusion. J. Biophotonics. 2019;12:e201800454. doi: 10.1002/jbio.201800454.
    1. Moustakidis S., Omar M., Aguirre J., Mohajerani P., Ntziachristos V. Fully automated identification of skin morphology in raster-scan optoacoustic mesoscopy using artificial intelligence. Med. Phys. 2019;46:4046–4056. doi: 10.1002/mp.13725.
    1. Schwarz M., Buehler A., Aguirre J., Ntziachristos V. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo. J. Biophotonics. 2016;9:55–60. doi: 10.1002/jbio.201500247.
    1. Wang Y., Zhan Y., Harris L.M., Khan S., Xia J. A portable three-dimensional photoacoustic tomography system for imaging of chronic foot ulcers. Quant. Imaging Med. Surg. 2019;9:799–806. doi: 10.21037/qims.2019.05.02.
    1. Hariri A., Chen F., Moore C., Jokerst J.V. Noninvasive staging of pressure ulcers using photoacoustic imaging. Wound Repair Regen. 2019;27:488–496. doi: 10.1111/wrr.12751.
    1. Wu Z., Duan F., Zhang J., Li S., Ma H., Nie L. In vivo dual-scale photoacoustic surveillance and assessment of burn healing. Biomed. Opt. Express. 2019;10:3425–3433. doi: 10.1364/BOE.10.003425.
    1. Liu Y., Fu L., Xu M., Zheng J., Yuan Z. Dual-Modal In Vivo Fluorescence/Photoacoustic Microscopy Imaging of Inflammation Induced by GFP-Expressing Bacteria. Sensors. 2019;19:238. doi: 10.3390/s19020238.
    1. Bhutiani N., Grizzle W.E., Galandiuk S., Otali D., Dryden G.W., Egilmez N.K., McNally L.R. Noninvasive Imaging of Colitis Using Multispectral Optoacoustic Tomography. J. Nucl. Med. 2017;58:1009–1012. doi: 10.2967/jnumed.116.184705.
    1. Atreya R., Neumann H., Neufert C., Waldner M.J., Billmeier U., Zopf Y., Willma M., App C., Munster T., Kessler H., et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat. Med. 2014;20:313–318. doi: 10.1038/nm.3462.
    1. Rath T., Bojarski C., Neurath M.F., Atreya R. Molecular imaging of mucosal alpha4beta7 integrin expression with the fluorescent anti-adhesion antibody vedolizumab in Crohn’s disease. Gastrointest. Endosc. 2017;86:406–408. doi: 10.1016/j.gie.2017.01.012.
    1. Shen B., Kochhar G., Navaneethan U., Farraye F.A., Schwartz D.A., Iacucci M., Bernstein C.N., Dryden G., Cross R., Bruining D.H., et al. Practical guidelines on endoscopic treatment for Crohn’s disease strictures: A consensus statement from the Global Interventional Inflammatory Bowel Disease Group. Lancet Gastroenterol. Hepatol. 2020;5:393–405. doi: 10.1016/S2468-1253(19)30366-8.
    1. Crespi M., Dulbecco P., De Ceglie A., Conio M. Strictures in Crohn’s Disease: From Pathophysiology to Treatment. Dig. Dis. Sci. 2020;65:1904–1916. doi: 10.1007/s10620-020-06227-0.
    1. Lei H., Johnson L.A., Eaton K.A., Liu S., Ni J., Wang X., Higgins P.D.R., Xu G. Characterizing intestinal strictures of Crohn’s disease. Biomed. Opt. Express. 2019;10:2542–2555. doi: 10.1364/BOE.10.002542.
    1. Bettenworth D., Bokemeyer A., Baker M., Mao R., Parker C.E., Nguyen T., Ma C., Panes J., Rimola J., Fletcher J.G., et al. Assessment of Crohn’s disease-associated small bowel strictures and fibrosis on cross-sectional imaging: A systematic review. Gut. 2019;68:1115–1126. doi: 10.1136/gutjnl-2018-318081.
    1. Knieling F., Gonzales Menezes J., Claussen J., Schwarz M., Neufert C., Fahlbusch F.B., Rath T., Thoma O.M., Kramer V., Menchicchi B., et al. Raster-Scanning Optoacoustic Mesoscopy for Gastrointestinal Imaging at High Resolution. Gastroenterology. 2018;154:807–809.e803. doi: 10.1053/j.gastro.2017.11.285.
    1. Heichler C., Scheibe K., Schmied A., Geppert C.I., Schmid B., Wirtz S., Thoma O.M., Kramer V., Waldner M.J., Büttner C., et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut. 2020;69:1269–1282. doi: 10.1136/gutjnl-2019-319200.
    1. Regensburger A.P., Wagner A.L., Claussen J., Waldner M.J., Knieling F. Shedding light on pediatric diseases: Multispectral optoacoustic tomography at the doorway to clinical applications. Mol. Cell. Pediatr. 2020;7:3. doi: 10.1186/s40348-020-00095-4.
    1. McInnes I.B., Schett G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011;365:2205–2219. doi: 10.1056/NEJMra1004965.
    1. McInnes I.B., Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017;389:2328–2337. doi: 10.1016/S0140-6736(17)31472-1.
    1. Razansky D., Klohs J., Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur. J. Nucl. Med. Mol. Imaging. 2021 doi: 10.1007/s00259-021-05207-4.
    1. Kang N.Y., Park S.J., Ang X.W., Samanta A., Driessen W.H., Ntziachristos V., Vasquez K.O., Peterson J.D., Yun S.W., Chang Y.T. A macrophage uptaking near-infrared chemical probe CDnir7 for in vivo imaging of inflammation. Chem. Commun. 2014;50:6589–6591. doi: 10.1039/c4cc02038c.
    1. Wagner A.L., Danko V., Federle A., Klett D., Simon D., Heiss R., Jungert J., Uder M., Schett G., Neurath M.F., et al. Precision of handheld multispectral optoacoustic tomography for muscle imaging. Photoacoustics. 2021;21:100220. doi: 10.1016/j.pacs.2020.100220.
    1. Noris M., Perico N., Remuzzi G. Mechanisms of disease: Pre-eclampsia. Nat. Clin. Pract. Nephrol. 2005;1:98–114. doi: 10.1038/ncpneph0035. quiz 120.
    1. Brochu F.M., Brunker J., Joseph J., Tomaszewski M.R., Morscher S., Bohndiek S.E. Towards Quantitative Evaluation of Tissue Absorption Coefficients Using Light Fluence Correction in Optoacoustic Tomography. IEEE Trans. Med. Imaging. 2017;36:322–331. doi: 10.1109/TMI.2016.2607199.
    1. Joseph J., Tomaszewski M.R., Quiros-Gonzalez I., Weber J., Brunker J., Bohndiek S.E. Evaluation of Precision in Optoacoustic Tomography for Preclinical Imaging in Living Subjects. J. Nucl. Med. 2017;58:807–814. doi: 10.2967/jnumed.116.182311.
    1. Bohndiek S. Addressing photoacoustics standards. Nat. Photonics. 2019;13:298. doi: 10.1038/s41566-019-0417-3.
    1. Mercep E., Jeng G., Morscher S., Li P.C., Razansky D. Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2015;62:1651–1661. doi: 10.1109/TUFFC.2015.007058.
    1. Mercep E., Dean-Ben X.L., Razansky D. Combined Pulse-Echo Ultrasound and Multispectral Optoacoustic Tomography With a Multi-Segment Detector Array. IEEE Trans. Med. Imaging. 2017;36:2129–2137. doi: 10.1109/TMI.2017.2706200.
    1. Rogosnitzky M., Branch S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals. 2016;29:365–376. doi: 10.1007/s10534-016-9931-7.
    1. Conjusteau A., Liopo A., Tsyboulski D., Ermilov S., Elliott W., Barsalou N., Maswadi S., Glickman R., Oraevsky A. Optoacoustic Sensor for Nanoparticle Linked Immunosorbent Assay (NanoLISA) Volume 7899 SPIE; Bellingham, WA, USA: 2011.
    1. Longo D.L., Stefania R., Aime S., Oraevsky A. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications. Int. J. Mol. Sci. 2017;18:1719. doi: 10.3390/ijms18081719.
    1. Liopo A., Oraevsky A. Nanotechnology for Biomedical Imaging and Diagnostics: From Nanoparticle Design to Clinical Applications. John Wiley & Sons; Hoboken, NJ, USA: 2015. Nanoparticles as Contrast Agents for Optoacoustic Imaging; pp. 111–149.
    1. Hannah A., Luke G., Wilson K., Homan K., Emelianov S. Indocyanine green-loaded photoacoustic nanodroplets: Dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano. 2014;8:250–259. doi: 10.1021/nn403527r.
    1. Jokerst J.V., Van de Sompel D., Bohndiek S.E., Gambhir S.S. Cellulose Nanoparticles are a Biodegradable Photoacoustic Contrast Agent for Use in Living Mice. Photoacoustics. 2014;2:119–127. doi: 10.1016/j.pacs.2014.07.001.

Source: PubMed

3
订阅