The TIRS trial: protocol for a cluster randomized controlled trial assessing the efficacy of preventive targeted indoor residual spraying to reduce Aedes-borne viral illnesses in Merida, Mexico

Pablo Manrique-Saide, Natalie E Dean, M Elizabeth Halloran, Ira M Longini, Matthew H Collins, Lance A Waller, Hector Gomez-Dantes, Audrey Lenhart, Thomas J Hladish, Azael Che-Mendoza, Oscar D Kirstein, Yamila Romer, Fabian Correa-Morales, Jorge Palacio-Vargas, Rosa Mendez-Vales, Pilar Granja Pérez, Norma Pavia-Ruz, Guadalupe Ayora-Talavera, Gonzalo M Vazquez-Prokopec, Pablo Manrique-Saide, Natalie E Dean, M Elizabeth Halloran, Ira M Longini, Matthew H Collins, Lance A Waller, Hector Gomez-Dantes, Audrey Lenhart, Thomas J Hladish, Azael Che-Mendoza, Oscar D Kirstein, Yamila Romer, Fabian Correa-Morales, Jorge Palacio-Vargas, Rosa Mendez-Vales, Pilar Granja Pérez, Norma Pavia-Ruz, Guadalupe Ayora-Talavera, Gonzalo M Vazquez-Prokopec

Abstract

Background: Current urban vector control strategies have failed to contain dengue epidemics and to prevent the global expansion of Aedes-borne viruses (ABVs: dengue, chikungunya, Zika). Part of the challenge in sustaining effective ABV control emerges from the paucity of evidence regarding the epidemiological impact of any Aedes control method. A strategy for which there is limited epidemiological evidence is targeted indoor residual spraying (TIRS). TIRS is a modification of classic malaria indoor residual spraying that accounts for Aedes aegypti resting behavior by applying residual insecticides on exposed lower sections of walls (< 1.5 m), under furniture, and on dark surfaces.

Methods/design: We are pursuing a two-arm, parallel, unblinded, cluster randomized controlled trial to quantify the overall efficacy of TIRS in reducing the burden of laboratory-confirmed ABV clinical disease (primary endpoint). The trial will be conducted in the city of Merida, Yucatan State, Mexico (population ~ 1million), where we will prospectively follow 4600 children aged 2-15 years at enrollment, distributed in 50 clusters of 5 × 5 city blocks each. Clusters will be randomly allocated (n = 25 per arm) using covariate-constrained randomization. A "fried egg" design will be followed, in which all blocks of the 5 × 5 cluster receive the intervention, but all sampling to evaluate the epidemiological and entomological endpoints will occur in the "yolk," the center 3 × 3 city blocks of each cluster. TIRS will be implemented as a preventive application (~ 1-2 months prior to the beginning of the ABV season). Active monitoring for symptomatic ABV illness will occur through weekly household visits and enhanced surveillance. Annual sero-surveys will be performed after each transmission season and entomological evaluations of Ae. aegypti indoor abundance and ABV infection rates monthly during the period of active surveillance. Epidemiological and entomological evaluation will continue for up to three transmission seasons.

Discussion: The findings from this study will provide robust epidemiological evidence of the efficacy of TIRS in reducing ABV illness and infection. If efficacious, TIRS could drive a paradigm shift in Aedes control by considering Ae. aegypti behavior to guide residual insecticide applications and changing deployment to preemptive control (rather than in response to symptomatic cases), two major enhancements to existing practice.

Trial registration: ClinicalTrials.gov NCT04343521 . Registered on 13 April 2020. The protocol also complies with the WHO International Clinical Trials Registry Platform (ICTRP) (Additional file 1).

Primary sponsor: National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIH/NIAID).

Keywords: Aedes aegypti; Chikungunya; Cluster randomized; Dengue; Indoor; Insecticide; Urban; Zika.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Targeted indoor residual spraying (TIRS) to control Ae. aegypti. In urban environments, houses are primarily built of brick and cement, and Ae. aegypti rests preferentially below 1.5 m of height. Spraying residual insecticides in walls below 1.5 m and in key resting sites such as under furniture (#1 in figure, represented in green) will eventually kill Ae. aegypti that may be emerging from immature larval habitats outdoors (2) and rest indoors on treated surfaces (3). After exposure to the residual insecticide, mortality can occur immediately (4) or after several hours/days (5)
Fig. 2
Fig. 2
Proposed design for the TIRS trial. A possible arrangement of clusters within Merida, obtained using variable-constrained randomization. The final arrangement will be generated prior to household enrollment. Inset shows city blocks in yellow (the extent of the 5 × 5 cluster) with blue blocks showing the area where epidemiological and entomological evaluations will be concentrated (“fried egg” design). Blue lines in the lower panel show the 30-year average DENV case distribution by month, repeated on each trial year
Fig. 3
Fig. 3
Proposed trial components
Fig. 4
Fig. 4
Algorithms for laboratory confirmation of acute ABV infection and annual seroconversion. Divided by phase of specimen collection, active surveillance of acute infections (right) or annual serological study (left)
Fig. 5
Fig. 5
Structure and organization of the Emory data management core (DMC)

References

    1. Gubler DJ. Dengue, urbanization and globalization: the unholy trinity of the 21(st) century. Trop Med Health. 2011;39(4 Suppl):3–11. doi: 10.2149/tmh.2011-S05.
    1. Musso D, Gubler DJ. Zika virus. Clin Microbiol Rev. 2016;29(3):487–524. doi: 10.1128/CMR.00072-15.
    1. Wahid B, Ali A, Rafique S, Idrees M. Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis. 2017;58:69–76. doi: 10.1016/j.ijid.2017.03.006.
    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–507. doi: 10.1038/nature12060.
    1. Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, Bhatt S, Katzelnick L, Howes RE, Battle KE, et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 2014;22(3):138–146. doi: 10.1016/j.tim.2013.12.011.
    1. Undurraga EA, Betancourt-Cravioto M, Ramos-Castaneda J, Martinez-Vega R, Mendez-Galvan J, Gubler DJ, Guzman MG, Halstead SB, Harris E, Kuri-Morales P, et al. Economic and disease burden of dengue in Mexico. PLoS Negl Trop Dis. 2015;9(3):e0003547. doi: 10.1371/journal.pntd.0003547.
    1. Selck FW, Adalja AA, Boddie CR. An estimate of the global health care and lost productivity costs of dengue. Vector Borne Zoonotic Dis. 2014;14(11):824–826. doi: 10.1089/vbz.2013.1528.
    1. Colon-Gonzalez FJ, Peres CA, Steiner Sao Bernardo C, Hunter PR, Lake IR. After the epidemic: Zika virus projections for Latin America and the Caribbean. PLoS Negl Trop Dis. 2017;11(11):e0006007. doi: 10.1371/journal.pntd.0006007.
    1. Li R, Simmons KB, Bertolli J, Rivera-Garcia B, Cox S, Romero L, Koonin LM, Valencia-Prado M, Bracero N, Jamieson DJ, et al. Cost-effectiveness of increasing access to contraception during the Zika virus outbreak, Puerto Rico, 2016. Emerg Infect Dis. 2017;23(1):74–82. doi: 10.3201/eid2301.161322.
    1. Reiner RC, Jr, Achee N, Barrera R, Burkot TR, Chadee DD, Devine GJ, Endy T, Gubler D, Hombach J, Kleinschmidt I, et al. Quantifying the epidemiological impact of vector control on dengue. PLoS Negl Trop Dis. 2016;10(5):e0004588. doi: 10.1371/journal.pntd.0004588.
    1. Vazquez-Prokopec GM, Chaves LF, Ritchie SA, Davis J, Kitron U. Unforeseen costs of cutting mosquito surveillance budgets. PLoS Negl Trop Dis. 2010;4(10):e858. doi: 10.1371/journal.pntd.0000858.
    1. Gubler DJ, Ooi EE, Vasudevan S, Farrar J. Dengue and dengue hemorrhagic fever. 2nd ed. Wallingford; 2014.
    1. Achee NL, Gould F, Perkins TA, Reiner RC, Jr, Morrison AC, Ritchie SA, Gubler DJ, Teyssou R, Scott TW. A critical assessment of vector control for dengue prevention. PLoS Negl Trop Dis. 2015;9(5):e0003655. doi: 10.1371/journal.pntd.0003655.
    1. Bowman LR, Donegan S, McCall PJ. Is dengue vector control deficient in effectiveness or evidence?: systematic review and meta-analysis. PLoS Negl Trop Dis. 2016;10(3):e0004551. doi: 10.1371/journal.pntd.0004551.
    1. Wilson AL, Boelaert M, Kleinschmidt I, Pinder M, Scott TW, Tusting LS, Lindsay SW. Evidence-based vector control? Improving the quality of vector control trials. Trends Parasitol. 2015;31(8):380–390. doi: 10.1016/j.pt.2015.04.015.
    1. Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H, Reiner RC, Jr, Vilcarromero S, Elder JP, Halsey ES, et al. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A. 2013;110(3):994–999. doi: 10.1073/pnas.1213349110.
    1. Ten Bosch QA, Clapham HE, Lambrechts L, Duong V, Buchy P, Althouse BM, Lloyd AL, Waller LA, Morrison AC, Kitron U, et al. Contributions from the silent majority dominate dengue virus transmission. PLoS Pathog. 2018;14(5):e1006965. doi: 10.1371/journal.ppat.1006965.
    1. World Health Organization . Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. Geneva: WHO; 2006.
    1. World Health Organization. Indoor residual spraying. An operational manual for indoor residual spraying (IRS) for malaria transmission control and elimination. Geneva: World Health Organization; 2015.
    1. World Health Organization. Application of residual sprays for vector control. 3rd ed. Geneva: World Health Organization; 2007.
    1. World Health Organization . Pesticides and their application for the control of vectors and pests of public health importance. 6. Geneva: WHO/CDS/NTD/WHOPES/GCDPP/2006.1; 2006.
    1. Giglioli G. An investigation of the house-frequenting habits of mosquitoes of the British Guiana coastland in relation to the use of DDT. Am J Trop Med Hyg. 1948;28(1):43–70. doi: 10.4269/ajtmh.1948.s1-28.43.
    1. Nathan MB, Giglioli ME. Eradication of Aedes aegypti on Cayman Brac and Little Cayman, West Indies, with Abate (Temephos) in 1970-1971. Bull Pan Am Health Organ. 1982;16(1):28–39.
    1. Liebman KA, Stoddard ST, Reiner RC, Jr, Perkins TA, Astete H, Sihuincha M, Halsey ES, Kochel TJ, Morrison AC, Scott TW. Determinants of heterogeneous blood feeding patterns by Aedes aegypti in Iquitos, Peru. PLoS Negl Trop Dis. 2014;8(2):e2702. doi: 10.1371/journal.pntd.0002702.
    1. Perich MJ, Davila G, Turner A, Garcia A, Nelson M. Behavior of resting Aedes aegypti (Culicidae: Diptera) and its relation to ultra-low volume adulticide efficacy in Panama City, Panama. J Med Entomol. 2000;37(4):541–546. doi: 10.1603/0022-2585-37.4.541.
    1. Dzul-Manzanilla F, Ibarra-Lopez J, Bibiano Marin W, Martini-Jaimes A, Leyva JT, Correa-Morales F, Huerta H, Manrique-Saide P, Vazquez-Prokopec GM. Indoor resting behavior of Aedes aegypti (Diptera: Culicidae) in Acapulco, Mexico. J Med Entomol. 2017;54(2):501–504.
    1. Vazquez-Prokopec GM, Galvin WA, Kelly R, Kitron U. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J Med Entomol. 2009;46(6):1256–1259. doi: 10.1603/033.046.0602.
    1. Dunbar MW, Correa-Morales F, Dzul-Manzanilla F, Medina-Barreiro A, Bibiano-Marín W, Morales-Ríos E, Vadillo-Sánchez J, Ritchie SA, Lenhart A, Manrique-Saide P, et al. Efficacy of novel indoor residual spraying methods targeting pyrethroid-resistant Aedes aegypti. PLoS Negl Trop Dis. 2019;13(2):e0007203. doi: 10.1371/journal.pntd.0007203.
    1. Vazquez-Prokopec GM, Montgomery BL, Horne P, Clennon JA, Ritchie SA. Combining contact tracing with targeted indoor residual spraying significantly reduces dengue transmission. Sci Adv. 2017;3(2):e1602024. doi: 10.1126/sciadv.1602024.
    1. Ritchie SA, Long S, Smith G, Pyke A, Knox TB. Entomological investigations in a focus of dengue transmission in Cairns, Queensland, Australia, by using the sticky ovitraps. J Med Entomol. 2004;41(1):1–4. doi: 10.1603/0022-2585-41.1.1.
    1. Vazquez-Prokopec GM, Medina-Barreiro A, Che-Mendoza A, Dzul-Manzanilla F, Correa-Morales F, Guillermo-May G, Bibiano-Marin W, Uc-Puc V, Geded-Moreno E, Vadillo-Sanchez J, et al. Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico. PLoS Negl Trop Dis. 2017;11(6):e0005656. doi: 10.1371/journal.pntd.0005656.
    1. Hladish TJ, Pearson CAB, Patricia Rojas D, Gomez-Dantes H, Halloran ME, Vazquez-Prokopec GM, Longini IM. Forecasting the effectiveness of indoor residual spraying for reducing dengue burden. PLoS Negl Trop Dis. 2018;12(6):e0006570. doi: 10.1371/journal.pntd.0006570.
    1. Cavany SM, Espana G, Lloyd AL, Waller LA, Kitron U, Astete H, Elson WH, Vazquez-Prokopec GM, Scott TW, Morrison AC, et al. Optimizing the deployment of ultra-low volume and indoor residual spraying for dengue outbreak response. PLoS Comput Biol. 2020;16(4):e1007743. doi: 10.1371/journal.pcbi.1007743.
    1. Samuel M, Maoz D, Manrique P, Ward T, Runge-Ranzinger S, Toledo J, Boyce R, Horstick O. Community effectiveness of indoor spraying as a dengue vector control method: a systematic review. PLoS Negl Trop Dis. 2017;11(8):e0005837. doi: 10.1371/journal.pntd.0005837.
    1. Principales resultados de la Encuesta Intercensal 2015: Yucatán. Available: . Accessed 1 Oct 2020.
    1. Bisanzio D, Dzul-Manzanilla F, Gomez-Dantes H, Pavia-Ruz N, Hladish TJ, Lenhart A, Palacio-Vargas J, Gonzalez Roldan JF, Correa-Morales F, Sanchez-Tejeda G, et al. Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Negl Trop Dis. 2018;12(3):e0006298. doi: 10.1371/journal.pntd.0006298.
    1. Rojas DP, Barrera-Fuentes GA, Pavia-Ruz N, Salgado-Rodriguez M, Che-Mendoza A, Manrique-Saide P, Vazquez-Prokopec GM, Halloran ME, Longini IM, Gomez-Dantes H. Epidemiology of dengue and other arboviruses in a cohort of school children and their families in Yucatan, Mexico: baseline and first year follow-up. PLoS Negl Trop Dis. 2018;12(11):e0006847. doi: 10.1371/journal.pntd.0006847.
    1. Pavia-Ruz N, Barrera-Fuentes GA, Villanueva-Jorge S, Che-Mendoza A, Campuzano-Rincon JC, Manrique-Saide P, Rojas DP, Vazquez-Prokopec GM, Halloran ME, Longini IM, et al. Dengue seroprevalence in a cohort of schoolchildren and their siblings in Yucatan, Mexico (2015-2016) PLoS Negl Trop Dis. 2018;12(11):e0006748. doi: 10.1371/journal.pntd.0006748.
    1. Pavia-Ruz N, Diana Patricia R, Salha V, Granja P, Balam-May A, Longini IM, Halloran ME, Manrique-Saide P, Gomez-Dantes H. Seroprevalence of dengue antibodies in three urban settings in Yucatan, Mexico. Am J Trop Med Hyg. 2018;98(4):1202–1208. doi: 10.4269/ajtmh.17-0382.
    1. Romer Y, Valadez-Gonzalez N, Contreras-Capetillo SN, Manrique-Saide P, Vazquez-Prokopec G, Pavia-Ruz N. Zika virus infection in pregnant women of Yucatan, Mexico. Emerg Infect Dis. 2019;25(8):1452–60.
    1. Collaborative Unit for Entomological Bioassays, Universidad Autonoma de Yucatan (UCBE-UADY). . Accessed 1 Oct 2020.
    1. Crawford JE, Clarke DW, Criswell V, Desnoyer M, Cornel D, Deegan B, Gong K, Hopkins KC, Howell P, Hyde JS, et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat Biotechnol. 2020;38(4):482–492. doi: 10.1038/s41587-020-0471-x.
    1. Ridout MS, Demetrio CG, Firth D. Estimating intraclass correlation for binary data. Biometrics. 1999;55(1):137–148. doi: 10.1111/j.0006-341X.1999.00137.x.
    1. Moulton LH. Covariate-based constrained randomization of group-randomized trials. Clin Trials. 2004;1(3):297–305. doi: 10.1191/1740774504cn024oa.
    1. van Panhuis WG, Luxemburger C, Pengsaa K, Limkittikul K, Sabchareon A, Lang J, Durbin AP, Cummings DA. Decay and persistence of maternal dengue antibodies among infants in Bangkok. Am J Trop Med Hyg. 2011;85(2):355–362. doi: 10.4269/ajtmh.2011.11-0125.
    1. Kolopack PA, Parsons JA, Lavery JV. What makes community engagement effective?: lessons from the eliminate dengue program in Queensland Australia. PLoS Negl Trop Dis. 2015;9(4):e0003713. doi: 10.1371/journal.pntd.0003713.
    1. Arias N, Chim J, Shanahan M, Buenfil D, Ceballos M, Dantés H. Studying sociocultural factors associated with dengue fever in elementary school children in yucatán, mexico. SAGE Research Methods Cases. 2017. 10.4135/9781473998551.
    1. Pan American Health Organization. Manual for indoor residual spraying in urban areas for Aedes aegypti control. Washington: Pan American Health Organization; 2019.
    1. Deming R, Manrique-Saide P, Medina Barreiro A, Cardena EU, Che-Mendoza A, Jones B, Liebman K, Vizcaino L, Vazquez-Prokopec G, Lenhart A. Spatial variation of insecticide resistance in the dengue vector Aedes aegypti presents unique vector control challenges. Parasit Vectors. 2016;9:67. doi: 10.1186/s13071-016-1346-3.
    1. Correa-Morales F, Riestra-Morales M, Bibiano-Marin W, Dzul-Manzanilla F, Del Castillo-Centeno LF, Palacio-Vargas JA, Che-Mendoza A, Gonzalez-Olvera G, Lopez-Monroy B, Vazquez-Prokopec G, et al. Bioefficacy of two Nonpyrethroid insecticides for targeted indoor residual spraying against Pyrethroid-resistant Aedes aegypti. J Am Mosq Control Assoc. 2019;35(4):291–294. doi: 10.2987/19-6866.1.
    1. Hernandez-Avila JE, Rodriguez MH, Santos-Luna R, Sanchez-Castaneda V, Roman-Perez S, Rios-Salgado VH, Salas-Sarmiento JA. Nation-wide, web-based, geographic information system for the integrated surveillance and control of dengue fever in Mexico. PLoS One. 2013;8(8):e70231. doi: 10.1371/journal.pone.0070231.
    1. Paz-Soldan VA, Reiner RC, Jr, Morrison AC, Stoddard ST, Kitron U, Scott TW, Elder JP, Halsey ES, Kochel TJ, Astete H, et al. Strengths and weaknesses of global positioning system (GPS) data-loggers and semi-structured interviews for capturing fine-scale human mobility: findings from Iquitos, Peru. PLoS Negl Trop Dis. 2014;8(6):e2888. doi: 10.1371/journal.pntd.0002888.
    1. Manrique-Saide P, Coleman P, McCall PJ, Lenhart A, Vazquez-Prokopec G, Davies CR. Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico. Med Vet Entomol. 2014;28(3):264–272. doi: 10.1111/mve.12046.
    1. Paredes-Esquivel C, Lenhart A, del Rio R, Leza MM, Estrugo M, Chalco E, Casanova W, Miranda MA. The impact of indoor residual spraying of deltamethrin on dengue vector populations in the Peruvian Amazon. Acta Trop. 2016;154:139–144. doi: 10.1016/j.actatropica.2015.10.020.
    1. Santiago GA, Vazquez J, Courtney S, Matias KY, Andersen LE, Colon C, Butler AE, Roulo R, Bowzard J, Villanueva JM, et al. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat Commun. 2018;9(1):1391. doi: 10.1038/s41467-018-03772-1.
    1. Johnson AJ, Martin DA, Karabatsos N, Roehrig JT. Detection of anti-arboviral immunoglobulin G by using a monoclonal antibody-based capture enzyme-linked immunosorbent assay. J Clin Microbiol. 2000;38(5):1827–1831. doi: 10.1128/JCM.38.5.1827-1831.2000.
    1. Roehrig JT, Hombach J, Barrett AD. Guidelines for plaque-reduction neutralization testing of human antibodies to dengue viruses. Viral Immunol. 2008;21(2):123–132. doi: 10.1089/vim.2008.0007.
    1. de Alwis R, Beltramello M, Messer WB, Sukupolvi-Petty S, Wahala WM, Kraus A, Olivarez NP, Pham Q, Brien JD, Tsai WY, et al. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl Trop Dis. 2011;5(6):e1188. doi: 10.1371/journal.pntd.0001188.
    1. Kraus AA, Messer W, Haymore LB, de Silva AM. Comparison of plaque- and flow cytometry-based methods for measuring dengue virus neutralization. J Clin Microbiol. 2007;45(11):3777–3780. doi: 10.1128/JCM.00827-07.
    1. Centers for Disease Control and Prevention . In: Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. Brogdon WG, Chang A, editors. 2014. p. 28.
    1. Collins MH. Serologic tools and strategies to support intervention trials to combat Zika Virus infection and disease. Trop Med Infect Dis. 2019;4(2):68. doi: 10.3390/tropicalmed4020068.
    1. Halloran ME, Longini IM, Struchiner CJ. Design and analysis of vaccine studies. New York: Springer; 2009.
    1. Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika. 1982;69(1):239–241. doi: 10.1093/biomet/69.1.239.
    1. Fisher L, Lin D. Time-dependent covariates in the Cox-proportional-hazards regression model. Annu Rev Public Health. 1999;20(1):145–157. doi: 10.1146/annurev.publhealth.20.1.145.
    1. Anders KL, Cutcher Z, Kleinschmidt I, Donnelly CA, Ferguson NM, Indriani C, Ryan PA, O'Neill SL, Jewell NP, Simmons CP. Cluster-randomized test-negative design trials: a novel and efficient method to assess the efficacy of community-level dengue interventions. Am J Epidemiol. 2018;187(9):2021–2028. doi: 10.1093/aje/kwy099.
    1. Jewell NP, Dufault S, Cutcher Z, Simmons CP, Anders KL. Analysis of cluster-randomized test-negative designs: cluster-level methods. Biostatistics. 2019;20(2):332–346. doi: 10.1093/biostatistics/kxy005.
    1. Hladish TJ, Pearson CA, Chao DL, Rojas DP, Recchia GL, Gomez-Dantes H, Halloran ME, Pulliam JR, Longini IM. Projected impact of dengue vaccination in Yucatan, Mexico. PLoS Negl Trop Dis. 2016;10(5):e0004661. doi: 10.1371/journal.pntd.0004661.
    1. Hladish TJ, Pearson CAB, Toh KB, Rojas DP, Manrique-Saide P, Vazquez-Prokopec GM, Halloran ME, Longini IM., Jr Designing effective control of dengue with combined interventions. Proc Natl Acad Sci U S A. 2020;117(6):3319–3325. doi: 10.1073/pnas.1903496117.
    1. REPORT OF THE SIXTEENTH WHOPES WORKING GROUP MEETING. . Accessed 1 Oct 2020.
    1. Insecticides approved for indoor residual spraying. . Accessed 1 Oct 2020.
    1. WHO SPECIFICATIONS FOR PUBLIC HEALTH PESTICIDES: BENDIOCARB. . Accessed 1 Oct 2020.
    1. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David JP, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11(7):e0005625. doi: 10.1371/journal.pntd.0005625.
    1. Kuri-Morales PA, Correa-Morales F, Gonzalez-Acosta C, Moreno-Garcia M, Santos-Luna R, Roman-Perez S, Salazar-Penagos F, Lombera-Gonzalez M, Sanchez-Tejeda G, Gonzalez-Roldan JF. Insecticide susceptibility status in Mexican populations of Stegomyia aegypti (= Aedes aegypti): a nationwide assessment. Med Vet Entomol. 2018;32(2):162–174. doi: 10.1111/mve.12281.
    1. Knapp J, Macdonald M, Malone D, Hamon N, Richardson JH. Disruptive technology for vector control: the innovative vector control consortium and the US military join forces to explore transformative insecticide application technology for mosquito control programmes. Malar J. 2015;14:371. doi: 10.1186/s12936-015-0907-9.
    1. Duong V, Lambrechts L, Paul RE, Ly S, Lay RS, Long KC, Huy R, Tarantola A, Scott TW, Sakuntabhai A, et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci U S A. 2015;112(47):14688–14693. doi: 10.1073/pnas.1508114112.
    1. Hayes RJ, Moulton LH. Cluster randomised trials. Boca Raton: CRC Press; 2017.
    1. Halloran ME, Auranen K, Baird S, Basta NE, Bellan SE, Brookmeyer R, Cooper BS, DeGruttola V, Hughes JP, Lessler J, et al. Simulations for designing and interpreting intervention trials in infectious diseases. BMC Med. 2017;15(1):223. doi: 10.1186/s12916-017-0985-3.

Source: PubMed

3
订阅