Molecular Spectroscopic Markers of DNA Damage

Kamila Sofińska, Natalia Wilkosz, Marek Szymoński, Ewelina Lipiec, Kamila Sofińska, Natalia Wilkosz, Marek Szymoński, Ewelina Lipiec

Abstract

Every cell in a living organism is constantly exposed to physical and chemical factors which damage the molecular structure of proteins, lipids, and nucleic acids. Cellular DNA lesions are the most dangerous because the genetic information, critical for the identity and function of each eukaryotic cell, is stored in the DNA. In this review, we describe spectroscopic markers of DNA damage, which can be detected by infrared, Raman, surface-enhanced Raman, and tip-enhanced Raman spectroscopies, using data acquired from DNA solutions and mammalian cells. Various physical and chemical DNA damaging factors are taken into consideration, including ionizing and non-ionizing radiation, chemicals, and chemotherapeutic compounds. All major spectral markers of DNA damage are presented in several tables, to give the reader a possibility of fast identification of the spectral signature related to a particular type of DNA damage.

Keywords: DNA damage; DNA damage spectroscopic markers; DNA lesions; DSB; SSB; double strand breaks; single strand breaks.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The scheme of exemplary DNA damaging factors, DNA lesion types (SSB—single strand breaks, DSB—double strand breaks), and possible repair mechanisms (BER—base excision repair, HR—homologous recombination, NHEJ—nonhomologous end-joining).
Figure 2
Figure 2
Possible pathways of DSB formation upon C–O bond breakage in the DNA backbone.
Figure 3
Figure 3
Surface-enhanced Raman spectroscopy (SERS) spectra of the HaCaT cell DNA exposed to H2O2/UV. Panels A–C indicate regions of interest with characteristic SERS bands of DNA. From top to bottom: SERS spectra collected after 0, 5, 10, 15, and 20 min of exposure to reactive oxygen species (ROS); adapted with permission from [86].
Figure 4
Figure 4
The SERS spectra of mitochondria isolated from MCF-7 cells following photodynamic therapy (PDT) treatment for 0, 1, 3, and 5 min; λex = 632.8 nm, t = 10 s and accumulation = 2 times, adapted with permission from [95].
Figure 5
Figure 5
The average spectra collected from isolated COLO-679 cellular nuclei and (a) living COLO-679 cells (b) control and irradiated cells with exposure to 3 different UV doses, followed by incubation for 48 h; adapted with permission from [112].

References

    1. Jackson S.P., Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–1078. doi: 10.1038/nature08467.
    1. Bruner S.D., Norman D.P.G., Verdine G.L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 2000;403:859–866. doi: 10.1038/35002510.
    1. Chapman J.R., Taylor M.R.G., Boulton S.J. Playing the End Game: DNA Double-Strand Break Repair Pathway Choice. Mol. Cell. 2012;47:497–510. doi: 10.1016/j.molcel.2012.07.029.
    1. Nelms B.E., Maser R.S., MacKay J.F., Lagally M.G., Petrini J.H.J. In situ visualization of DNA double-strand break repair in human fibroblasts. Science (80-.) 1998;280:590–592. doi: 10.1126/science.280.5363.590.
    1. Thapar R. Regulation of DNA Double-Strand Break Repair by Non-Coding RNAs. Molecules. 2018;23:2789. doi: 10.3390/molecules23112789.
    1. LeBlanc S.J., Gauer J.W., Hao P., Case B.C., Hingorani M.M., Weninger K.R., Erie D.A. Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS. Nucleic Acids Res. 2018;46:10782–10795. doi: 10.1093/nar/gky865.
    1. Wood B.R. The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues. Chem. Soc. Rev. 2016;45:1980–1998. doi: 10.1039/C5CS00511F.
    1. Dvořáková Z., Renčiuk D., Kejnovská I., Školáková P., Bednářová K., Sagi J., Vorlíčková M. I-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions. Nucleic Acids Res. 2018;46:1624–1634. doi: 10.1093/nar/gky035.
    1. Konvalinová H., Dvořáková Z., Renčiuk D., Bednářová K., Kejnovská I., Trantírek L., Vorlíčková M., Sagi J. Diverse effects of naturally occurring base lesions on the structure and stability of the human telomere DNA quadruplex. Biochimie. 2015;118:15–25. doi: 10.1016/j.biochi.2015.07.013.
    1. Wang Y., Zhao H., Yang C., Jie J., Dai X., Zhou Q., Liu K., Song D., Su H. Degradation of Cytosine Radical Cations in 2′-Deoxycytidine and in i-Motif DNA: Hydrogen-Bonding Guided Pathways. J. Am. Chem. Soc. 2019;141:1970–1979. doi: 10.1021/jacs.8b10743.
    1. Hoeijmakers J.H.J. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411:366–374. doi: 10.1038/35077232.
    1. Wang C., Lees-Miller S.P. Detection and repair of ionizing radiation-induced dna double strand breaks: New developments in nonhomologous end joining. Int. J. Radiat. Oncol. Biol. Phys. 2013;86:440–449. doi: 10.1016/j.ijrobp.2013.01.011.
    1. Vilenchik M.M., Knudson A.G. Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. Proc. Natl. Acad. Sci. USA. 2003;100:12871–12876. doi: 10.1073/pnas.2135498100.
    1. Mehta A., Haber J.E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 2014;6 doi: 10.1101/cshperspect.a016428.
    1. Lipiec E., Sekine R., Bielecki J., Kwiatek W.M., Wood B.R. Molecular characterization of DNA double strand breaks with tip-enhanced Raman scattering. Angew. Chemie - Int. Ed. 2014;53:169–172. doi: 10.1002/anie.201307271.
    1. Goodarzi A.A., Jeggo P.A. Advances in Genetics. Volume 82. Academic Press Inc.; Cambridge, MA, USA: 2013. The Repair and Signaling Responses to DNA Double-Strand Breaks; pp. 1–45.
    1. Higo T., Naito A.T., Sumida T., Shibamoto M., Okada K., Nomura S., Nakagawa A., Yamaguchi T., Sakai T., Hashimoto A., et al. DNA single-strand break-induced DNA damage response causes heart failure. Nat. Commun. 2017;8 doi: 10.1038/ncomms15104.
    1. Rastogi R.P., Richa, Kumar A., Tyagi M.B., Sinha R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids. 2010;2010 doi: 10.4061/2010/592980.
    1. Cannan W.J., Pederson D.S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J. Cell. Physiol. 2016;231:3–14. doi: 10.1002/jcp.25048.
    1. Chen L., Trujillo K., Sung P., Tomkinson A.E. Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J. Biol. Chem. 2000;275:26196–26205. doi: 10.1074/jbc.M000491200.
    1. San Filippo J., Sung P., Klein H. Mechanism of Eukaryotic Homologous Recombination. Annu. Rev. Biochem. 2008;77:229–257. doi: 10.1146/annurev.biochem.77.061306.125255.
    1. Ochi T., Gu X., Blundell T.L. Structure of the catalytic region of DNA ligase IV in complex with an artemis fragment sheds light on double-strand break repair. Structure. 2013;21:672–679. doi: 10.1016/j.str.2013.02.014.
    1. Davis A.J., Chen D.J. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res. 2013;2:130–143.
    1. Pfeiffer P. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 2000;15:289–302. doi: 10.1093/mutage/15.4.289.
    1. Lieber M.R. The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annu. Rev. Biochem. 2010;79:181–211. doi: 10.1146/annurev.biochem.052308.093131.
    1. Mladenov E., Iliakis G. Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 2011;711:61–72. doi: 10.1016/j.mrfmmm.2011.02.005.
    1. Fishel R. Mismatch repair. J. Biol. Chem. 2015;290:26395–26403. doi: 10.1074/jbc.R115.660142.
    1. Allen D.J., Makhov A., Grilley M., Taylor J., Thresher R., Modrich P., Griffith J.D. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 1997;16:4467–4476. doi: 10.1093/emboj/16.14.4467.
    1. Jia Y., Bi L., Li F., Chen Y., Zhang C., Zhang X. α-Shaped DNA loops induced by MutS. Biochem. Biophys. Res. Commun. 2008;372:618–622. doi: 10.1016/j.bbrc.2008.05.093.
    1. Josephs E.A., Zheng T., Marszalek P.E. Atomic force microscopy captures the initiation of methyl-directed DNA mismatch repair. DNA Repair (Amst) 2015;35:71–84. doi: 10.1016/j.dnarep.2015.08.006.
    1. Jiang Y., Marszalek P.E. Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair. EMBO J. 2011;30:2881–2893. doi: 10.1038/emboj.2011.180.
    1. Shaw C.P., Jirasek A. The use of ultraviolet resonance raman spectroscopy in the analysis of ionizing-radiation-induced damage in dna. Appl. Spectrosc. 2009;63:412–422. doi: 10.1366/000370209787944325.
    1. Sanche L. Low energy electron-driven damage in biomolecules. Eur. Phys. J. D. 2005;35:367–390. doi: 10.1140/epjd/e2005-00206-6.
    1. Valota A., Ballarini F., Friedland W., Jacob P., Ottolenghi A., Paretzke H.G. Modelling study on the protective role of OH radical scavengers and DNA higher-order structures in induction of single- and double-strand break by gamma-radiation. Int. J. Radiat. Biol. 2003;79:643–653. doi: 10.1080/09553000310001596977.
    1. Prise K.M., Ahnström G., Belli M., Carlsson J., Frankenberg D., Kiefer J., Löbrich M., Michael B.D., Nygren J., Simone G., et al. A review of dsb induction data for varying quality radiations. Int. J. Radiat. Biol. 1998;74:173–184. doi: 10.1080/095530098141564.
    1. Chang P.W., Zhang Q.M., Takatori K., Tachibana A., Yonei S. Increased sensitivity to sparsely ionizing radiation due to excessive base excision in clustered DNA damage sites in Escherichia coli. Int. J. Radiat. Biol. 2005;81:115–123. doi: 10.1080/09553000500103009.
    1. Zhou D., Ke W. Raman spectroscopic study on the influence of ultraviolet radiation on calf thymus DNA in aqueous solution. Spectrosc. Spectr. Anal. 2004;24:1370–1372.
    1. Sailer K., Viaggi S., Nüsse M. Radiation-induced structural modifications in dsDNA analysed by FT-Raman spectroscopy. Int. J. Radiat. Biol. 1996;69:601–613. doi: 10.1080/095530096145616.
    1. Treffer R., Lin X., Bailo E., Deckert-Gaudig T., Deckert V. Distinction of nucleobases - A tip-enhanced Raman approach. Beilstein J. Nanotechnol. 2011;2:628–637. doi: 10.3762/bjnano.2.66.
    1. Auner A.W., Thomas J.C. Double-Stranded DNA Damage Assessed with Raman Spectroscopy. Biochem Anal Biochem. 2016;5:284–291.
    1. Povirk L.F. DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: Bleomycin, neocarzinostatin and other enediynes. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 1996;355:71–89. doi: 10.1016/0027-5107(96)00023-1.
    1. Arai M., Sato H., Kobayashi H., Suganuma M., Kawabe T., Tomoda H., Omura S. Selective inhibition of bleomycin-induced G2 cell cycle checkpoint by simaomicin α. Biochem. Biophys. Res. Commun. 2004;317:817–822. doi: 10.1016/j.bbrc.2004.03.117.
    1. Weiss A., Wiskocil R.L., Stobo J.D. The role of T3 surface molecules in the activation of human T cells: A two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J. Immunol. 1984;133:123–128. doi: 10.3389/fimmu.2015.00163.
    1. Serban D., Benevides J.M., Thomas G.J. DNA Secondary Structure and Raman Markers of Supercoiling in Escherichia coli Plasmid pUC19. Biochemistry. 2002;41:847–853. doi: 10.1021/bi011004z.
    1. Benevides J.M., Serban D., Thomas G.J. Structural Perturbations Induced in Linear and Circular DNA by the Architectural Protein HU from Bacillus stearothermophilus. Biochemistry. 2006;45:5359–5366. doi: 10.1021/bi0523557.
    1. Beć K.B., Grabska J., Czarnecki M.A., Huck C.W., Wójcik M.J., Nakajima T., Ozaki Y. IR Spectra of Crystalline Nucleobases: Combination of Periodic Harmonic Calculations with Anharmonic Corrections Based on Finite Models. J. Phys. Chem. B. 2019;123:10001–10013. doi: 10.1021/acs.jpcb.9b06285.
    1. Ghosh D., Dey S.K., Saha C. Mutation Induced Conformational Changes in Genomic DNA from Cancerous K562 Cells Influence Drug-DNA Binding Modes. PLoS ONE. 2014;9:84880. doi: 10.1371/journal.pone.0084880.
    1. Al-Jorani K., Rüther A., Martin M., Haputhanthri R., Deacon G.B., Li H.L., Wood B.R. The Application of ATR-FTIR Spectroscopy and the Reversible DNA Conformation as a Sensor to Test the Effectiveness of Platinum(II) Anticancer Drugs. Sensors. 2018;18:4297. doi: 10.3390/s18124297.
    1. Batista De Carvalho A.L.M., Mamede A.P., Dopplapudi A., Garcia Sakai V., Doherty J., Frogley M., Cinque G., Gardner P., Gianolio D., Batista De Carvalho L.A.E., et al. Anticancer drug impact on DNA-a study by neutron spectroscopy coupled with synchrotron-based FTIR and EXAFS. Phys. Chem. Chem. Phys. 2019;21:4162–4175. doi: 10.1039/C8CP05881D.
    1. Olsztyńska-Janus S., Gasior-Głogowska M., Szymborska-Małek K., Komorowska M., Witkiewicz W., Pezowicz C., Szotek S., Kobielarz M. Spectroscopic techniques in the study of human tissues and their components. part II: Raman spectroscopy. Acta Bioeng. Biomech. 2012;14:121–133.
    1. Duguid J.G., Bloomfield V.A., Benevides J.M., Thomas G.J. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+ Biophys. J. 1995;69:2623–2641. doi: 10.1016/S0006-3495(95)80133-5.
    1. Prescott B., Steinmetz W., Thomas G.J. Characterization of DNA structures by laser Raman spectroscopy. Biopolymers. 1984;23:235–256. doi: 10.1002/bip.360230206.
    1. Taillandier E., Liquier J., Ghomi M. Conformational transitions of nucleic acids studied by IR and Raman spectroscopies. J. Mol. Struct. 1989;214:185–211. doi: 10.1016/0022-2860(89)80014-6.
    1. Guan Y., Thomas G.J. Vibrational analysis of nucleic acids. III. Conformation-dependent Raman markers of the phosphodiester backbone modeled by dimethyl phosphate. J. Mol. Struct. 1996;379:31–41. doi: 10.1016/0022-2860(95)09059-2.
    1. Guan Y., Thomas G.J. Vibrational analysis of nucleic acids. IV. Normal modes of the DNA phosphodiester structure modeled by diethyl phosphate. Biopolymers. 1996;39:813–835. doi: 10.1002/(SICI)1097-0282(199612)39:6<813::AID-BIP7>;2-Y.
    1. Deng H., Bloomfield V.A., Benevides J.M., Thomas G.J. Dependence of the raman signature of genomic B-DNA on nucleotide base sequence. Biopolymers. 1999;50:656–666. doi: 10.1002/(SICI)1097-0282(199911)50:6<656::AID-BIP10>;2-9.
    1. Tang Y.L., Guo Z.Y. Raman spectroscopic analysis of the effect of ultraviolet irradiation on calf thymus DNA. Acta Biochim. Biophys. Sin. (Shanghai) 2005;37:39–46. doi: 10.1093/abbs/37.1.39.
    1. Ke W., Zhou D., Wu J. Effects of UV irradiation on calf thymus DNA in aqueous solution. A Raman spectroscopic study. J. Raman Spectrosc. 2005;36:39–44. doi: 10.1002/jrs.1264.
    1. Benevides J.M., Overman S.A., Thomas G.J. Raman, polarized Raman and ultraviolet resonance Raman spectroscopy of nucleic acids and their complexes. J. Raman Spectrosc. 2005;36:279–299. doi: 10.1002/jrs.1324.
    1. Synytsya A., Alexa P., de Boer J., Loewe M., Moosburger M., Wurkner M., Volka K. Raman spectroscopic study of calf thymus DNA:an effect of proton - and irradiation. J. Raman Spectrosc. 2007;38:1406–1415. doi: 10.1002/jrs.1787.
    1. Ke W., Yu D., Wu J. Raman spectroscopic study of the influence on herring sperm DNA of heat treatment and ultraviolet radiation. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 1999;55:1081–1090. doi: 10.1016/S1386-1425(98)00225-X.
    1. Jang N.H. The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS. Bull. Korean Chem. Soc. 2002;23:1790–1800.
    1. Movileanu L., Benevides J.M., Thomas G.J. Temperature dependence of the raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA)·poly(dT) and comparison with poly(dA-dT)·poly(dA-dT)*. Biopolymers. 2002;63:181–194. doi: 10.1002/bip.10022.
    1. Chapman A.C., Thirlwell L.E. Spectra of phosphorus compounds-I the infra-red spectra of orthophosphates. Spectrochim. Acta. 1964;20:937–947. doi: 10.1016/0371-1951(64)80094-1.
    1. Rudbeck M.E., Kumar S., Mroginski M.-A., Lill S.O.N., Blomberg M.R.A., Barth A. Infrared Spectrum of Phosphoenol Pyruvate: Computational and Experimental Studies. J. Phys. Chem. A. 2009;113:2935–2942. doi: 10.1021/jp809638u.
    1. Zhu J., Zhang Y., Wu L., Wang Z., Sun Z. Dependence of surface-enhanced Raman scattering from Calf thymus DNA on anions. Chin. Opt. Lett. 2008;6:526–529.
    1. Badr Y., Mahmoud M.A. Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2006;63:639–645. doi: 10.1016/j.saa.2005.06.013.
    1. Escobar R., Carmona P., Molina M. Raman spectroscopic determination of thymidine nucleoside structures in nucleotides. Analyst. 1996;121:105–109. doi: 10.1039/an9962100105.
    1. Thomas G.J., Benevides J.M., Overman S.A., Ueda T., Ushizawa K., Saitoh M., Tsuboi M. Polarized Raman spectra of oriented fibers of A DNA and B DNA: Anisotropic and isotropic local Raman tensors of base and backbone vibrations. Biophys. J. 1995;68:1073–1088. doi: 10.1016/S0006-3495(95)80282-1.
    1. Ke W., Zhou D., Wu J., Ji K. Surface-Enhanced Raman Spectra of Calf Thymus DNA Adsorbed on Concentrated Silver Colloid. Appl. Spectrosc. 2005;59:418–423. doi: 10.1366/0003702053641487.
    1. Rasmussen A., Deckert V. Surface- and tip-enhanced Raman scattering of DNA components. J. Raman Spectrosc. 2006;37:311–317. doi: 10.1002/jrs.1480.
    1. Green M., Liu F.M., Cohen L., Köllensperger P., Cass T. SERS platforms for high density DNA arrays. Faraday Discuss. 2006;132:269–280.
    1. Ghosh D., Hossain M., Saha C., Dey S.K., Kumar G.S. Intercalation and Induction of Strand Breaks by Adriamycin and Daunomycin: A Study with Human Genomic DNA. DNA Cell Biol. 2012;31:378–387. doi: 10.1089/dna.2011.1299.
    1. Tewey K.M., Rowe T.C., Yang L., Halligan B.D., Liu L.F. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science (80-.) 1984;226:466–468. doi: 10.1126/science.6093249.
    1. Adam S., Bourtayre P., Liquier J., Taboury J.A., Taillandier E. Poly[d(A-T)-Cs+] conformations studied by IR spectroscopy. Biopolymers. 1987;26:251–260. doi: 10.1002/bip.360260207.
    1. Cherng J.Y. Investigation of DNA spectral conformational changes and polymer buffering capacity in relation to transfection efficiency of DNA/polymer complexes. J. Pharm. Pharm. Sci. 2009;12:346–356. doi: 10.18433/J3859K.
    1. Chen C., Liu W., Tian S., Hong T. Novel surface-enhanced raman spectroscopy techniques for DNA, protein and drug detection. Sensors. 2019;19:1712. doi: 10.3390/s19071712.
    1. Guselnikova O., Trelin A., Skvortsova A., Ulbrich P., Postnikov P., Pershina A., Sykora D., Svorcik V., Lyutakov O. Label-free surface-enhanced Raman spectroscopy with artificial neural network technique for recognition photoinduced DNA damage. Biosens. Bioelectron. 2019;145:111718. doi: 10.1016/j.bios.2019.111718.
    1. Ou L., Chen Y., Su Y., Zou C., Chen Z. Detection of Genomic DNA Damage from Radiated Nasopharyngeal Carcinoma Cells Using Surface-Enhanced Raman Spectroscopy (SERS) Appl. Spectrosc. 2016;70:1821–1830. doi: 10.1177/0003702816671073.
    1. He Z., Han Z., Kizer M., Linhardt R.J., Wang X., Sinyukov A.M., Wang J., Deckert V., Sokolov A.V., Hu J., et al. Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution. J. Am. Chem. Soc. 2019;141:753–757. doi: 10.1021/jacs.8b11506.
    1. Stöckle R.M., Suh Y.D., Deckert V., Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 2000;318:131–136. doi: 10.1016/S0009-2614(99)01451-7.
    1. Lipiec E.W., Wood B.R. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2017. Tip-Enhanced Raman Scattering: Principles, Instrumentation, and the Application toe Biological Systems; pp. 1–26.
    1. Novotny L., Van Hulst N. Antennas for light. Nat. Photonics. 2011;5:83–90. doi: 10.1038/nphoton.2010.237.
    1. Zhang R., Zhang Y., Dong Z.C., Jiang S., Zhang C., Chen L.G., Zhang L., Liao Y., Aizpurua J., Luo Y., et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature. 2013;498:82–86. doi: 10.1038/nature12151.
    1. Liao M., Jiang S., Hu C., Zhang R., Kuang Y., Zhu J., Zhang Y., Dong Z. Tip-Enhanced Raman Spectroscopic Imaging of Individual Carbon Nanotubes with Subnanometer Resolution. Nano Lett. 2016;16:4040–4046. doi: 10.1021/acs.nanolett.6b00533.
    1. Panikkanvalappil S.R., Mahmoud M.A., MacKey M.A., El-Sayed M.A. Surface-enhanced raman spectroscopy for real-time monitoring of reactive oxygen species-induced DNA damage and its prevention by platinum nanoparticles. ACS Nano. 2013;7:7524–7533. doi: 10.1021/nn403722x.
    1. Andrade P.O., Bitar R.A., Yassoyama K., Martinho H., Santo A.M.E., Bruno P.M., Martin A.A. Study of normal colorectal tissue by FT-Raman spectroscopy. Anal. Bioanal. Chem. 2007;387:1643–1648. doi: 10.1007/s00216-006-0819-1.
    1. Segers-Nolten G.M.J., Sijtsema N.M., Otto C. Evidence for Hoogsteen GC base pairs in the proton-induced transition from right-handed to left-handed poly(dG-dC)·poly(dG-dC) Biochemistry. 1997;36:13241–13247. doi: 10.1021/bi971326w.
    1. Marzilli L.G., Saad J.S., Kuklenyik Z., Keating K.A., Xu Y. Relationship of solution and protein-bound structures of DNA duplexes with the major intrastrand cross-link lesions formed on cisplatin binding to DNA. J. Am. Chem. Soc. 2001;123:2764–2770. doi: 10.1021/ja0007915.
    1. Sinha R.P., Häder D.P. UV-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 2002;1:225–236. doi: 10.1039/b201230h.
    1. Pagba C.V., Lane S.M., Wachsmann-Hogiu S. Conformational changes in quadruplex oligonucleotide structures probed by Raman spectroscopy. Biomed. Opt. Express. 2011;2:207. doi: 10.1364/BOE.2.000207.
    1. Steenken S., Jovanovic S.V. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc. 1997;119:617–618. doi: 10.1021/ja962255b.
    1. Cadet J., Delatour T., Douki T., Gasparutto D., Pouget J.P., Ravanat J.L., Sauvaigo S. Hydroxyl radicals and DNA base damage. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 1999;424:9–21. doi: 10.1016/S0027-5107(99)00004-4.
    1. Nishimura Y., Tsuboi M., Sato T. Structure-spectrum correlations in nucleic acids. I. Raman lines in the 600-700 cm-1 range of guanosine residue. Nucleic Acids Res. 1984;12:6901–6908. doi: 10.1093/nar/12.17.6901.
    1. Yue J., Shen Y., Liang L., Guan X., Zhang X., Xu S., Liang C., Shi W., Xu W. Tracing the molecular dynamics of living mitochondria under phototherapy via surface-enhanced Raman scattering spectroscopy. Analyst. 2019;144:5521–5527. doi: 10.1039/C9AN01231A.
    1. Ponkumar S., Duraisamy P., Iyandurai N. Structural Analysis of DNA Interactions with Magnesium Ion Studied by Raman Spectroscopy. Am. J. Biochem. Biotechnol. 2011;7:135–140.
    1. Muntean C.M., Leopold N., Halmagyi A., Valimareanu S. Surface-enhanced Raman spectroscopy of DNA from leaves of in vitro grown apple plants. J. Raman Spectrosc. 2011;42:844–850. doi: 10.1002/jrs.2780.
    1. Chan J.W., Taylor D.S., Zwerdling T., Lane S.M., Ihara K., Huser T. Micro-raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys. J. 2006;90:648–656. doi: 10.1529/biophysj.105.066761.
    1. Chan J.W., Taylor D.S., Thompson D.L. The effect of cell fixation on the discrimination of normal and leukemia cells with laser tweezers Raman spectroscopy. Biopolymers. 2009;91:132–139. doi: 10.1002/bip.21094.
    1. Spadavecchia J., Perumal R., Casale S., Krafft J.M., Methivier C., Pradier C.M. Polyethylene glycol gold-nanoparticles: Facile nanostructuration of doxorubicin and its complex with DNA molecules for SERS detection. Chem. Phys. Lett. 2016;648:182–188. doi: 10.1016/j.cplett.2015.08.038.
    1. Beljebbar A., Sockalingum G.D., Angiboust J.F., Manfait M. Comparative FT SERS, resonance Raman and SERRS studies of doxorubicin and its complex with DNA. Spectrochim. Acta Part A Mol. Spectrosc. 1995;51:2083–2090. doi: 10.1016/0584-8539(95)01515-7.
    1. Kang B., Afifi M.M., Austin L.A., El-Sayed M.A. Exploiting the nanoparticle plasmon effect: Observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy. ACS Nano. 2013;7:7420–7427. doi: 10.1021/nn403351z.
    1. Masetti M., Xie H.N., Krpetić Ž., Recanatini M., Alvarez-Puebla R.A., Guerrini L. Revealing DNA interactions with exogenous agents by surface-enhanced raman scattering. J. Am. Chem. Soc. 2015;137:469–476. doi: 10.1021/ja511398w.
    1. Vrána O., Mašek V., Dražan V., Brabec V. Raman spectroscopy of DNA modified by intrastrand cross-links of antitumor cisplatin. J. Struct. Biol. 2007;159:1–8. doi: 10.1016/j.jsb.2007.01.008.
    1. Giese B., McNaughton D. Interaction of Anticancer Drug Cisplatin with Guanine: Density Functional Theory and Surface-Enhanced Raman Spectroscopy Study. Biopolym. - Biospectroscopy Sect. 2003;72:472–489. doi: 10.1002/bip.10480.
    1. Ou L., Chen Y., Su Y., Huang Y., Chen R., Lei J. Application of silver nanoparticle-based SERS spectroscopy for DNA analysis in radiated nasopharyngeal carcinoma cells. J. Raman Spectrosc. 2013;44:680–685. doi: 10.1002/jrs.4269.
    1. Ilkhani H., Hughes T., Li J., Zhong C.J., Hepel M. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens. Bioelectron. 2016;80:257–264. doi: 10.1016/j.bios.2016.01.068.
    1. Chul J.L., Jae S.K., Mak S.K., Kwang P.L., Mu S.L. The study of doxorubicin and its complex with DNA by SERS and UV-resonance Raman spectroscopy. Bull. Korean Chem. Soc. 2004;25:1211–1216.
    1. Morjani H., Sharonov S., Manfait M., Sokolov K., Nabiev I. SERS and micro-sers analysis of doxorubicin interaction in vitro and in living human cancer cells; Proceedings of the Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Paris, France. 29 October–1 November 1992; Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Inc.; 1992. pp. 330–331.
    1. Barhoumi A., Zhang D., Tam F., Halas N.J. Surface-enhanced raman spectroscopy of DNA. J. Am. Chem. Soc. 2008;130:5523–5529. doi: 10.1021/ja800023j.
    1. Harrigan G.G., Goodacre R., editors. Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis. Springer; New York, NY, USA: 2003.
    1. Lipiec E., Bambery K.R., Heraud P., Kwiatek W.M., McNaughton D., Tobin M.J., Vogel C., Wood B.R. Monitoring uvr induced damage in single cells and isolated nuclei using sr-ftir microspectroscopy and 3d confocal raman imaging. Analyst. 2014;139:4200–4209. doi: 10.1039/C4AN00838C.
    1. Pozzi D., Grimaldi P., Gaudenzi S., Di Giambattista L., Silvestri I., Morrone S., Castellano A.C. UVB-Radiation-Induced Apoptosis in Jurkat Cells: A Coordinated Fourier Transform Infrared Spectroscopy-Flow Cytometry Study. Radiat. Res. 2007;168:698–705. doi: 10.1667/RR0991.1.
    1. Lipiec E., Bambery K.R., Lekki J., Tobin M.J., Vogel C., Whelan D.R., Wood B.R., Kwiatek W.M. SR-FTIR Coupled with Principal Component Analysis Shows Evidence for the Cellular Bystander Effect. Radiat. Res. 2015;184:73–82. doi: 10.1667/RR13798.1.
    1. Lipiec E., Birarda G., Kowalska J., Lekki J., Vaccari L., Wiecheć A., Wood B.R., Kwiatek W.M. A new approach to studying the effects of ionising radiation on single cells using FTIR synchrotron microspectroscopy. Radiat. Phys. Chem. 2013;93:135–141. doi: 10.1016/j.radphyschem.2013.03.037.
    1. Lipiec E., Bambery K.R., Heraud P., Hirschmugl C., Lekki J., Kwiatek W.M., Tobin M.J., Vogel C., Whelan D., Wood B.R. Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostate adenocarcinoma PC-3 cells following proton irradiation. J. Mol. Struct. 2014;1073:134–141. doi: 10.1016/j.molstruc.2014.04.056.
    1. Gault N., Lefaix J.-L. Infrared Microspectroscopic Characteristics of Radiation-Induced Apoptosis in Human Lymphocytes. Radiat. Res. 2003;160:238–250. doi: 10.1667/RR3020.1.
    1. Meade A.D., Clarke C., Byrne H.J., Lyng F.M. Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry. Radiat. Res. 2010;173:225–237. doi: 10.1667/RR1836.1.
    1. Lipiec E., Wood B.R., Kulik A., Kwiatek W.M., Dietler G. Nanoscale Investigation into the Cellular Response of Glioblastoma Cells Exposed to Protons. Anal. Chem. 2018;90:7644–7650. doi: 10.1021/acs.analchem.8b01497.
    1. Fale P.L., Altharawi A., Chan K.L.A. In situ Fourier transform infrared analysis of live cells’ response to doxorubicin. Biochim. Biophys. Acta - Mol. Cell Res. 2015;1853:2640–2648. doi: 10.1016/j.bbamcr.2015.07.018.
    1. Altharawi A., Rahman K.M., Chan K.L.A. Towards identifying the mode of action of drugs using live-cell FTIR spectroscopy. Analyst. 2019;144:2725–2735. doi: 10.1039/C8AN02218F.
    1. Huang H., Shi H., Feng S., Chen W., Yu Y., Lin D., Chen R. Confocal Raman spectroscopic analysis of the cytotoxic response to cisplatin in nasopharyngeal carcinoma cells. Anal. Methods. 2013;5:260–266. doi: 10.1039/C2AY25684C.
    1. Shirazi F., Wong P., Goe R. Interaction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study. Iran. J. Pharm. Res. 2010;0:11–15.
    1. Jimenez-Hernandez M., Brown M.D., Hughes C., Clarke N.W., Gardner P. Characterising cytotoxic agent action as a function of the cell cycle using fourier transform infrared microspectroscopy. Analyst. 2015;140:4453–4464. doi: 10.1039/C5AN00671F.
    1. Di Giambattista L., Grimaldi P., Gaudenzi S., Pozzi D., Grandi M., Morrone S., Silvestri I., Congiu Castellano A. UVB radiation induced effects on cells studied by FTIR spectroscopy. Eur. Biophys. J. 2010;39:929–934. doi: 10.1007/s00249-009-0446-9.
    1. Yao H., Tao Z., Ai M., Peng L., Wang G., He B., Li Y. qing Raman spectroscopic analysis of apoptosis of single human gastric cancer cells. Vib. Spectrosc. 2009;50:193–197. doi: 10.1016/j.vibspec.2008.11.003.
    1. Lin J., Li Y., Feng S., Chen R., Chen G., Chen Q., Pan J., Lin S., Yu Y. Raman spectroscopic analysis of cytotoxic effect of cisplatin-treated leukemic cells; Proceedings of the Eighth International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2009); Wuhan, China. 8–10 August 2009; Bellingham, WA, USA: SPIE; 2009. p. 75191G.
    1. Nawaz H., Bonnier F., Meade A.D., Lyng F.M., Byrne H.J. Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy. Analyst. 2011;136:2450–2463. doi: 10.1039/c1an15104e.

Source: PubMed

3
订阅