Perioperative hyperglycemia is associated with postoperative neurocognitive disorders after cardiac surgery

Xiaopeng Zhang, Xiaowei Yan, Jennifer Gorman, Stuart N Hoffman, Li Zhang, Joseph A Boscarino, Xiaopeng Zhang, Xiaowei Yan, Jennifer Gorman, Stuart N Hoffman, Li Zhang, Joseph A Boscarino

Abstract

Objective: Neurocognitive disorders commonly occur following cardiac surgery. However, the underlying etiology of these disorders is not well understood. The current study examined the association between perioperative glucose levels and other risk factors and the onset of neurocognitive disorders in adult patients following coronary artery bypass and/or valvular surgery.

Methods: Adult patients who underwent their first cardiac surgery at a large tertiary care medical center were identified and those with neurocognitive disorders prior to surgery were excluded. Demographic, perioperative, and postoperative neurocognitive outcome data were extracted from the Society for Thoracic Surgery database, and from electronic medical records, between January 2004 and June 2009. Multiple clinical risk factors and measures associated with insulin resistance, such as hyperglycemia, were assessed. Multivariable Cox competing risk survival models were used to assess hyperglycemia and postoperative neurocognitive disorders at follow up, adjusting for other risk factors and confounding variables.

Results: Of the 855 patients included in the study, 271 (31.7%) had new onset neurocognitive disorders at follow-up. Age, sex, New York Heart Failure (NYHF) Class, length of postoperative intensive care unit stay, perioperative blood product transfusion, and other key factors were identified and assessed as potential risk factors (or confounders) for neurocognitive disorders at follow-up. Bivariate analyses suggested that new onset neurocognitive disorders were associated with NYHF Class, cardiopulmonary bypass, history of diabetes, intraoperative blood product use, and number of diseased coronary vessels, which are commonly-accepted risk factors in cardiac surgery. In addition, higher first glucose level (median =116 mg/dL) and higher peak glucose >169 mg/dL were identified as risk factors. Male sex and nonuse of intra-operative blood products appeared to be protective. Controlling for potential risk factors and confounders, multivariable Cox survival models suggested that increased perioperative first glucose measured in 20 unit increments, was significantly associated with the onset of postoperative neurocognitive disorders at follow-up (hazard ratio [HR] =1.16, P<0.001) and that women had an elevated risk for this outcome (HR =4.18, P=0.01).

Conclusion: Our study suggests that perioperative hyperglycemia was associated with new onset of postoperative neurocognitive disorders in adult patients after cardiac surgery, and that men tended to be protected from these outcomes. These findings may suggest a need for the revision of clinical protocols for perioperative insulin therapy to prevent long-term neurocognitive complications.

Keywords: gender; insulin resistance; intensive care; neurocognitive disorders.

Figures

Figure 1
Figure 1
Cox-proportional hazard survival curves with competing risk for study outcome (adjusted for possible risk factors).* Note: *The estimated time point where these two glucose levels begin to be statistically significant is at 379 days post-surgery (P=0.03).

References

    1. van Dijk D, Spoor M, Hijman R, et al. Octopus Study Group Cognitive and cardiac outcomes 5 years after off-pump vs on-pump coronary artery bypass graft surgery. JAMA. 2007;297(7):701–708.
    1. Kozora E, Kongs S, Collins JF, et al. Cognitive outcomes after on-versus off-pump coronary artery bypass surgery. Ann Thorac Surg. 2010;90(4):1134–1141.
    1. Kadoi Y, Saito S, Fujita N, Goto F. Risk factors for cognitive dysfunction after coronary artery bypass graft surgery in patients with type 2 diabetes. J Thorac Cardiovasc Surg. 2005;129(3):576–583.
    1. Mathew JP, Mackensen GB, Phillips-Bute B, et al. Neurologic Outcome Research Group (NORG) of the Duke Heart Center Randomized, double-blinded, placebo controlled study of neuroprotection with lidocaine in cardiac surgery. Stroke. 2009;40(3):880–887.
    1. Stanley TO, Mackensen GB, Grocott HP, et al. Neurological Outcome Research Group. CARE Investigators of the Duke Heart Center The impact of postoperative atrial fibrillation on neurocognitive outcome after coronary artery bypass graft surgery. Anesth Analg. 2002;94(2):290–295.
    1. Anastasiadis K, Argiriadou H, Kosmidis MH, et al. Neurocognitive outcome after coronary artery bypass surgery using minimal versus conventional extracorporeal circulation: a randomised controlled pilot study. Heart. 2011;97(13):1082–1088.
    1. Porizka M, Stritesky M, Semrad M, Dobias M, Dohnalova A, Korinek J. Standard blood flow rates of cardiopulmonary bypass are adequate in awake on-pump cardiac surgery. Eur J Cardiothorac Surg. 2011;39(4):442–450.
    1. Grigore AM, Grocott HP, Mathew JP, et al. Neurologic Outcome Research Group of the Duke Heart Center The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg. 2002;94(1):4–10.
    1. Kawahara F, Kadoi Y, Saito S, Goto F, Fujita N. Slow rewarming improves jugular venous oxygen saturation during rewarming. Acta Anaesthesiol Scand. 2003;47(4):419–424.
    1. Yoshitani K, Kawaguchi M, Sugiyama N, et al. The association of high jugular bulb venous oxygen saturation with cognitive decline after hypothermic cardiopulmonary bypass. Anesth Analg. 2001;92(6):1370–1376.
    1. Venn GE, Patel RL, Chambers DJ. Cardiopulmonary bypass: perioperative cerebral blood flow and postoperative cognitive deficit. Ann Thorac Surg. 1995;59(5):1331–1335.
    1. Gerriets T, Schwarz N, Sammer G, et al. Protecting the brain from gaseous and solid micro-emboli during coronary artery bypass grafting: a randomized controlled trial. Eur Heart J. 2010;31(3):360–368.
    1. Boodhwani M, Rubens FD, Wozny D, et al. Predictors of early neurocognitive deficits in low-risk patients undergoing on-pump coronary artery bypass surgery. Circulation. 2006;114(Suppl 1):I461–I466.
    1. Cheng DC, Karski J, Peniston C, et al. Morbidity outcome in early versus conventional tracheal extubation after coronary artery bypass grafting: a prospective randomized controlled trial. J Thorac Cardiovasc Surg. 1996;112(3):755–764.
    1. Boodhwani M, Rubens F, Wozny D, Rodriguez R, Nathan HJ. Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: a randomized, double-blind study. J Thorac Cardiovasc Surg. 2007;134(6):1443–1450. discussion 1451–1452.
    1. Hammon JW, Stump DA, Butterworth JF, et al. Single crossclamp improves 6-month cognitive outcome in high-risk coronary bypass patients: the effect of reduced aortic manipulation. J Thorac Cardiovasc Surg. 2006;131(1):114–121.
    1. Charlson ME, Peterson JC, Krieger KH, et al. Improvement of outcomes after coronary artery bypass II: a randomized trial comparing intraoperative high versus customized mean arterial pressure. J Card Surg. 2007;22(6):465–472.
    1. Siepe M, Pfeiffer T, Gieringer A, et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur J Cardiothorac Surg. 2011;40(1):200–207.
    1. Gold JP, Torres KE, Maldarelli W, Zhuravlev I, Condit D, Wasnick J. Improving outcomes in coronary surgery: the impact of echo-directed aortic cannulation and perioperative hemodynamic management in 500 patients. Ann Thorac Surg. 2004;78(5):1579–1585.
    1. Haljan G, Maitland A, Buchan A, et al. The erythropoietin neuroprotective effect: assessment in CABG surgery (TENPEAKS): a randomized, double-blind, placebo controlled, proof-of-concept clinical trial. Stroke. 2009;40(8):2769–2775.
    1. Holinski S, Claus B, Alaaraj N, et al. Cerebroprotective effect of piracetam in patients undergoing open heart surgery. Ann Thorac Cardiovasc Surg. 2011;17(2):137–142.
    1. Hudetz JA, Iqbal Z, Gandhi SD, et al. Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery. Acta Anaesthesiol Scand. 2009;53(7):864–872.
    1. Silbert BS, Scott DA, Evered LA, et al. A comparison of the effect of high- and low-dose fentanyl on the incidence of postoperative cognitive dysfunction after coronary artery bypass surgery in the elderly. Anesthesiology. 2006;104(6):1137–1145.
    1. Szalma I, Kiss A, Kardos L, et al. Piracetam prevents cognitive decline in coronary artery bypass: a randomized trial versus placebo. Ann Thorac Surg. 2006;82(4):1430–1435.
    1. Ingels C, Debaveye Y, Milants I, et al. Strict blood glucose control with insulin during intensive care after cardiac surgery: impact on 4-years survival, dependency on medical care, and quality-of-life. Eur Heart J. 2006;27(22):2716–2724.
    1. Winocur G, Greenwood CE, Piroli GG, et al. Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci. 2005;119(5):1389–1395.
    1. Saczynski JS, Jónsdóttir MK, Garcia ME, et al. Cognitive impairment: an increasingly important complication of type 2 diabetes: the age, gene/environment susceptibility – Reykjavik study. Am J Epidemiol. 2008;168(10):1132–1139.
    1. Faivre E, Gault VA, Thorens B, Hölscher C. Glucose-dependent insulinotropic polypeptide receptor knockout mice are impaired in learning, synaptic plasticity, and neurogenesis. J Neurophysiol. 2011;105(4):1574–1580.
    1. Martín ED, Sánchez-Perez A, Trejo JL, et al. IRS-2 Deficiency impairs NMDA receptor-dependent long-term potentiation. Cereb Cortex. 2012;22(8):1717–1727.
    1. Sanderson TH, Kumar R, Murariu-Dobrin AC, Page AB, Krause GS, Sullivan JM. Insulin activates the PI3K-Akt survival pathway in vulnerable neurons following global brain ischemia. Neurol Res. 2009;31(9):947–958.
    1. Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest. 2007;117(4):910–918.
    1. Zhang X, Chen Y, Ikonomovic MD, et al. Increased phosphorylation of protein kinase B and related substrates after traumatic brain injury in humans and rats. J Cereb Blood Flow Metab. 2006;26(7):915–926.
    1. Hui L, Pei DS, Zhang QG, Guan QH, Zhang GY. The neuroprotection of insulin on ischemic brain injury in rat hippocampus through negative regulation of JNK signaling pathway by PI3K/Akt activation. Brain Res. 2005;1052(1):1–9.
    1. Voll CL, Auer RN. Insulin attenuates ischemic brain damage independent of its hypoglycemic effect. J Cereb Blood Flow Metab. 1991;11(6):1006–1014.
    1. Reger MA, Watson GS, Green PS, et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008;70(6):440–448.
    1. Bucciarelli-Ducci C, Bianchi M, De Luca L, et al. Effects of glucose-insulin-potassium infusion on myocardial perfusion and left ventricular remodeling in patients treated with primary angioplasty for ST-elevation acute myocardial infarction. Am J Cardiol. 2006;98(10):1349–1353.
    1. Howell NJ, Ashrafian H, Drury NE, et al. Glucose-insulin-potassium reduces the incidence of low cardiac output episodes after aortic valve replacement for aortic stenosis in patients with left ventricular hypertrophy: results from the Hypertrophy, Insulin, Glucose, and Electrolytes (HINGE) trial. Circulation. 2011;123(2):170–177.
    1. Fine JP, Gray RJ. A proportional hazards model for the sub-distribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.
    1. Bruno A, Biller J, Adams HP, et al. Acute blood glucose level and outcome from ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Investigators. Neurology. 1999;52(2):280–284.
    1. Gore DC, Chinkes D, Heggers J, Herndon DN, Wolf SE, Desai M. Association of hyperglycemia with increased mortality after severe burn injury. J Trauma. 2001;51(3):540–544.
    1. Dennis SH, Jaafari N, Cimarosti H, Hanley JG, Henley JM, Mellor JR. Oxygen/glucose deprivation induces a reduction in synaptic AMPA receptors on hippocampal CA3 neurons mediated by mGluR1 and adenosine A3 receptors. J Neurosci. 2011;31(33):11941–11952.
    1. Meyer LE, Machado LB, Santiago AP, et al. Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem. 2006;281(49):37361–37371.
    1. Degroot A, Kornecook T, Quirion R, DeBow S, Parent MB. Glucose increases hippocampal extracellular acetylcholine levels upon activation of septal GABA receptors. Brain Res. 2003;979(1–2):71–77.
    1. Hill J, Zhao J, Dash PK. High blood glucose does not adversely affect outcome in moderately brain-injured rodents. J Neurotrauma. 2010;27(8):1439–1448.
    1. Lennmyr F, Molnar M, Basu S, Wiklund L. Cerebral effects of hyperglycemia in experimental cardiac arrest. Crit Care Med. 2010;38(8):1726–1732.
    1. Krebs-Kraft DL, Parent MB. Hippocampal infusions of glucose reverse memory deficits produced by co-infusions of a GABA receptor agonist. Neurobiol Learn Mem. 2008;89(2):142–152.
    1. Dungan K, Hall C, Schuster D, Osei K. Differential response between diabetes and stress-induced hyperglycaemia to algorithmic use of detemir and flexible mealtime aspart among stable postcardiac surgery patients requiring intravenous insulin. Diabetes Obes Metab. 2011;13(12):1130–1135.
    1. Verhoeven JJ, Hokken-Koelega AC, den Brinker M, et al. Disturbance of glucose homeostasis after pediatric cardiac surgery. Pediatr Cardiol. 2011;32(2):131–138.
    1. Pei D, Chen TW, Kuo YL, et al. The effect of surgical stress on insulin sensitivity, glucose effectiveness and acute insulin response to glucose load. J Endocrinol Invest. 2003;26(5):397–402.
    1. Finfer S, Chittock DR, Su SY, et al. NICE-SUGAR Study Investigators Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–1297.
    1. Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol. 2011;68(1):51–57.
    1. Williamson JD, Miller ME, Bryan RN, et al. ACCORD Study Group The Action to Control Cardiovascular Risk in Diabetes Memory in Diabetes Study (ACCORD-MIND): rationale, design, and methods. Am J Cardiol. 2007;99(12A):112i–122i.
    1. Lang BT, Yan Y, Dempsey RJ, Vemuganti R. Impaired neurogenesis in adult type-2 diabetic rats. Brain Res. 2009;1258:25–33.
    1. de la Monte SM, Tong M, Nguyen V, Setshedi M, Longato L, Wands JR. Ceramide-mediated insulin resistance and impairment of cognitive-motor functions. J Alzheimers Dis. 2010;21(3):967–984.
    1. Tong M, Neusner A, Longato L, Lawton M, Wands JR, de la Monte SM. Nitrosamine exposure causes insulin resistance diseases: relevance to type 2 diabetes mellitus, non-alcoholic steatohepatitis, and Alzheimer’s disease. J Alzheimers Dis. 2009;17(4):827–844.
    1. McNay EC, Ong CT, McCrimmon RJ, Cresswell J, Bogan JS, Sherwin RS. Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem. 2010;93(4):546–553.
    1. Moreira T, Cebers G, Pickering C, Ostenson CG, Efendic S, Liljequist S. Diabetic Goto-Kakizaki rats display pronounced hyperglycemia and longer-lasting cognitive impairments following ischemia induced by cortical compression. Neuroscience. 2007;144(4):1169–1185.
    1. Zhong J, Zhao L, Du Y, Wei G, Yao WG, Lee WH. Delayed IGF-1 treatment reduced long-term hypoxia-ischemia-induced brain damage and improved behavior recovery of immature rats. Neurol Res. 2009;31(5):483–489.
    1. Anderson RE, Brismar K, Barr G, Ivert T. Effects of cardiopulmonary bypass on glucose homeostasis after coronary artery bypass surgery. Eur J Cardiothorac Surg. 2005;28(3):425–430.
    1. Nötzold A, Michel K, Khattab AA, Sievers HH, Hüppe M. Diabetes mellitus increases adverse neurocognitive outcome after coronary artery bypass grafting surgery. Thorac Cardiovasc Surg. 2006;54(5):307–312.
    1. Heo K, Park S, Lee JY, Lee BI, Lee SK. Post-transfusion posterior leukoencephalopathy with cytotoxic and vasogenic edema precipitated by vasospasm. Cerebrovasc Dis. 2003;15(3):230–233.
    1. Nagasawa H, Kurita K, Wada M, Kawanami T, Kato T. Blood transfusion-induced irreversible brain damage. J Neurol. 2005;252(12):1541–1542.
    1. Smith MJ, Le Roux PD, Elliott JP, Winn HR. Blood transfusion and increased risk for vasospasm and poor outcome after subarachnoid hemorrhage. J Neurosurg. 2004;101(1):1–7.
    1. Yamada S, Koizumi A, Iso H, et al. JACC Study Group History of blood transfusion before 1990 is a risk factor for stroke and cardiovascular diseases: the Japan collaborative cohort study (JACC study) Cerebrovasc Dis. 2005;20(3):164–171.
    1. Nuttall GA, Kumar M, Murray MJ. No difference exists in the alteration of circadian rhythm between patients with and without intensive care unit psychosis. Crit Care Med. 1998;26(8):1351–1355.
    1. Brazinova A, Mauritz W, Leitgeb J, et al. Outcomes of patients with severe traumatic brain injury who have Glasgow Coma Scale scores of 3 or 4 and are over 65 years old. J Neurotrauma. 2010;27(9):1549–1555.
    1. Iverson KM, Hendricks AM, Kimerling R, et al. Psychiatric diagnoses and neurobehavioral symptom severity among OEF/OIF VA patients with deployment-related traumatic brain injury: a gender comparison. Womens Health Issues. 2011;21(Suppl 4):S210–S217.
    1. Leitgeb J, Mauritz W, Brazinova A, et al. Effects of gender on outcomes after traumatic brain injury. J Trauma. 2011;71(6):1620–1626.
    1. Hannerz H, Holbæk Pedersen B, Poulsen OM, Humle F, Andersen LL. A nationwide prospective cohort study on return to gainful occupation after stroke in Denmark 1996–2006. BMJ Open. 2011;1(2):e000180.
    1. Hogue CW, Lillie R, Hershey T, et al. Gender influence on cognitive function after cardiac operation. Ann Thorac Surg. 2003;76(4):1119–1125.

Source: PubMed

3
订阅