Pre-intervention characteristics of the mosquito species in Benin in preparation for a randomized controlled trial assessing the efficacy of dual active-ingredient long-lasting insecticidal nets for controlling insecticide-resistant malaria vectors

Boulais Yovogan, Arthur Sovi, Gil G Padonou, Constantin J Adoha, Bruno Akinro, Saïd Chitou, Manfred Accrombessi, Edouard Dangbénon, Hilaire Akpovi, Louisa A Messenger, Razaki Ossè, Aurore Ogouyemi Hounto, Jackie Cook, Immo Kleinschmidt, Corine Ngufor, Mark Rowland, Natacha Protopopoff, Martin C Akogbéto, Boulais Yovogan, Arthur Sovi, Gil G Padonou, Constantin J Adoha, Bruno Akinro, Saïd Chitou, Manfred Accrombessi, Edouard Dangbénon, Hilaire Akpovi, Louisa A Messenger, Razaki Ossè, Aurore Ogouyemi Hounto, Jackie Cook, Immo Kleinschmidt, Corine Ngufor, Mark Rowland, Natacha Protopopoff, Martin C Akogbéto

Abstract

Background: This study provides detailed characteristics of vector populations in preparation for a three-arm cluster randomized controlled trial (RCT) aiming to compare the community impact of dual active-ingredient (AI) long-lasting insecticidal nets (LLINs) that combine two novel insecticide classes-chlorfenapyr or pyriproxifen-with alpha-cypermethrin to improve the prevention of malaria transmitted by insecticide-resistant vectors compared to standard pyrethroid LLINs.

Methods: The study was carried out in 60 villages across Cove, Zangnanando and Ouinhi districts, southern Benin. Mosquito collections were performed using human landing catches (HLCs). After morphological identification, a sub-sample of Anopheles gambiae s.l. were dissected for parity, analyzed by PCR for species and presence of L1014F kdr mutation and by ELISA-CSP to identify Plasmodium falciparum sporozoite infection. WHO susceptibility tube tests were performed by exposing adult An. gambiae s.l., collected as larvae from each district, to 0.05% alphacypermethrin, 0.75% permethrin, 0.1% bendiocarb and 0.25% pirimiphos-methyl. Synergist assays were also conducted with exposure first to 4% PBO followed by alpha-cypermethrin.

Results: An. gambiae s.l. (n = 10807) was the main malaria vector complex found followed by Anopheles funestus s.l. (n = 397) and Anopheles nili (n = 82). An. gambiae s.l. was comprised of An. coluzzii (53.9%) and An. gambiae s.s. (46.1%), both displaying a frequency of the L1014F kdr mutation >80%. Although more than 80% of people slept under standard LLIN, human biting rate (HBR) in An. gambiae s.l. was higher indoors [26.5 bite/person/night (95% CI: 25.2-27.9)] than outdoors [18.5 b/p/n (95% CI: 17.4-19.6)], as were the trends for sporozoite rate (SR) [2.9% (95% CI: 1.7-4.8) vs 1.8% (95% CI: 0.6-3.8)] and entomological inoculation rate (EIR) [21.6 infected bites/person/month (95% CI: 20.4-22.8) vs 5.4 (95% CI: 4.8-6.0)]. Parous rate was 81.6% (95%CI: 75.4-88.4). An. gambiae s.l. was resistant to alpha-cypermethrin and permethrin but, fully susceptible to bendiocarb and pirimiphos-methyl. PBO pre-exposure followed by alpha-cypermethrin treatment induced a higher 24 hours mortality compared to alphacypermethrin alone but not exceeding 40%.

Conclusions: Despite a high usage of standard pyrethroid LLINs, the study area is characterized by intense malaria transmission. The main vectors An. coluzzii and An. gambiae s.s. were both highly resistant to pyrethroids and displayed multiple resistance mechanisms, L1014F kdr mutation and mixed function oxidases. These conditions of the study area make it an appropriate site to conduct the trial that aims to assess the effect of novel dual-AI LLINs on malaria transmitted by insecticide-resistant vectors.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig 1. Map of the study area.
Fig 1. Map of the study area.
Fig 2. Mosquito species composition in the…
Fig 2. Mosquito species composition in the study area.
Fig 3. An. gambiae s.l. hourly biting…
Fig 3. An. gambiae s.l. hourly biting rates in the study area (N = 6373 indoors, N = 4434 outdoors), b/p/h: Bite/person/hour, the error bars indicate the confidence intervals.
Fig 4. Mortality rates of An. gambiae…
Fig 4. Mortality rates of An. gambiae s.l. to 0.05% alpha-cypermethrin, 0.75% permethrin, 0.1% Bendiocarb and, 0.25% Pirimiphos-methyl, the error bars indicate the confidence intervals.
Fig 5. 24 hours Mortality of An.…
Fig 5. 24 hours Mortality of An. gambiae s.l. to alpha-cypermethrin and PBO+alpha-cypermethrin in Cove, Ouinhi and Zangnanado, the error bars indicate the confidence intervals.

References

    1. Institut National de la Statistique et de l’Analyse Économique (INSAE) et ICF. Enquête Démographique et de Santé au Bénin, 2017–2018: Indicateurs Clés. Cotonou, Bénin et Rockville, Maryland, USA: INSAE et ICF; ; 2018. .
    1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, et al.. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015; 526:207–211. Epub 2015 Sep 16. 10.1038/nature15535 .
    1. Lindblade KA, Eisele TP, Gimnig JE, Alaii JA, Odhiambo F, et al.. Sustainability of reductions in malaria transmission and infant mortality in western Kenya with use of insecticide-treated bednets: 4 to 6 years of follow-up. J Am Med Assoc. 2004; 291: 2571–2580. 10.1001/jama.291.21.2571 .
    1. Ochomo E, Chahilu M, Cook J, Kinyari T, Bayoh NM, et al.. Insecticide-Treated Nets and Protection against Insecticide-Resistant Malaria Vectors in Western Kenya. Emerg Infect Dis. 2017; 23: 758–764. 10.3201/eid2305.161315 .
    1. Damien GB, Djènontin A, Chaffa E, Yamadjako S, Drame PM, et al.. Effectiveness of insecticidal nets on uncomplicated clinical malaria: a case-control study for operational evaluation. Malar J. 2016; 15: 102. 10.1186/s12936-016-1156-2 .
    1. Bradley J, Ogouyèmi-Hounto A, Cornélie S, Fassinou J, de Tove YSS, et al.. Insecticide-treated nets provide protection against malaria to children in an area of insecticide resistance in Southern Benin. Malar J. 2017;16: 225. 10.1186/s12936-017-1873-1 .
    1. Asidi A, N’Guessan R, Akogbeto M, Curtis C, Rowland M. Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerg Infect Dis. 2012; 18: 1101–1106. 10.3201/eid1807.120218 .
    1. Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, et al.. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet. 2018; 391:1577–1588. 10.1016/S0140-6736(18)30427-6 .
    1. WHO. World Malaria Report, 2019. Geneva: World Health Organization; 2019. .
    1. Staedke SG, Gonahasa S, Dorsey G, Kamya MR, Maiteki-Sebuguzi C, et al.. Effect of long-lasting insecticidal nets with and without piperonyl butoxide on malaria indicators in Uganda (LLINEUP): a pragmatic, cluster-randomised trial embedded in a national LLIN distribution campaign. Lancet. 2020; 395:1292–1303. 10.1016/S0140-6736(20)30214-2 .
    1. Tiono AB, Ouédraogo A, Ouattara D, Bougouma EC, Coulibaly S, et al.. Efficacy of Olyset Duo, a bednet containing pyriproxyfen and permethrin, versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso: a cluster-randomised controlled trial. Lancet. 2018; 392:569–580. 10.1016/S0140-6736(18)31711-2 .
    1. N’Guessan R, Odjo A, Ngufor C, Malone D, Rowland M. A Chlorfenapyr Mixture Net Interceptor® G2 Shows High Efficacy and Wash Durability against Resistant Mosquitoes in West Africa. PLoS One. 2016;11(11): e0165925. 10.1371/journal.pone.0165925 .
    1. Ngufor C, Agbevo A, Fagbohoun J, Fongnikin A, Rowland M. Efficacy of Royal Guard, a new alpha-cypermethrin and pyriproxyfen treated mosquito net, against pyrethroid-resistant malaria vectors. Sci Rep. 2020; 10:12227. 10.1038/s41598-020-69109-5 .
    1. Ngufor C, N’Guessan R, Fagbohoun J, Subramaniam K, Odjo A, et al.. Insecticide resistance profile of Anopheles gambiae from a phase II field station in Cové, southern Benin: implications for the evaluation of novel vector control products. Malar J. 2015; 14:464. 10.1186/s12936-015-0981-z .
    1. Institut National de la Statistique et de l’Analyse Economique (INSAE): Cahiers des villages et quartiers de ville du département du Zou, Recensement général de la population 2013–4, Août 2016. .
    1. Gillies M, De Meillon B. The Anophelinae of Africa south of the Sahara. Publ South Afri Inst Med Res. 1968; 54:343. .
    1. Detinova TS. The determination of the physiological age of the females of Anopheles gambiae by changes in the tracheal system of the ovaries. Med Parasitol. 1945; 45–49. .
    1. Wirtz R, Zavala F, Charoenvit Y, Campbell G, Burkot T, et al.. Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development. Bull World Health Organ. 1987; 65:39. PMCID: PMC2490858.
    1. Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, et al.. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008; 7:163. 10.1186/1475-2875-7-163 .
    1. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, et al.. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998; 7:179–184. 10.1046/j.1365-2583.1998.72062.x .
    1. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, second edition. Geneva: World Health Organization; 2016. .
    1. Djènontin A, Bio-Bangana S, Moiroux N, Henry MC, Bousari O, et al.. Culicidae diversity, malaria transmission and insecticide resistance alleles in malaria vectors in Ouidah-Kpomasse-Tori district from Benin (West Africa): A pre-intervention study. Parasit Vectors. 2010; 3:83. 10.1186/1756-3305-3-83
    1. Salako AS, Dagnon F, Sovi A, Padonou GG, Aïkpon R, et al.. Efficacy of Actellic 300 CS-based indoor residual spraying on key entomological indicators of malaria transmission in Alibori and Donga, two regions of northern Benin. Parasit Vectors. 2019; 12:612. 10.1186/s13071-019-3865-1 .
    1. Ossè RA, Tokponnon F, Padonou GG, Sidick A, Aïkpon R, et al.. Involvement of Anopheles nili in Plasmodium falciparum transmission in North Benin. Malar J. 2019; 18:152. 10.1186/s12936-019-2792-0 .
    1. Boko-Collins PM, Ogouyemi-Hounto A, Adjinacou-Badou EG, Gbaguidi-Saizonou L, Dossa NI, et al.. Assessment of treatment impact on lymphatic filariasis in 13 districts of Benin: progress toward elimination in nine districts despite persistence of transmission in some areas. Parasit Vectors. 2019; 12:276. 10.1186/s13071-019-3525-5 .
    1. Padonou GG, Ossè R, Salako AS, Aikpon R, Sovi A, et al.. Entomological assessment of the risk of dengue outbreak in Abomey-Calavi Commune, Benin. Trop Med Health. 2020; 48:20. 10.1186/s41182-020-00207-w .
    1. Sovi A, Djègbè I, Soumanou L, Tokponnon F, Gnanguenon V, et al.. Microdistribution of the resistance of malaria vectors to deltamethrin in the region of Plateau (southeastern Benin) in preparation for an assessment of the impact of resistance on the effectiveness of Long Lasting Insecticidal Nets (LLINs). BMC Infect Dis. 2014; 14:103. 10.1186/1471-2334-14-103 .
    1. Diabate A, Dabire RK, Heidenberger K, Crawford J, Lamp WO, et al.. Evidence for divergent selection between the molecular forms of Anopheles gambiae: Role of predation. BMC Evol Biol. 2008; 8:5. 10.1186/1471-2148-8-5 .
    1. Gnanguenon V, Govoetchan R, Agossa FR, Ossè R, Oke-Agbo F, et al.. Transmission patterns of Plasmodium falciparum by Anopheles gambiae in Benin. Malar J. 2014; 13:444. 10.1186/1475-2875-13-444 .
    1. Bayoh MN, Walker ED, Kosgei J, Ombok M, Olang GB, et al.. Persistently high estimates of late night, indoor exposure to malaria vectors despite high coverage of insecticide treated nets. Parasit Vectors. 2014; 7:380. 10.1186/1756-3305-7-380 .
    1. Cooke MK, Kahindi SC, Oriango RM, Owaga C, Ayoma E, et al.. ‘A bite before bed’: exposure to malaria vectors outside the times of net use in the highlands of western Kenya. Malar J. 2015; 14:259. 10.1186/s12936-015-0766-4 .
    1. N’tcha L, Akogbeto M. Socio-behavioral study on population sleeping patterns in northern Benin for Indoor Residual Spraying decision. Unpublished USAID Annual Report, IL#31; 2019.
    1. Gnanguenon V, Agossa FR, Badirou K, Govoetchan R, Anagonou R, et al.. Malaria vectors resistance to insecticides in Benin: current trends and mechanisms involved. Parasit Vectors. 2015; 8:223. 10.1186/s13071-015-0833-2 .
    1. Sovi A, Govoétchan R, Ossé R, Koukpo CZ, Salako AS, et al.. Resistance status of Anopheles gambiae s.l. to insecticides following the 2011 mass distribution campaign of long-lasting insecticidal nets (LLINs) in the Plateau Department, south-eastern Benin. Malar J. 2020; 19:26. 10.1186/s12936-020-3116-0 .
    1. Aïkpon R, Sèzonlin M, Ossè R, Akogbéto M. Evidence of multiple mechanisms providing carbamate and organophosphate resistance in field An. gambiae population from Atacora in Benin. Parasit Vectors. 2014; 7:568. 10.1186/s13071-014-0568-5 .
    1. Salako AS, Ahogni I, Aïkpon R, Sidick A, Dagnon F, et al.. Insecticide resistance status, frequency of L1014F Kdr and G119S Ace-1 mutations, and expression of detoxification enzymes in Anopheles gambiae (s.l.) in two regions of northern Benin in preparation for indoor residual spraying. Parasit Vectors. 2018; 11:618. 10.1186/s13071-018-3180-2 .
    1. Machani MG, Ochomo E, Amimo F, Kosgei J, Munga S, et al.. Resting behaviour of malaria vectors in highland and lowland sites of western Kenya: Implication on malaria vector control measures. PLoS One. 2020;15(2): e0224718. 10.1371/journal.pone.0224718 .
    1. Akogbéto MC, Salako AS, Dagnon F, Aïkpon R, Kouletio M, et al.. Blood feeding behaviour comparison and contribution of Anopheles coluzzii and Anopheles gambiae, two sibling species living in sympatry, to malaria transmission in Alibori and Donga region, northern Benin, West Africa. Malar J. 2018; 17:307. 10.1186/s12936-018-2452-9 .
    1. Degefa T, Yewhalaw D, Zhou G, Lee M-c, Atieli H, et al.. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malaria J. 2017;16: 443. 10.1186/s12936-017-2098-z .
    1. Trape JF, Tall A, Diagne N, Ndiath O, Ly AB, et al.. Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. Lancet. 2011; 11: 925–932. 10.1016/S1473-3099(11)70194-3 .
    1. Ndiath MO, Mazenot C, Sokhna C, Trape JF. How the malaria vector Anopheles gambiae adapts to the use of insecticide-treated nets by African populations. PLoS One. 2014; 9(6): e97700. 10.1371/journal.pone.0097700 .
    1. Durnez L, Mao S, Denis L, Roelants P, Sochantha T, et al.. Outdoor malaria transmission in forested villages of Cambodia. Malar J. 2013; 12:329. 10.1186/1475-2875-12-329 .
    1. Saavedra MP, Conn JE, Alava F, Carrasco-Escobar G, Prussing C, et al.. Higher Risk of Malaria Transmission Outdoors Than Indoors by Nyssorhynchus Darlingi in Riverine Communities in the Peruvian Amazon. Parasit Vectors. 2019; 12:374. 10.1186/s13071-019-3619-0 .
    1. Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, et al.. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci U S A. 2019; 116:15086–15095. 10.1073/pnas.1820646116 .

Source: PubMed

3
订阅