Achondroplasia is defined by recurrent G380R mutations of FGFR3

G A Bellus, T W Hefferon, R I Ortiz de Luna, J T Hecht, W A Horton, M Machado, I Kaitila, I McIntosh, C A Francomano, G A Bellus, T W Hefferon, R I Ortiz de Luna, J T Hecht, W A Horton, M Machado, I Kaitila, I McIntosh, C A Francomano

Abstract

Genomic DNA from 154 unrelated individuals with achondroplasia was evaluated for mutations in the fibroblast growth factor receptor 3 (FGFR3) transmembrane domain. All but one, an atypical case, were found to have a glycine-to-arginine substitution at codon 380. Of these, 150 had a G-to-A transition at nt 1138, and 3 had a G-to-C transversion at this same position. On the basis of estimates of the prevalence of achondroplasia, the mutation rate at the FGFR3 1138 guanosine nucleotide is two to three orders of magnitude higher than that previously reported for tranversions and transitions in CpG dinucleotides. To date, this represents the most mutable single nucleotide reported in the human genome. The homogeneity of mutations in achondroplasia is unprecedented for an autosomal dominant disorder and may explain the relative lack of heterogeneity in the achondroplasia phenotype.

References

    1. Hum Mol Genet. 1994 May;3(5):787-92
    1. Nat Genet. 1994 Apr;6(4):334
    1. Nat Genet. 1994 Nov;8(3):269-74
    1. Nat Genet. 1994 Nov;8(3):275-9
    1. Am J Roentgenol Radium Ther Nucl Med. 1967 May;100(1):12-26
    1. Ann Hum Genet. 1970 Jan;33(3):227-44
    1. J Med Genet. 1973 Mar;10(1):11-6
    1. Clin Genet. 1977 Jan;11(1):31-8
    1. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1245-9
    1. J Med Genet. 1979 Apr;16(2):140-6
    1. Radiology. 1979 Oct;133(1):95-100
    1. J Bone Joint Surg Br. 1981;63B(4):508-15
    1. Am J Med Genet. 1983 Dec;16(4):459-73
    1. Am J Hum Genet. 1984 Jan;36(1):212-7
    1. Science. 1985 Nov 22;230(4728):954-8
    1. Am J Hum Genet. 1986 Aug;39(2):239-44
    1. Eur J Pediatr. 1986 Dec;145(6):545-7
    1. Am J Hum Genet. 1987 Sep;41(3):454-64
    1. Hum Genet. 1988 Feb;78(2):151-5
    1. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1600-4
    1. Am J Hum Genet. 1988 May;42(5):718-25
    1. Ann Neurol. 1988 Jul;24(1):89-93
    1. J Med Genet. 1989 Jan;26(1):37-44
    1. Clin Genet. 1989 Feb;35(2):88-92
    1. J Exp Med. 1990 Jan 1;171(1):129-40
    1. Am J Hum Genet. 1990 May;46(5):919-24
    1. Am J Hum Genet. 1990 Jun;46(6):1178-86
    1. Nucleic Acids Res. 1990 Jun 11;18(11):3227-31
    1. Am J Hum Genet. 1990 Aug;47(2):202-17
    1. J Clin Invest. 1990 Oct;86(4):1137-41
    1. Blood. 1990 Dec 1;76(11):2242-8
    1. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1095-9
    1. Hum Genet. 1991 Jul;87(3):373-5
    1. Hum Genet. 1991 Aug;87(4):457-61
    1. Nature. 1994 Sep 15;371(6494):252-4
    1. Mol Cell Biol. 1992 Feb;12(2):767-72
    1. Hum Genet. 1992 Jan;88(3):357-8
    1. Genomics. 1991 Dec;11(4):1133-42
    1. Hum Genet. 1992 Mar;88(5):586-8
    1. Adv Cancer Res. 1993;60:1-41
    1. Cell. 1992 Dec 24;71(7):1073-80
    1. Dev Biol. 1993 Feb;155(2):423-30
    1. Nat Genet. 1993 Mar;3(3):260-5
    1. Philos Trans R Soc Lond B Biol Sci. 1993 Jun 29;340(1293):297-303
    1. J Biol Chem. 1994 Apr 15;269(15):11620-7
    1. Nat Genet. 1994 Mar;6(3):314-7
    1. Nat Genet. 1994 Mar;6(3):318-21
    1. Cell. 1994 Jul 29;78(2):335-42
    1. Nat Genet. 1994 Sep;8(1):98-103

Source: PubMed

3
订阅