ApoC-III and visceral adipose tissue contribute to paradoxically normal triglyceride levels in insulin-resistant African-American women

Anne E Sumner, Jeremy D Furtado, Amber B Courville, Madia Ricks, Novie Younger-Coleman, Marshall K Tulloch-Reid, Frank M Sacks, Anne E Sumner, Jeremy D Furtado, Amber B Courville, Madia Ricks, Novie Younger-Coleman, Marshall K Tulloch-Reid, Frank M Sacks

Abstract

Background: African-Americans are more insulin-resistant than whites but have lower triglyceride (TG) concentrations. The metabolic basis for this is unknown. Our goal was to determine in a cross-sectional study the effect of insulin resistance, visceral adipose tissue (VAT) and the apolipoproteins, B, C-III and E, on race differences in TG content of very low density lipoproteins (VLDL).

Methods: The participants were 31 women (16 African-American, 15 white) of similar age (37 ± 9 vs. 38 ± 11y (mean ± SD), P = 0.72) and BMI (32.4 ± 7.2 vs. 29.3 ± 6.0 kg/m2, P = 0.21). A standard diet (33% fat, 52% carbohydrate, 15% protein) was given for 7 days followed by a test meal (40% fat, 40% carbohydrate, 20% protein) on Day 8. Insulin sensitivity index (SI) was calculated from the minimal model. VAT was measured at L2-3. The influence of race, SI, VAT and apolipoproteins on the TG content of VLDL was determined by random effects models (REM).

Results: African-Americans were more insulin-resistant (SI: 3.6 ± 1.3 vs. 5.6 ± 2.6 mU/L-1.min-1, P < 0.01) with less VAT (75 ± 59 vs. 102 ± 71 cm2, P < 0.01). TG, apoB and apoC-III content of light and dense VLDL were lower in African-Americans (all P < 0.05 except for apoC-III in light VLDL, P = 0.11). ApoE content did not vary by race. In REM, VAT but not SI influenced the TG concentration of VLDL. In models with race, SI, VAT and all apolipoproteins entered, race was not significant but apoC-III and VAT remained significant determinants of TG concentration in light and dense VLDL.

Conclusions: Low concentrations of apoC-III and VAT in African-Americans contribute to race differences in TG concentrations.

Trial registration: ClinicalTrials.gov Identifier: NCT00484861.

Figures

Figure 1
Figure 1
Fasting TG concentrations at baseline and after 7 days of the standard diet. Bar graph data presented as mean ± SE. Notation: a = difference between African-Americans and whites, b = difference in African-Americans from baseline, *P = <0.05. Difference in whites before and after 7 day diet was not significant, P = 0.18).
Figure 2
Figure 2
TG and apolipoprotein concentration of each of the lipoproteins at baseline and 2, 4 and 6 hours postprandially. Columns present: light VLDL, dense VLDL, IDL and LDL. The rows present the TG, ApoB, ApoC-III and ApoE concentration in each lipoprotein. Data is from random effect multiple models constructed to determine the effect of race on the TG, ApoB, ApoC-III and ApoE content of each lipoprotein. The P-value for the effect of race is presented in each diagram. African-American women: solid lines; white women: dotted lines.

References

    1. Alberti KG, Eckel RH, Grundy SM. et al.Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;10:1640–1645. doi: 10.1161/CIRCULATIONAHA.109.192644.
    1. Lemieux I, Pascot A, Couillard C. et al.Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation. 2000;10:179–184. doi: 10.1161/01.CIR.102.2.179.
    1. Sumner AE, Cowie CC. Ethnic differences in the ability of triglyceride levels to identify insulin resistance. Atherosclerosis. 2008;10:696–703. doi: 10.1016/j.atherosclerosis.2006.12.018.
    1. Osei K. Metabolic syndrome in blacks: are the criteria right? Curr Diab Rep. 2010;10:199–208. doi: 10.1007/s11892-010-0116-4.
    1. Ukegbu UJ, Castillo DC, Knight MG. et al.Metabolic syndrome does not detect metabolic risk in African men living in the U.S. Diabetes Care. 2011;10:2297–2299. doi: 10.2337/dc11-1055.
    1. Yu SS, Ramsey NL, Castillo DC, Ricks M, Sumner AE. Triglyceride-based screening tests fail to recognize cardiometabolic disease in African immigrant and african-american men. Metab Syndr Relat Disord. 2013;10:15–20. doi: 10.1089/met.2012.0114.
    1. Sumner AE, Harman JL, Buxbaum SG. et al.The triglyceride/high-density lipoprotein cholesterol ratio fails to predict insulin resistance in African-American women: an analysis of Jackson Heart Study. Metab Syndr Relat Disord. 2010;10:511–514. doi: 10.1089/met.2010.0028.
    1. Luc G, Fievet C, Arveiler D. et al.Apolipoproteins C-III and E in apoB- and non-apoB-containing lipoproteins in two populations at contrasting risk for myocardial infarction: the ECTIM study. Etude Cas Temoins sur ‘Infarctus du Myocarde. J Lipid Res. 1996;10:508–517.
    1. Sacks FM, Alaupovic P, Moye LA. et al.VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation. 2000;10:1886–1892. doi: 10.1161/01.CIR.102.16.1886.
    1. Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;10:1225–1236. doi: 10.1161/ATVBAHA.107.160192.
    1. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;10:881–887. doi: 10.1038/nature05488.
    1. Chow CC, Periwal V, Csako G. et al.Higher acute insulin response to glucose may determine greater free Fatty Acid clearance in African-American women. J Clin Endocrinol Metab. 2011;10:2456–2463. doi: 10.1210/jc.2011-0532.
    1. Zheng C, Ikewaki K, Walsh BW, Sacks FM. Metabolism of apoB lipoproteins of intestinal and hepatic origin during constant feeding of small amounts of fat. J Lipid Res. 2006;10:1771–1779. doi: 10.1194/jlr.M500528-JLR200.
    1. Alaupovic P. Significance of apolipoproteins for structure, function, and classification of plasma lipoproteins. Methods Enzymol. 1996;10:32–60.
    1. Campos H, Perlov D, Khoo C, Sacks FM. Distinct patterns of lipoproteins with apoB defined by presence of apoE or apoC-III in hypercholesterolemia and hypertriglyceridemia. J Lipid Res. 2001;10:1239–1249.
    1. Zheng C, Khoo C, Ikewaki K, Sacks FM. Rapid turnover of apolipoprotein C-III-containing triglyceride-rich lipoproteins contributing to the formation of LDL subfractions. J Lipid Res. 2007;10:1190–1203. doi: 10.1194/jlr.P600011-JLR200.
    1. Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC. Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E. Arterioscler Thromb Vasc Biol. 1995;10:963–971. doi: 10.1161/01.ATV.15.7.963.
    1. Zheng C, Khoo C, Furtado J, Sacks FM. Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation. 2010;10:1722–1734. doi: 10.1161/CIRCULATIONAHA.109.875807.
    1. Altomonte J, Cong L, Harbaran S. et al.Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest. 2004;10:1493–1503.
    1. Dallinga-Thie GM, Groenendijk M, Blom RN, De Bruin TW, De Kant E. Genetic heterogeneity in the apolipoprotein C-III promoter and effects of insulin. J Lipid Res. 2001;10:1450–1456.
    1. Li WW, Dammerman MM, Smith JD, Metzger S, Breslow JL, Leff T. Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest. 1995;10:2601–2605. doi: 10.1172/JCI118324.
    1. Sumner AE, Luercio MF, Frempong BA. et al.Validity of the reduced-sample insulin modified frequently-sampled intravenous glucose tolerance test using the nonlinear regression approach. Metabolism. 2009;10:220–225. doi: 10.1016/j.metabol.2008.09.017.
    1. Boston RC, Stefanovski D, Moate PJ, Sumner AE, Watanabe RM, Bergman RN. MINMOD Millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technol Ther. 2003;10:1003–1015. doi: 10.1089/152091503322641060.
    1. Dietary Reference Intakes. The Essential Guide to Nutrient Requirements. The National Academies Press; 2006. .
    1. Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;10:241–247.
    1. Cordain L, Eaton SB, Sebastian A. et al.Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;10:341–354.
    1. Nielsen S, Sumner AE, Miller BV III, Turkova H, Klein S, Jensen MD. Free fatty acid flux in African American and Caucasian adults - effect of sex and race. Obesity (Silver Spring) 2013;10:1836–1842.
    1. Sumner AE, Sen S, Ricks M, Frempong BA, Sebring NG, Kushner H. Determining the waist circumference in African Americans which best predicts insulin resistance. Obesity (Silver Spring) 2008;10:841–846. doi: 10.1038/oby.2008.11.
    1. Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology. 2009;10:791–801. doi: 10.1002/hep.22726.
    1. Lee SJ, Campos H, Moye LA, Sacks FM. LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients. Arterioscler Thromb Vasc Biol. 2003;10:853–858. doi: 10.1161/01.ATV.0000066131.01313.EB.
    1. Mendivil CO, Rimm EB, Furtado J, Chiuve SE, Sacks FM. Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation. 2011;10:2065–2072. doi: 10.1161/CIRCULATIONAHA.111.056986.
    1. Mahley RW, Rall SC Jr. Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet. 2000;10:507–537. doi: 10.1146/annurev.genom.1.1.507.
    1. Furtado JD, Campos H, Sumner AE, Appel LJ, Carey VJ, Sacks FM. Dietary interventions that lower lipoproteins containing apolipoprotein C-III are more effective in whites than in blacks: results of the OmniHeart trial. Am J Clin Nutr. 2010;10:714–722. doi: 10.3945/ajcn.2009.28532.

Source: PubMed

3
订阅