Assessment of the prognostic role of a 94-single nucleotide polymorphisms risk score in early breast cancer in the SIGNAL/PHARE prospective cohort: no correlation with clinico-pathological characteristics and outcomes

Elsa Curtit, Xavier Pivot, Julie Henriques, Sophie Paget-Bailly, Pierre Fumoleau, Maria Rios, Hervé Bonnefoi, Thomas Bachelot, Patrick Soulié, Christelle Jouannaud, Hugues Bourgeois, Thierry Petit, Isabelle Tennevet, David Assouline, Marie-Christine Mathieu, Jean-Philippe Jacquin, Sandrine Lavau-Denes, Ariane Darut-Jouve, Jean-Marc Ferrero, Carole Tarpin, Christelle Lévy, Valérie Delecroix, Véronique Trillet-Lenoir, Oana Cojocarasu, Jérôme Meunier, Jean-Yves Pierga, Pierre Kerbrat, Céline Faure-Mercier, Hélène Blanché, Mourad Sahbatou, Anne Boland, Delphine Bacq, Céline Besse, Gilles Thomas, Jean-François Deleuze, Iris Pauporté, Gilles Romieu, David G Cox, Elsa Curtit, Xavier Pivot, Julie Henriques, Sophie Paget-Bailly, Pierre Fumoleau, Maria Rios, Hervé Bonnefoi, Thomas Bachelot, Patrick Soulié, Christelle Jouannaud, Hugues Bourgeois, Thierry Petit, Isabelle Tennevet, David Assouline, Marie-Christine Mathieu, Jean-Philippe Jacquin, Sandrine Lavau-Denes, Ariane Darut-Jouve, Jean-Marc Ferrero, Carole Tarpin, Christelle Lévy, Valérie Delecroix, Véronique Trillet-Lenoir, Oana Cojocarasu, Jérôme Meunier, Jean-Yves Pierga, Pierre Kerbrat, Céline Faure-Mercier, Hélène Blanché, Mourad Sahbatou, Anne Boland, Delphine Bacq, Céline Besse, Gilles Thomas, Jean-François Deleuze, Iris Pauporté, Gilles Romieu, David G Cox

Abstract

Background: Genome-wide association studies (GWAS) have to date identified 94 genetic variants (single nucleotide polymorphisms (SNPs)) associated with risk of developing breast cancer. A score based on the combined effect of the 94 risk alleles can be calculated to measure the global risk of breast cancer. We aimed to test the hypothesis that the 94-SNP-based risk score is associated with clinico-pathological characteristics, breast cancer subtypes and outcomes in early breast cancer.

Methods: A 94-SNP risk score was calculated in 8703 patients in the PHARE and SIGNAL prospective case cohorts. This score is the total number of inherited risk alleles based on 94 selected SNPs. Clinical data and outcomes were prospectively registered. Genotyping was obtained from a GWAS.

Results: The median 94-SNP risk score in 8703 patients with early breast cancer was 77.5 (range: 58.1-97.6). The risk score was not associated with usual prognostic and predictive factors (age; tumor, node, metastasis (TNM) status; Scarff-Bloom-Richardson grade; inflammatory features; estrogen receptor status; progesterone receptor status; human epidermal growth factor receptor 2 (HER2) status) and did not correlate with breast cancer subtypes. The 94-SNP risk score did not predict outcomes represented by overall survival or disease-free survival.

Conclusions: In a prospective case cohort of 8703 patients, a risk score based on 94 SNPs was not associated with breast cancer characteristics, cancer subtypes, or patients' outcomes. If we hypothesize that prognosis and subtypes of breast cancer are determined by constitutional genetic factors, our results suggest that a score based on breast cancer risk-associated SNPs is not associated with prognosis.

Trial registration: PHARE cohort: NCT00381901 , Sept. 26, 2006 - SIGNAL cohort: INCa RECF1098, Jan. 28, 2009.

Keywords: Breast cancer; Genetic variant; Prognosis; Risk score; Single nucleotide polymorphism.

Conflict of interest statement

Authors’ information

Not applicable.

Ethics approval and consent to participate

This study was approved by the ethics committee of the University Hospital of Besançon. All study participants signed an informed consent form.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow chart
Fig. 2
Fig. 2
The 94-SNP risk score repartition among the breast cancer patient population: normal distribution. SNP single nucleotide polymorphism
Fig. 3
Fig. 3
No correlation between the 94-SNP risk score and pathological subtype of breast cancer. SNP single nucleotide polymorphism, ER estrogen receptor, HER2 human epidermal growth factor, ANOVA analysis of variance
Fig. 4
Fig. 4
Survival according to 94-SNP risk score quartiles. a Disease-free survival. b Overall survival. No relationship between invasive-disease-free survival (iDFS) or overall survival (OS) and the 94-SNP risk score. The p value and hazard ratio (HR) is from the test of trend from quartile (Q) 1 to quartile 4. SNP single nucleotide polymorphism

References

    1. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71. doi: 10.1126/science.7545954.
    1. Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science. 1994;265:2088–90. doi: 10.1126/science.8091231.
    1. Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M. Genetic susceptibility to breast cancer. Mol Oncol. 2010;4:174–91. doi: 10.1016/j.molonc.2010.04.011.
    1. Hernández JEL, Llacuachaqui M, Palacio GV, Figueroa JD, Madrid J, Lema M, et al. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Medellín, Colombia. Hered Cancer Clin Pract. 2014;12:11. doi: 10.1186/1897-4287-12-11.
    1. Easton DF, Pharoah PDP, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372:2243–57. doi: 10.1056/NEJMsr1501341.
    1. Melchor L, Benítez J. The complex genetic landscape of familial breast cancer. Hum Genet. 2013;132:845–63. doi: 10.1007/s00439-013-1299-y.
    1. Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet. 2015;47:373–80. doi: 10.1038/ng.3242.
    1. Dorling L, Barnett GC, Michailidou K, Coles CE, Burnet NG, Yarnold J, et al. Patients with a high polygenic risk of breast cancer do not have an increased risk of radiotherapy toxicity. Clin. Cancer Res. [Internet]. 2015 [cited 2016 Feb 9]. Available from:
    1. Rakha EA. Pitfalls in outcome prediction of breast cancer. J Clin Pathol. 2013;66:458–64. doi: 10.1136/jclinpath-2012-201083.
    1. Jacot W, Gutowski M, Azria D, Romieu G. Adjuvant early breast cancer systemic therapies according to daily used technologies. Crit Rev Oncol Hematol. 2012;82:361–9. doi: 10.1016/j.critrevonc.2011.09.002.
    1. Martín M, González Palacios F, Cortés J, de la Haba J, Schneider J. Prognostic and predictive factors and genetic analysis of early breast cancer. Clin Transl Oncol Off Publ Fed Span Oncol Soc Natl Cancer Inst Mex. 2009;11:634–42.
    1. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2013;24:2206–23. doi: 10.1093/annonc/mdt303.
    1. McCutcheon S, Cardoso F. Challenges in optimizing care in advanced breast cancer patients: results of an international survey linked to the ABC1 consensus conference. Breast Edinb Scotl. 2015;24:623–9. doi: 10.1016/j.breast.2015.06.008.
    1. Hortobagyi GN. Trastuzumab in the treatment of breast cancer. N Engl J Med. 2005;353:1734–6. doi: 10.1056/NEJMe058196.
    1. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363:1938–48. doi: 10.1056/NEJMra1001389.
    1. Ades F, Zardavas D, Bozovic-Spasojevic I, Pugliano L, Fumagalli D, de Azambuja E, et al. Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32:2794–803. doi: 10.1200/JCO.2013.54.1870.
    1. Pivot X, Romieu G, Debled M, Pierga J-Y, Kerbrat P, Bachelot T, et al. 6 months versus 12 months of adjuvant trastuzumab for patients with HER2-positive early breast cancer (PHARE): a randomised phase 3 trial. Lancet Oncol. 2013;14:741–8. doi: 10.1016/S1470-2045(13)70225-0.
    1. Gourgou-Bourgade S, Cameron D, Poortmans P, Asselain B, Azria D, Cardoso F, et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials) Ann Oncol Off J Eur Soc Med Oncol. 2015;26:2505–6.
    1. Fasching PA, Pharoah PDP, Cox A, Nevanlinna H, Bojesen SE, Karn T, et al. The role of genetic breast cancer susceptibility variants as prognostic factors. Hum Mol Genet. 2012;21:3926–39. doi: 10.1093/hmg/dds159.
    1. Marcus JN, Watson P, Page DL, Narod SA, Lenoir GM, Tonin P, et al. Hereditary breast cancer: pathobiology, prognosis, and BRCA1 and BRCA2 gene linkage. Cancer. 1996;77:697–709. doi: 10.1002/(SICI)1097-0142(19960215)77:4<697::AID-CNCR16>;2-W.
    1. Gaffney DK, Brohet RM, Lewis CM, Holden JA, Buys SS, Neuhausen SL, et al. Response to radiation therapy and prognosis in breast cancer patients with BRCA1 and BRCA2 mutations. Radiother Oncol J Eur Soc Ther Radiol Oncol. 1998;47:129–36. doi: 10.1016/S0167-8140(98)00023-1.
    1. Robson M. Are BRCA1- and BRCA2-associated breast cancers different? Prognosis of BRCA1-associated breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2000;18:113S–8.
    1. van den Broek AJ, Schmidt MK, v ’t Veer LJ, Tollenaar RAEM, van Leeuwen FE. Worse breast cancer prognosis of BRCA1/BRCA2 mutation carriers: what’s the evidence? A systematic review with meta-analysis. PLoS One. 2015;10:e0120189. doi: 10.1371/journal.pone.0120189.
    1. Goodwin PJ, Phillips K-A, West DW, Ennis M, Hopper JL, John EM, et al. Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an International Prospective Breast Cancer Family Registry population-based cohort study. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:19–26. doi: 10.1200/JCO.2010.33.0068.
    1. Roukos DH. Prognosis of breast cancer in carriers of BRCA1 and BRCA2 mutations. N Engl J Med. 2007;357:1555–6. doi: 10.1056/NEJMc072301.
    1. Baretta Z, Mocellin S, Goldin E, Olopade OI, Huo D. Effect of BRCA germline mutations on breast cancer prognosis: a systematic review and meta-analysis. Medicine (Baltimore) 2016;95:e4975. doi: 10.1097/MD.0000000000004975.
    1. Zhang X, Shu X-O, Cai Q, Ruan Z, Gao Y-T, Zheng W. Functional plasminogen activator inhibitor-1 gene variants and breast cancer survival. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12:6037–42. doi: 10.1158/1078-0432.CCR-05-2851.
    1. Shu XO, Long J, Lu W, Li C, Chen WY, Delahanty R, et al. Novel genetic markers of breast cancer survival identified by a genome-wide association study. Cancer Res. 2012;72:1182–9. doi: 10.1158/0008-5472.CAN-11-2561.
    1. Lu H, Shu X-O, Cui Y, Kataoka N, Wen W, Cai Q, et al. Association of genetic polymorphisms in the VEGF gene with breast cancer survival. Cancer Res. 2005;65:5015–9. doi: 10.1158/0008-5472.CAN-04-2786.
    1. Toyama T, Zhang Z, Nishio M, Hamaguchi M, Kondo N, Iwase H, et al. Association of TP53 codon 72 polymorphism and the outcome of adjuvant therapy in breast cancer patients. Breast Cancer Res. 2007;9:R34. doi: 10.1186/bcr1682.
    1. Bewick MA, Conlon MSC, Lafrenie RM. Polymorphisms in XRCC1, XRCC3, and CCND1 and survival after treatment for metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24:5645–51. doi: 10.1200/JCO.2006.05.9923.
    1. Rafiq S, Tapper W, Collins A, Khan S, Politopoulos I, Gerty S, et al. Identification of inherited genetic variations influencing prognosis in early-onset breast cancer. Cancer Res. 2013;73:1883–91. doi: 10.1158/0008-5472.CAN-12-3377.
    1. Rafiq S, Khan S, Tapper W, Collins A, Upstill-Goddard R, Gerty S, et al. A genome wide meta-analysis study for identification of common variation associated with breast cancer prognosis. Miao X, editor. PLoS ONE. 2014;9:e101488.
    1. Bayraktar S, Thompson PA, Yoo S-Y, Do K-A, Sahin AA, Arun BK, et al. The relationship between eight GWAS-identified single-nucleotide polymorphisms and primary breast cancer outcomes. Oncologist. 2013;18:493–500. doi: 10.1634/theoncologist.2012-0419.
    1. Pirie A, Guo Q, Kraft P, Canisius S, Eccles DM, Rahman N, et al. Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Res. 2015;17:58. doi: 10.1186/s13058-015-0570-7.
    1. Woltmann A, Chen B, Lascorz J, Johansson R, Eyfjörd JE, Hamann U, et al. Systematic pathway enrichment analysis of a genome-wide association study on breast cancer survival reveals an influence of genes involved in cell adhesion and calcium signaling on the patients’ clinical outcome. Wanjin H, editor. PLoS ONE. 2014;9:e98229.
    1. Azzato EM, Pharoah PDP, Harrington P, Easton DF, Greenberg D, Caporaso NE, et al. A Genome-wide association study of prognosis in breast cancer. Cancer Epidemiol Biomarkers Prev. 2010;19:1140–3. doi: 10.1158/1055-9965.EPI-10-0085.
    1. Eriksson N, Benton GM, Do CB, Kiefer AK, Mountain JL, Hinds DA, et al. Genetic variants associated with breast size also influence breast cancer risk. BMC Med Genet. 2012;13:1. doi: 10.1186/1471-2350-13-53.
    1. Purrington KS, Slettedahl S, Bolla MK, Michailidou K, Czene K, Nevanlinna H, et al. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Hum Mol Genet. 2014;23:6034–46. doi: 10.1093/hmg/ddu300.
    1. kConFab Investigators, NBCS Investigators, Pirie A, Guo Q, Kraft P, Canisius S, et al. Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Res. [Internet]. 2015 [cited 2016 Feb 9];17. Available from:
    1. Kiyotani K, Mushiroda T, Tsunoda T, Morizono T, Hosono N, Kubo M, et al. A genome-wide association study identifies locus at 10q22 associated with clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients in Japanese. Hum Mol Genet. 2012;21:1665–72. doi: 10.1093/hmg/ddr597.
    1. Guo Q, Schmidt MK, Kraft P, Canisius S, Chen C, Khan S, et al. Identification of novel genetic markers of breast cancer survival. J Natl Cancer Inst. 2015;107:djv081. doi: 10.1093/jnci/djv081.
    1. Broeks A, Schmidt MK, Sherman ME, Couch FJ, Hopper JL, Dite GS, et al. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum Mol Genet. 2011;20:3289–303. doi: 10.1093/hmg/ddr228.
    1. Cox DG, Curtit E, Romieu G, Fumoleau P, Rios M, Bonnefoi H, et al. GWAS in the SIGNAL/PHARE clinical cohort restricts the association between the FGFR2 locus and estrogen receptor status to HER2-negative breast cancer patients. Oncotarget. 2016;7:77358–64.
    1. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24:3726–34. doi: 10.1200/JCO.2005.04.7985.
    1. Kelly CM, Warner E, Tsoi DT, Verma S, Pritchard KI. Review of the clinical studies using the 21-gene assay. Oncologist. 2010;15:447–56. doi: 10.1634/theoncologist.2009-0277.
    1. Gligorov J, Pivot XB, Jacot W, Naman HL, Spaeth D, Misset J-L, et al. Prospective clinical utility study of the use of the 21-gene assay in adjuvant clinical decision making in women with estrogen receptor-positive early invasive breast cancer: results from the SWITCH study. Oncologist. 2015;20:873–9. doi: 10.1634/theoncologist.2014-0467.
    1. Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med. 2016;375:717–29. doi: 10.1056/NEJMoa1602253.
    1. Curtit E, Mansi L, Maisonnette-Escot Y, Sautière J-L, Pivot X. Prognostic and predictive indicators in early-stage breast cancer and the role of genomic profiling: focus on the Oncotype DX(®) Breast Recurrence Score Assay. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2017;43:921–30.
    1. Pharoah PDP, Antoniou AC, Easton DF, Ponder BAJ. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med. 2008;358:2796–803. doi: 10.1056/NEJMsa0708739.
    1. Barrdahl M, Canzian F, Lindström S, Shui I, Black A, Hoover RN, et al. Association of breast cancer risk loci with breast cancer survival. Int J Cancer. 2015;137:2837–45. doi: 10.1002/ijc.29446.

Source: PubMed

3
订阅