Comparison Between Optical Frequency Domain Imaging and Intravascular Ultrasound for Percutaneous Coronary Intervention Guidance in Biolimus A9-Eluting Stent Implantation: A Randomized MISTIC-1 Non-Inferiority Trial

Takashi Muramatsu, Yukio Ozaki, Mamoru Nanasato, Masato Ishikawa, Ryo Nagasaka, Masaya Ohota, Yosuke Hashimoto, Yu Yoshiki, Hidemaro Takatsu, Katsuyoshi Ito, Hiroki Kamiya, Yukihiko Yoshida, Toyoaki Murohara, Hideo Izawa, MISTIC-1 Investigators, Takashi Muramatsu, Yukio Ozaki, Mamoru Nanasato, Masato Ishikawa, Ryo Nagasaka, Masaya Ohota, Yosuke Hashimoto, Yu Yoshiki, Hidemaro Takatsu, Katsuyoshi Ito, Hiroki Kamiya, Yukihiko Yoshida, Toyoaki Murohara, Hideo Izawa, MISTIC-1 Investigators

Abstract

Background: Given the characteristic differences between intravascular ultrasound (IVUS) and optical frequency domain imaging (OFDI), their approach to therapeutic guidance during percutaneous coronary interventions (PCIs) and arterial healing response after stenting may also vary.

Methods: MISTIC-1 (The Multimodality Imaging Study in Cardiology cohort 1) is a multicenter, randomized-controlled, noninferiority trial that compared imaging end points between OFDI- and IVUS-guided PCI. Patients with stable coronary artery disease were randomly assigned to either OFDI- or IVUS-guided PCI using a Biolimus A9-eluting stent according to a prespecified protocol for imaging guidance. Stent sizing was based on external elastic lamina in IVUS-guided PCI while lumen up-size in OFDI-guided PCI. Postprocedural OFDI was investigated regardless of randomization, while operators in IVUS-guided PCI arm were blinded to the images. The primary end point was in-segment minimum lumen area assessed using OFDI at 8 months, while the secondary end point was a composite of cardiovascular mortality, target-vessel myocardial infarction, or target-lesion revascularization (device-oriented composite end point). Patients were followed up to 3 years after the index procedure.

Results: A total of 109 patients (mean age 70 years, male 78%) with 126 lesions were enrolled. Postprocedural minimum stent area was 6.31±1.89 and 6.72±2.08 mm2 in OFDI and IVUS group, respectively (P=0.26). At the 8-month follow-up, in-segment minimum lumen area was 4.56±1.94 and 4.13±1.86 mm2 in OFDI and IVUS group, respectively (Pnon-inferiority <0.001). Both groups had comparable neointimal healing score (median 0.16 [interquartile range, 0.00-3.14] versus 0.90 [0.00-3.30], respectively; P=0.43). The incidence rate of device-oriented composite end point at 3 years was 7.4% and 7.3% in OFDI and IVUS group, respectively (hazard ratio, 1.05 [95% CI, 0.26-4.18]; P=0.95).

Conclusions: OFDI-guided PCI was not inferior to IVUS-guided PCI in terms of in-segment minimum lumen area at 8 months. Although a small sample size was acknowledged, OFDI could be an alternative to IVUS when considering intracoronary imaging-guided PCI in selected populations with coronary artery diseases. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03292081.

Keywords: coronary artery disease; drug-eluting stent; intravascular ultrasound; optical coherence tomography; percutaneous coronary intervention.

Conflict of interest statement

None.

Figures

Figure 1.
Figure 1.
Study flow diagram of the MISTIC-1 trial (The Multimodality Imaging Study in Cardiology cohort 1). *The patient underwent optical frequency domain imaging (OFDI) of 2 lesions at the 8-mo follow-up. IVUS indicates intravascular ultrasound; and PCI, percutaneous coronary intervention.
Figure 2.
Figure 2.
Neointimal healing score at the 8-mo follow-up.A, Box plot and (B) cumulative frequency distribution curve. IVUS indicates intravascular ultrasound; OFDI, optical frequency domain imaging; and PCI, percutaneous coronary intervention.
Figure 3.
Figure 3.
In-segment minimum lumen area at the 8-mo follow-up.A, Box plot and (B) cumulative frequency distribution curve. IVUS indicates intravascular ultrasound; MLA, minimum lumen area; OFDI, optical frequency domain imaging; and PCI, percutaneous coronary intervention.
Figure 4.
Figure 4.
Kaplan-Meier curves.A, Device-oriented composite end point (DoCE) and (B) patient-oriented composite end point (PoCE). DoCE is a composite of cardiovascular mortality, target-vessel myocardial infarction, or clinically driven target-lesion revascularization, whereas PoCE is a composite of all-cause mortality, all myocardial infarction, or all revascularization. IVUS indicates intravascular ultrasound; MI, myocardial infarction; OFDI, optical frequency domain imaging; and PCI, percutaneous coronary intervention.

References

    1. Mintz GS, Guagliumi G. Intravascular imaging in coronary artery disease. Lancet. 2017;390:793–809. doi: 10.1016/S0140-6736(17)31957-8
    1. Maehara A, Matsumura M, Ali ZA, Mintz GS, Stone GW. IVUS-guided versus OCT-guided coronary stent implantation: a critical appraisal. JACC Cardiovasc Imaging. 2017;10:1487–1503. doi: 10.1016/j.jcmg.2017.09.008
    1. Witzenbichler B, Maehara A, Weisz G, Neumann FJ, Rinaldi MJ, Metzger DC, Henry TD, Cox DA, Duffy PL, Brodie BR, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study. Circulation. 2014;129:463–470. doi: 10.1161/CIRCULATIONAHA.113.003942
    1. Hong SJ, Mintz GS, Ahn CM, Kim JS, Kim BK, Ko YG, Kang TS, Kang WC, Kim YH, Hur SH, et al. ; IVUS-XPL Investigators. Effect of intravascular ultrasound-guided drug-eluting stent implantation: 5-year follow-up of the IVUS-XPL randomized trial. JACC Cardiovasc Interv. 2020;13:62–71. doi: 10.1016/j.jcin.2019.09.033
    1. Zhang J, Gao X, Kan J, Ge Z, Han L, Lu S, Tian N, Lin S, Lu Q, Wu X, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: the ULTIMATE trial. J Am Coll Cardiol. 2018;72:3126–3137. doi: 10.1016/j.jacc.2018.09.013
    1. Okamura T, Onuma Y, Garcia-Garcia HM, van Geuns RJ, Wykrzykowska JJ, Schultz C, van der Giessen WJ, Ligthart J, Regar E, Serruys PW. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of terumo: a comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention. 2011;6:1037–1045. doi: 10.4244/EIJV6I9A182
    1. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, et al. ; ESC Scientific Document Group. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165. doi: 10.1093/eurheartj/ehy394
    1. Ali ZA, Maehara A, Généreux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, Guagliumi G, Meraj PM, Alfonso F, Samady H, et al. ; ILUMIEN III: OPTIMIZE PCI Investigators. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet. 2016;388:2618–2628. doi: 10.1016/S0140-6736(16)31922-5
    1. Kubo T, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, Shite J, Fusazaki T, Otake H, Kozuma K, et al. ; OPINION Investigators. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J. 2017;38:3139–3147. doi: 10.1093/eurheartj/ehx351
    1. Morino Y, Tamiya S, Masuda N, Kawamura Y, Nagaoka M, Matsukage T, Ogata N, Nakazawa G, Tanabe T, Ikari Y. Intravascular ultrasound criteria for determination of optimal longitudinal positioning of sirolimus-eluting stents. Circ J. 2010;74:1609–1616. doi: 10.1253/circj.cj-10-0025
    1. Ino Y, Kubo T, Matsuo Y, Yamaguchi T, Shiono Y, Shimamura K, Katayama Y, Nakamura T, Aoki H, Taruya A, et al. Optical coherence tomography predictors for edge restenosis after everolimus-eluting stent implantation. Circ Cardiovasc Interv. 2016;9:e004231 doi: 10.1161/CIRCINTERVENTIONS.116.004231
    1. Ishikawa M, Muramatsu T, Nanasato M, Nagasaka R, Takatsu H, Yoshiki Y, Hashimoto Y, Ohota M, Okumura M, Naruse H, et al. Associations of coronary plaque characteristics by integrated backscatter intravascular ultrasound with detectability of vessel external elastic lamina using optical frequency domain imaging in human coronary arteries: a sub-analysis of the MISTIC-1 trial. Catheter Cardiovasc Interv. 2019;94:947–955. doi: 10.1002/ccd.28218
    1. Gutiérrez-Chico JL, Jüni P, García-García HM, Regar E, Nüesch E, Borgia F, van der Giessen WJ, Davies S, van Geuns RJ, Secco GG, et al. Long-term tissue coverage of a biodegradable polylactide polymer-coated biolimus-eluting stent: comparative sequential assessment with optical coherence tomography until complete resorption of the polymer. Am Heart J. 2011;162:922–931. doi: 10.1016/j.ahj.2011.09.005
    1. Radu MD, Räber L, Kalesan B, Muramatsu T, Kelbæk H, Heo J, Jørgensen E, Helqvist S, Farooq V, Brugaletta S, et al. Coronary evaginations are associated with positive vessel remodelling and are nearly absent following implantation of newer-generation drug-eluting stents: an optical coherence tomography and intravascular ultrasound study. Eur Heart J. 2014;35:795–807. doi: 10.1093/eurheartj/eht344
    1. Radu MD, Räber L, Heo J, Gogas BD, Jørgensen E, Kelbæk H, Muramatsu T, Farooq V, Helqvist S, Garcia-Garcia HM, et al. Natural history of optical coherence tomography-detected non-flow-limiting edge dissections following drug-eluting stent implantation. EuroIntervention. 2014;9:1085–1094. doi: 10.4244/EIJV9I9A183
    1. Bouki KP, Sakkali E, Toutouzas K, Vlad D, Barmperis D, Phychari S, Riga M, Apostolou T, Stefanadis C. Impact of coronary artery stent edge dissections on long-term clinical outcome in patients with acute coronary syndrome: an optical coherence tomography study. Catheter Cardiovasc Interv. 2015;86:237–246. doi: 10.1002/ccd.25855
    1. de Jaegere P, Mudra H, Figulla H, Almagor Y, Doucet S, Penn I, Colombo A, Hamm C, Bartorelli A, Rothman M, et al. Intravascular ultrasound-guided optimized stent deployment. Immediate and 6 months clinical and angiographic results from the Multicenter Ultrasound Stenting in Coronaries Study (MUSIC Study). Eur Heart J. 1998;19:1214–1223. doi: 10.1053/euhj.1998.1012
    1. Otake H, Kubo T, Takahashi H, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, Shite J, Fusazaki T, et al. ; OPINION Investigators. Optical frequency domain imaging versus intravascular ultrasound in percutaneous coronary intervention (OPINION Trial): results from the OPINION imaging study. JACC Cardiovasc Imaging. 2018;11:111–123. doi: 10.1016/j.jcmg.2017.06.021
    1. Gogas BD, Garcia-Garcia HM, Onuma Y, Muramatsu T, Farooq V, Bourantas CV, Serruys PW. Edge vascular response after percutaneous coronary intervention: an intracoronary ultrasound and optical coherence tomography appraisal: from radioactive platforms to first- and second-generation drug-eluting stents and bioresorbable scaffolds. JACC Cardiovasc Interv. 2013;6:211–221. doi: 10.1016/j.jcin.2013.01.132
    1. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, Kutys R, Skorija K, Gold HK, Virmani R. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48:193–202. doi: 10.1016/j.jacc.2006.03.042
    1. Räber L, Onuma Y, Brugaletta S, Garcia-Garcia HM, Backx B, Iñiguez A, Okkels Jensen L, Cequier-Fillat À, Pilgrim T, Christiansen EH, et al. Arterial healing following primary PCI using the absorb everolimus-eluting bioresorbable vascular scaffold (Absorb BVS) versus the durable polymer everolimus-eluting metallic stent (XIENCE) in patients with acute ST-elevation myocardial infarction: rationale and design of the randomised TROFI II study. EuroIntervention. 2016;12:482–489. doi: 10.4244/EIJY15M08_03
    1. Sabaté M, Windecker S, Iñiguez A, Okkels-Jensen L, Cequier A, Brugaletta S, Hofma SH, Räber L, Christiansen EH, Suttorp M, et al. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction-TROFI II trial. Eur Heart J. 2016;37:229–240. doi: 10.1093/eurheartj/ehv500

Source: PubMed

3
订阅